Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα
|
|
- Ἐπαφρόδιτος Νικολαΐδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατίμερικάπροβλήματαείναιδύσκολοναλυθούν από υπολογιστικές μηχανές. Αντικείμενο: Επιλύσιμα προβλήματα: υπολογιστικοί πόροι. Ευεπίλυτα: spanning tree, shortest paths, max flow, min-cost flow, linear programming, Δυσεπίλυτα: TSP, vertex cover, knapsack, scheduling, Επίδραση υπολογιστικού μοντέλου. Προσεγγιστικοί Αλγόριθμοι 2 Προβλήματα και Αλγόριθμοι Προβλήματα Βελτιστοποίησης Αλγόριθμος: λεπτομερής περιγραφή μεθόδου επίλυσης προβλήματος από υπολογιστική μηχανή. Πρόβλημα: άπειρο σύνολο στιγμιοτύπων. Αποτελεί αντικείμενο μελέτης. Στιγμιότυπο: μαθηματικό αντικείμενο για το οποίο κάνουμε ερώτηση και περιμένουμε απάντηση. Προβλήματα: Βελτιστοποίησης: λύση με βέλτιστη αντικειμενική τιμή. Απόφασης: απάντηση ΝΑΙ ή ΌΧΙ. Πρόβλημα βελτιστοποίησης : Σύνολο στιγμιότυπων Σύνολο αποδεκτών λύσεων: Αντικειμενική συνάρτηση: Δεδομένου στιγμιότυπου σ, ζητείται Συνδυαστικής βελτιστοποίησης: πεπερασμένο σύνολο αποδεκτώνλύσεωνπουπεριλαμβάνειβέλτιστη. Προσεγγιστικοί Αλγόριθμοι 3 Προσεγγιστικοί Αλγόριθμοι 4
2 Προβλήματα Απόφασης Αποδοτική Επίλυση: Κλάση P Πρόβλημα απόφασης : Σύνολο στιγμιότυπων Σύνολο (αποδεκτών) λύσεων: Δεδομένου Επιδέχεται μόνο δύο απαντήσεων: ΝΑΙ ή ΌΧΙ. Παραδείγματα προβλημάτων απόφασης: Συνεκτικότητα, κύκλος Euler, κύκλος Hamilton. Ικανοποιησιμότητα λογικών προτάσεων. Κάθε πρόβλημα βελτιστοποίησης: έχει λύση με αντικειμενική τιμή καλύτερη από Β; Μέγεθος στιγμιότυπου n : αριθμός bits για αναπαράστασή του. Αλγόριθμος πολυωνυμικού χρόνου λύνει κάθε στιγμιότυπο σε χρόνο O(n d ), d σταθερά. Κλάση P : προβλήματα απόφασης που επιλύονται από αλγόριθμους πολυωνυμικού χρόνου. Shortest paths, MST, max flow, min cut, min-cost flow, maximum matching, linear programming, Αξίωμα Cook-Karp : κλάση ευεπίλυτων προβλημάτων ταυτίζεται με κλάση P. Προσεγγιστικοί Αλγόριθμοι 5 Προσεγγιστικοί Αλγόριθμοι 6 Αποδοτική Επίλυση: Κλάση P «Δύσκολα» Προβλήματα Υπέρ αξιώματος Cook-Karp: Τι κάνουμε όταν ένα πρόβλημα φαίνεται «δύσκολο»; Κλάση P ανεξάρτητη υπολογιστικού μοντέλου. Συνήθως πολυώνυμα μικρού βαθμού (π.χ. n, n 2, n 3 ). Διπλασιασμός υπολογιστικής ισχύος: σημαντική αύξηση στο μέγεθος στιγμιότυπων που επιλύουμε. Κριτική στο αξίωμα Cook-Karp: Ακραίες περιπτώσεις: πρακτικό το n 00 αλλά όχι το 2 n/00! Γραμμικός Προγραμματισμός: Simplex εκθετικού χρόνου στη χειρότερη περίπτωση αλλά πολύ γρήγορος στην πράξη. Ελλειψοειδές πολυωνυμικού χρόνου αλλά όχι πρακτικός. «Δύσκολο»: μετά από μεγάλη προσπάθεια, δεν βρίσκουμε αποδοτικό αλγόριθμο (πολυωνυμικού χρόνου). Πάμε στο αφεντικό και λέμε: Δεν μπορώ να βρω αποδοτικό αλγόριθμο. Απόλυση! Δεν υπάρχει αποδοτικός αλγόριθμος. Καλό αλλά δύσκολο! Κανένας δεν μπορεί να βρει αποδοτικό αλγόριθμο (και όλοι πιστεύουν ότι δεν υπάρχει). Θεωρία NP-πληρότητας. NP-πλήρη: κλάση εξαιρετικά σημαντικών προβλημάτων που είτε όλα επιλύονται σε πολυωνυμικό χρόνο είτε κανένα. Προσεγγιστικοί Αλγόριθμοι 7 Προσεγγιστικοί Αλγόριθμοι 8
3 ΗΚλάσηNP ΗΚλάσηNP περιλαμβάνει προβλήματα απόφασης: Για κάθε ΝΑΙ-στιγμιότυπο, υπάρχει «πιστοποιητικό» εύκολο να ελεγχθεί (ελέγχεται σε πολυωνυμικό χρόνο). Συνοπτικό πιστοποιητικό (succinct certificate). Πιστοποιητικό μπορεί να είναι δύσκολο να υπολογισθεί. Αν δοθεί, ελέγχεται εύκολα! Δεν απαιτείται συνοπτικό πιστοποιητικό για ΌΧΙ-στιγμιότυπα. Κλάση co-np περιλαμβάνει προβλήματα απόφασης με συνοπτικό πιστοποιητικό για ΌΧΙ-στιγμιότυπα. Προβλήματα Ρ ανήκουν ΝΡ Προβλήματα Ρ ανήκουν co-νρ Για σημαντικότερα προβλήματα βελτιστοποίησης, αντίστοιχα προβλήματα απόφασης ανήκουν στο NP. Συντομότερο s t μονοπάτι μήκους Β? Πιστοποιητικό μονοπάτι μήκους Β. Ελάχιστο Επικαλύπτον Δέντρο βάρους Β? Πιστοποιητικό επικαλύπτον δέντρο βάρους Β. Υπάρχει κύκλος Hamilton? Περιοδεία Περιοδεύοντος Πωλητή μήκους Β? Πιστοποιητικό περιοδεία μήκους Β. Ελάχιστο κάλυμμα κορυφών με #κορυφών Β? Πιστοποιητικό κάλυμμα κορυφών με Βκορυφές. Προσεγγιστικοί Αλγόριθμοι 9 Προσεγγιστικοί Αλγόριθμοι 0 NP-Πληρότητα ΡκαιΝΡ ΝΡ-δύσκολο πρόβλημα Π αν κάθε πρόβλημα Π στο ΝΡ ανάγεται σε πολυωνυμικό χρόνο στο Π. Αναγωγή: αλγόριθμος πολυωνυμικού χρόνου με ιδιότητα x ΝΑΙ-στιγμ. ανν R(x) ΝΑΙ-στιγμ. Αν Π λύνεται σε πολυωνυμικό χρόνο, Π επίσης! ΝΡ-πλήρες πρόβλημα κάθε ΝΡ-δύσκολο που ανήκει ΝΡ. Εξ ορισμού Ερώτημα: Αν, πολλά σημαντικά προβλήματα ευεπίλυτα! Αν (όπως όλοι πιστεύουν), κάποια προβλήματα στο ΝΡ δεν λύνονται σε πολυωνυμικό χρόνο! Εξ ορισμού, τα ΝΡ-πλήρη πρέπει να είναι σε αυτά. Προσεγγιστικοί Αλγόριθμοι Προσεγγιστικοί Αλγόριθμοι 2
4 Αντιμετώπιση NP-Δυσκολίας Αντιμετώπιση NP-Δυσκολίας Αν, όχι αλγόριθμος που για όλα τα στιγμιότυπα υπολογίζει βέλτιστη λύση σε πολυωνυμικό χρόνο. Ευρετικές τεχνικές: συχνά γρήγορα βέλτιστη λύση αλλά και δύσκολα στιγμιότυπα (αργά ή / και όχι βέλτιστη λύση). Τοπική αναζήτηση. Simulated annealing. Γενετικοί αλγόριθμοι. Branch-and-Bound, Branch-and-Cut. Ανάλυση μέσης περίπτωσης / πιθανοτική ανάλυση. Γρήγοροι σε στιγμιότυπα που εμφανίζονται συχνότερα (αργοί μόνο για στιγμιότυπα με μικρή πιθανότητα). Διαφορά από ευρετικές τεχνικές: θεωρητική ανάλυση. Γνωρίζουμε πιθανότητα και πότε καλή / κακή απόδοση. «Εύκολες» περιπτώσεις. Αλγόριθμοι προσέγγισης [Johnson, Sahni and Gonzalez,, 70 s] Αλγόριθμοι πολυωνυμικού χρόνου (χ.π.). Όχι (πάντα) βέλτιστη λύση. Ανάλυση χειρότερης περίπτωσης ως προς ποιότητα λύσης. Προσεγγιστικοί Αλγόριθμοι 3 Προσεγγιστικοί Αλγόριθμοι 4 Αλγόριθμοι Προσέγγισης Ελάχιστο Κάλυμμα Κορυφών Απόδοση χειρότερης περίπτωσης γνωστών ευρετικών αλγόριθμων (αρχικά κυρίως άπληστων). Σχεδιασμός poly-time αλγόριθμων που συμπεριφέρονται αποδεδειγμένα καλά για κάθε στιγμιότυπο. Λόγος προσέγγισης Αλγόριθμου Α για πρόβλημα Π (πάντα ): Είσοδος: γράφημα Εφικτή λύση: υποσύνολο κορυφών κάθε ακμή τουλάχιστον ένα άκρο στο είναι κάλυμμα κορυφών (vertex cover). Στόχος: κάλυμμα κορυφών με ελάχιστο #κορυφών. ΝΡ-δύσκολο πρόβλημα. Προβλήματος Π: Προσεγγιστικοί Αλγόριθμοι 5 Προσεγγιστικοί Αλγόριθμοι 6
5 Ταίριασμα Μεγιστοτικό Ταίριασμα Ταίριασμα : υποσύνολο ακμών χωρίς κοινά άκρα. Μεγιστοτικό ταίριασμα : ταίριασμα που αν προσθέσουμε ακμή παύει να είναι ταίριασμα. Για κάθε ταίριασμα Μ, τουλάχιστον ένα από τα άκρα ακμών Μ ανήκει σε κάθε κάλυμμα κορυφών: ταίριασμα Μ, ελάχιστο κάλυμμα κορυφών C * Μ Μεγιστοτικό ταίριασμα Μ : κάθε ακμή εκτός Μ έχει κοινό άκρο με ακμή του Μ. Άκρα ακμών μεγιστοτικού ταιριάσματος Μ συγκροτούν κάλυμμα κορυφών C. C = 2 M 2 C * Προσεγγιστικοί Αλγόριθμοι 7 Προσεγγιστικοί Αλγόριθμοι 8 Αλγόριθμος ΜΜ Υπολογισμός μεγιστοτικού ταιριάσματος Μ. Προσθήκη ακμών ενόσω υπάρχουν ακμές που προσθήκη τους δίνει ταίριασμα. κάλυμμα κορυφών C:όλαταάκραακμώνΜ. Πολυωνυμικός χρόνος. Ορθότητα : ιδιότητα μεγιστοτικού ταιριάσματος. Λόγος προσέγγισης = 2. C = 2 M 2 C * (πάνω φράγμα). Παραδείγματα όπου κόστος ΜΜ διπλάσιο βέλτιστου. Βασική Ιδέα (ελαχιστοποίηση) Ξεκινώ από κάτω φράγμα στο κόστος βέλτιστης λύσης. Για κάθε ταίριασμα Μ, C * Μ. Κάτω φράγμα εκφράζεται σαν συνάρτηση κάποιων άλλων παραμέτρων του στιγμιότυπου εισόδου. Πολλές φορές κάτω φράγμα προκύπτει από δυϊκότητα. (Πολυωνυμικός) αλγόριθμος: εφικτή λύση με κόστος = συνάρτηση των παραμέτρων στο κάτω φράγμα. Μεγιστοτικό ταίριασμα Μ: κάλυμμα κορυφών C, C = 2 M. Σύγκριση δίνει άνω φράγμα στο λόγο προσέγγισης. C = 2 M 2 C *. Προσεγγιστικοί Αλγόριθμοι 9 Προσεγγιστικοί Αλγόριθμοι 20
6 Περιοδεύων Πωλητής Κάτω φράγμα Είσοδος: n σημεία με (συμμετρικές) αποστάσεις τους. Αποστάσεις ικανοποιούν τριγωνική ανισότητα (metric space). Αποδεκτές λύσεις: περιοδείες (μεταθέσεις) n σημείων. Στόχος: περιοδεία ελάχιστου συνολικού μήκους. Ελάχιστο Επικαλύπτον Δέντρο (ΕΕΔ). Κάθε περιοδεία έχει μήκος βάρος ΕΕΔ. Περιοδεία ακμή: επικαλύπτον δέντρο. Αλγόριθμος: Τ * ΕΕΔ βάρους w(t * ) «Διπλασιασμός» ακμών Τ * (άρτιοι βαθμοί) Κύκλος Euler στο διπλασιασμένο Τ * Αποφυγή διπλών εμφανίσεων «κόβοντας» δρόμο. Μήκος 2w(T * ) λόγω τριγωνικής ανισότητας Λόγος προσέγγισης 2 (tight). β α γ ζ δ ε Προσεγγιστικοί Αλγόριθμοι 2 Προσεγγιστικοί Αλγόριθμοι 22 Καλύτερος Αλγόριθμος Δρομολόγηση Εργασιών Αλγόριθμος Χριστοφίδη (976) Ελάχιστο Επικαλύπτον Δέντρο. Ταίριασμα ελάχιστου βάρους μεταξύ κορυφών ΕΕΔ με περιττό βαθμό. Κύκλος Euler. Περιοδεία μήκους βάρος ΕΕΔ + βάρος ταιριάσματος. Λόγος προσέγγισης = 3/2. Μετά 30 χρόνια, καλύτερος γνωστός αλγόριθμος. Υπάρχουν καλύτεροι αλγόριθμοι για ειδικές περιπτώσεις (π.χ. TSP(, 2), planar TSP, ). Είσοδος: m ίδιες μηχανές (σύνολο Μ). n εργασίες μεγέθους w,w 2,, w n (σύνολο J). Αποδεκτές λύσεις: κάθε δρομολόγηση φ Στόχος: ελαχιστοποίηση μέγιστου φορτίου μηχανής: Προσεγγιστικοί Αλγόριθμοι 23 Προσεγγιστικοί Αλγόριθμοι 24
7 Κάτω φράγμα Αλγόριθμος Graham (966). Εργασίες μία μία με σειρά που δίνονται (online). Νέα εργασία σε μηχανή με ελάχιστο φορτίο (greedy). Άνω φράγμα στο μέγιστο φορτίο: Φορτίο μηχανής i πριν δρομολογηθεί εργασία j : k μηχανή με μεγαλύτερο φορτίο w λ τελευταία εργασία στην μηχανή k 3 Προσεγγιστικοί Αλγόριθμοι 25 Προσεγγιστικοί Αλγόριθμοι 26 μηχ. μηχ. 2 μηχ. 3 Κάλυμμα Συνόλων (Set Cover) Παράδειγμα Σύνολο στοιχείων Μη-κενά υποσύνολα του Κόστος υποσυνόλων: Ζητούμενο: κάλυμμα S με ελάχιστο κόστος. Ελάχιστου κόστους συλλογή υποσυνόλων ΝΡ-δύσκολο πρόβλημα. Απληστία: καλύτερος προσεγγιστικός αλγόριθμος. S = {, 2, 3, 4, 5, 6, 7, 8 } X = {, 2, 3}, X 2 = {2, 3, 4, 8}, X 3 = {3, 4, 5} X 4 = {4, 5, 6}, X 5 = {2, 3, 5, 6, 7}, X 6 = {, 4, 7, 8} Βέλτιστη λύση: X 5, X 6 Προσεγγιστικοί Αλγόριθμοι 27 Προσεγγιστικοί Αλγόριθμοι 28
8 Άπληστος Αλγόριθμος Αντιπαράδειγμα Σύνολο U ακάλυπτων στοιχείων (αρχικά U = S). Δεν πλησιάζει τη βέλτιστη λύση! Επιλογή υποσυνόλου που ελαχιστοποιεί κόστος ανά ακάλυπτο στοιχείο που καλύπτει: Ενημέρωση U και συνέχεια ενόσω U δεν είναι κενό. Βέλτιστη λύση έχει κόστος +ε. Κόστος άπληστου αλγόριθμου: Παράδειγμα: χειρότερη περίπτωση άπληστου αλγόριθμου. Προσεγγιστικοί Αλγόριθμοι 29 Προσεγγιστικοί Αλγόριθμοι 30 Ανάλυση Μη-Προσεγγισιμότητα Έστω OPT κόστος βέλτιστης λύσης. Προβλήματα στο ΝΡ που προσέγγιση είναι ΝΡ-δύσκολη! Αρχή i-οστής επανάλ.: ακάλυπτα στοιχεία (κάθε προηγούμενη επανάληψη καλύπτει στοιχείο). Βέλτιστη καλύπτει στοιχεία με μέσο κόστος Άπληστη επιλογή έχει κόστος / στοιχείο Αθροίζοντας για n επαναλήψεις, κόστος άπληστου αλγ. Περιοδεύων Πωλητής χωρίς τριγωνική ανισότητα, μέγιστη κλίκα / σύνολο ανεξαρτησίας, χρωματικός αριθμός, Πρόβλημα Περιοδεύοντος Πωλητή χωρίς Τριγωνική Ανισότητα (ΠΠΠ): n σημεία και συμμετρικές αποστάσεις (αλλά όχι metric). Ζητούμενο: περιοδεία ελάχιστου συνολικού μήκους. Λόγος προσέγγισης Αποδεικνύεται ότι δεν υπάρχει αλγόριθμος πολυωνυμικού χρόνου με καλύτερο λόγο προσέγγισης. Για κάθε γ, γ-προσέγγιση ΠΠΠ είναι ΝΡ-δύσκολη [Sahni και Gonzalez, 976]. Κάθε γ-προσεγγιστικός αλγόριθμος για ΠΠΠ λύνει πρόβλημα κύκλου Hamilton! Προσεγγιστικοί Αλγόριθμοι 3 Προσεγγιστικοί Αλγόριθμοι 32
9 Απόδειξη Γράφημα G(V, E): υπάρχει κύκλος Hamilton στο G; Αναγωγή σε γ-προσέγγιση ΠΠΠ (για οποιοδήποτε γ > ): Κορυφές σημεία. Αποστάσεις: Κύκλος Hamilton στο G περιοδεία μήκους V Όχι κύκλος Hamilton στο G περιοδεία μήκους γ V + V > γ V γ-προσεγγιστικός αλγόριθμος για ΠΠΠ: Κύκλος Hamilton στο G περιοδεία μήκους γ V Αποφασίζει (σωστά) αν υπάρχει κύκλος Hamilton στο G. Επισκόπηση Περιοχής Σχήματα προσέγγισης: λόγος (+ε), για κάθε ε > 0. Σακίδιο, δρομολόγηση εργασιών, γεωμετρικά προβλήματα, Δυναμικός προγραμματισμός και διακριτοποίηση. Σταθερός λόγος προσέγγισης. MAX-SNP-δυσκολία: ΝΡ-δύσκολο να υπάρξει σχήμα PCP Θεώρημα: NP = PCP(log n, ). Προβλήματα σε μετρικούς χώρους: ΠΠΠ-ΤΑ, facility location, δέντρο Steiner, Προβλήματα σε γραφήματα: κάλυμμα κορυφών, μέγιστη τομή, feedback vertex set, Προβλήματα ικανοποιησιμότητας: Max-k-SAT. Προσεγγιστικοί Αλγόριθμοι 33 Προσεγγιστικοί Αλγόριθμοι 34 Επισκόπηση Περιοχής Επισκόπηση Περιοχής Τεχνικές για σταθερό λόγο προσέγγισης: Λογαριθμικός λόγος προσέγγισης. Τοπική αναζήτηση μέθοδος απληστίας. Primal-dual μέθοδος. Dual-fitting μέθοδος. Relaxation του Ακέραιο Προγράμματος σε Γραμμικό Πρόγραμμα, επίλυση, και τυχαίο στρογγύλεμα μη-ακέραιων λύσεων. Ελάχιστο κάλυμμα συνόλων Άπληστος αλγόριθμος (dual-fitting) καλύτερος δυνατός. Αραιότερη τομή, γραμμικές διατάξεις, Εμβάπτιση μετρικών χώρων σε απλούστερους χώρους όπου προβλήματα λύνονται ευκολότερα. Πολυωνυμικός λόγος προσέγγισης. Μέγιστη κλίκα / σύνολο ανεξαρτησίας, χρωματισμός γραφημάτων, PCP Θεώρημα: για κάθε ε > 0, προσέγγιση μέγιστης κλίκας σε λόγο V ε είναι ΝΡ-δύσκολο πρόβλημα! Προσεγγιστικοί Αλγόριθμοι 35 Προσεγγιστικοί Αλγόριθμοι 36
για NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος
Αλγόριθµοι Προσέγγισης για NP- ύσκολα Προβλήµατα
Αλγόριθµοι Προσέγγισης για NP- ύσκολα Προβλήµατα Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία,
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Προσεγγιστικοί Αλγόριθμοι Απόδοση χειρότερης
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Εισαγωγικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική
Υπολογιστικό Πρόβληµα
Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές
Δυϊκότητα. Δημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Δυϊκότητα Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιστοποίηση Άνω Φράγματος Έχει το ΓΠ εφικτή λύση με κόστος 2; Ναι, π.χ. [0, 1, 3, 0, 2, 0,
Κλάση NP, NP-Complete Προβλήματα
Κλάση NP, NP-Complete Προβλήματα Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Προβλήματα Απόφασης & Βελτιστοποίησης 2 Πρόβλημα Απόφασης: Κάθε πρόβλημα που
NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων
NP-πληρότητα Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Πολυωνυμικός μετασχηματισμός Ένας πολυωνυμικός μετασχηματισμός από την L 1 Σ 1 * στην L 2 Σ 2 * είναι μια συνάρτηση
Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης
Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
Δυναμικός Προγραμματισμός
Τρίγωνο του Pascal Δυναμικός Προγραμματισμός Διωνυμικοί συντελεστές Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γενική Προσέγγιση ιατυπώνουμε το πρόβλημα
υναμικός Προγραμματισμός
υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και P-Πληρότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική Μηχ. Turing (ΝTM)
Δυναμικός Προγραμματισμός
Δυναμικός Προγραμματισμός Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διωνυμικοί Συντελεστές Διωνυμικοί
υναμικός Προγραμματισμός
υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί
Κεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 1 Πέντε Αντιπροσωπευτικά Προβλήματα Έκδοση 1.4, 30/10/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 1.2 Πέντε Αντιπροσωπευτικά Προβλήματα 1. Χρονοπρογραμματισμός Διαστημάτων
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1,
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα
Δυναμικός Προγραμματισμός
Δυναμικός Προγραμματισμός Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις /προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διωνυμικοί Συντελεστές
Συντομότερες Διαδρομές
Συντομότερη Διαδρομή Συντομότερες Διαδρομές Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κατευθυνόμενο G(V, E, w) με μήκη Μήκος
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Συντομότερες Διαδρομές
Συντομότερες Διαδρομές Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη Διαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής
Προσεγγιστικοί Αλγόριθμοι
Κεφάλαιο 12 Προσεγγιστικοί Αλγόριθμοι 12.1 Προβλήματα Βελτιστοποίησης Σε ένα πρόβλημα βελτιστοποίησης σε κάθε στιγμιότυπο του προβλήματος αντιστοιχούν κάποιες εφικτές (feasible) -δηλαδή επιτρεπτές- λύσεις,
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο
Προηγμένα Θέματα Αλγορίθμων (ΣΗΜΜΥ ΕΜΠ) Αλγόριθμοι Δικτύων και Πολυπλοκότητα (ΕΜΠ - ΑΛΜΑ) Προσεγγιστικοί Αλγόριθμοι.
Προηγμένα Θέματα Αλγορίθμων (ΣΗΜΜΥ ΕΜΠ) Αλγόριθμοι Δικτύων και Πολυπλοκότητα (ΕΜΠ - ΑΛΜΑ) Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άνοιξη 2018 Προσεγγιστικοί Αλγόριθμοι Αφορούν κυρίως σε προβλήματα βελτιστοποίησης:
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γενική Προσέγγιση ιατυπώνουμε το πρόβλημα
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα 7ο εξάμηνο ΣHMΜY Εισαγωγή Διδάσκοντες: Άρης Παγουρτζής, Δώρα Σούλιου Στάθης Ζάχος, Δημήτρης Σακαβάλας Επιμέλεια διαφανειών: Άρης Παγουρτζής www.corelab.ntua.gr/courses/algorithms
ΔΥΣΚΟΛΙΑ ΣΤΗΝ ΠΡΟΣΕΓΓΙΣΙΜΟΤΗΤΑ
ΔΥΣΚΟΛΙΑ ΣΤΗΝ ΠΡΟΣΕΓΓΙΣΙΜΟΤΗΤΑ Επιμέλεια : Γεωργίου Κωστής Παρουσίαση στα πλαίσια του μαθήματος: Δίκτυα και πολυπλοκότητα Φεβρουάριος 004 μπλ Κίνητρα για τη μελέτη της μη προσεγγισιμότητας Ο πληρέστερος
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Σχετικά με το Μάθημα Ώρες γραφείου: Δευτέρα Παρασκευή
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π
Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός
υναμικός Προγραμματισμός
υναμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιακριτό Πρόβλημα Σακιδίου ίνονται n αντικείμενα και σακίδιο μεγέθους Β. Αντικείμενο
Μέγιστη Ροή Ελάχιστη Τομή
Μέγιστη Ροή Ελάχιστη Τομή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή, προορισμός, χωρητικότητα ακμής b e. ροή μεγέθους
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κλάσεις P, NP NP-πληρότητα 15 Απριλίου 2008 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να περιγράψουμε με
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική
Μέγιστη Ροή Ελάχιστη Τομή
Μέγιστη Ροή Ελάχιστη Τομή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή,
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιµότητα Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβληµα αναζήτησης (search problem) Ένα πρόβληµα αναζήτησης είναι ένα πρόβληµα στο
Βασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη ιαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής Απόσταση d(u,
Ενότητα 5: Αλγόριθμοι γράφων και δικτύων
Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών
Δομές Δεδομένων & Αλγόριθμοι
Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν
ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.
Approximation Algorithms for the k-median problem
Approximation Algorithms for the k-median problem Ζακυνθινού Λυδία Παυλάκος Γεώργιος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεωρία Υπολογισμού 2011-2012 Το πρόβλημα
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες
Chapter 7, 8 : Time, Space Complexity
CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 12 December 2008 1 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτεμπορούμεναπεριγράψουμεμεένααλγόριθμο μπορεί να
Γράφοι: κατευθυνόμενοι και μη
Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι
Αλγόριθμοι και Πολυπλοκότητα
7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths
Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Άπληστοι Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 13: Πολυωνυμική αναγωγή Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Κλάσεις Πολυπλοκότητας
Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα
Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα
Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό
Γραμμικός Προγραμματισμός
Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή
Άπληστοι Αλγόριθμοι. Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Άπληστοι Αλγόριθμοι Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα
Κουτσιούμπας Αχιλλέας U. Adamy, C. Ambuehl, R. Anand, T. Erlebach
Κουτσιούμπας Αχιλλέας ΕΛΕΓΧΟΣ ΚΛΗΣΕΩΝ ΣΕ ΑΚΤΥΛΙΟ U. Adamy, C. Ambuehl, R. Anand, T. Erlebach ΜΠΛΑ 1 Δομή παρουσίασης Γενικά Ορισμός προβλήματος Σχετιζόμενη δουλειά Εισαγωγικά Αλγόριθμος Παράδειγμα εκτέλεσης
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 12: Μη ντετερμινιστικές μηχανές Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση
Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Άπληστοι Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Δημήτρης Φωτάκης Προσθήκες (λίγες): Άρης Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,
Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5
Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Ικανοποιητική εικόνα, αντίστοιχη
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσhmμy 1η ενότητα: Βασικές έννοιες θεωρίας υπολογισμού: υπολογιστικά προβλήματα, υπολογισιμότητα, πολυπλοκότητα Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης
Βασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση
Chapter 9: NP-Complete Problems
Θεωρητική Πληροφορική Ι: Αλγόριθμοι και Πολυπλοκότητα Chapter 9: NP-Complete Problems 9.3 Graph-Theoretic Problems (Συνέχεια) 9.4 Sets and Numbers Γιώργος Αλεξανδρίδης gealexan@mail.ntua.gr Κεφάλαιο 9:
HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι είδαμε την προηγούμενη φορά. Συνεκτικότητα. 25 -Γράφοι
HY118-Διακριτά Μαθηματικά Θεωρία γράφων/ γραφήματα Πέμπτη, 17/05/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 17-May-18 1 1 17-May-18 2 2 Τι είδαμε την προηγούμενη φορά Ισομορφισμός γράφων Υπολογιστική
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και
Θεωρία Αποφάσεων και Βελτιστοποίηση
Θεωρία Αποφάσεων και Βελτιστοποίηση http://www.di.uoa.gr/ telelis/opt.html Ορέστης Τελέλης telelis@di.uoa.gr Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Θεωρία Αποφάσεων και Βελτιστοποίηση
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσhmμy 3η ενότητα: Βασικές έννοιες θεωρίας υπολογισμού: υπολογιστικά προβλήματα, υπολογισιμότητα, πολυπλοκότητα Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,
Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού
Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη
Θεμελιώδη Θέματα Επιστήμης Υπολογιστών
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Θεμελιώδη Θέματα Επιστήμης Υπολογιστών Μετασχηματισμοί Υπολογιστικών Προβλημάτων Αναγωγές και Πληρότητα Προσαρμογή από
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
CSC 314: Switching Theory
CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός
Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου
4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 3/2/ / 37
4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 3/2/2019 1 / 37 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον i ανάμεσα σε όλους
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνο ΣHMΜY
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνο ΣHMΜY 2η ενότητα: Βασικές έννοιες θεωρίας υπολογισμού: υπολογιστικά προβλήματα, υπολογισιμότητα, πολυπλοκότητα Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης