Διδάσκων: Παναγιώτης Ανδρέου
|
|
- Μαρία Αυγερινός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Διάλεξη 35: Τεχνικές Κατακερματισμού (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit-Διανύσματα - Τεχνικές Κατακερματισμού & Συναρτήσεις Κατακερματισμού - Διαχείριση Συγκρούσεων με Αλυσίδωση& με ανοικτή διεύθυνση Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 1
2 Εισαγωγή Το πρόβλημα Το Πρόβλημα Έχουμε ένα στοιχείο u. Θέλουμε κάποια αποδοτική δομή η οποία θα μας επιτρέψει ναεκτελέσουμε τις ακόλουθες δυο πράξεις σε σταθερό χρόνο Ο(1). Εύρεση στοιχείου u σε μια συλλογή S(δηλ. Find(u,S)). Εισαγωγήτουu στην συλλογή S(δηλ.Insert(u, S)) Παράδειγμα Η συλλογή S περιέχει μια μεγάλη λίστα φοιτητών. Θέλουμε να βρούμε αν ο u= Νεόφυτος Χαραλάμπους είναι μέρος αυτής της λίστας. Aν δεν είναιστην λίστα, τότε θέλουμε να τον εισάγουμε. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 2
3 Εισαγωγή Ανασκόπηση Λύσεων Ακατάλληλες Υλοποιήσεις 1. Συνδεδεμένη λίστα Insert: Ο(1), Find: O(n) 2. Iσοζυγισμένο δένδρο αναζήτησης Insert: O(log m n), Find: O(log m n) n: o αριθμός των κόμβωνκαι m: o βαθμός(branching factor) κάθε κόμβου. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 3
4 Εισαγωγή Ανασκόπηση Λύσεων II Υπάρχει πιο αποδοτική μέθοδος από τη χρήση ισοζυγισμένων δένδρων; Ναι,δεδομένου ότι υπάρχει μια συνάρτηση η οποία μας επιτρέπει για κάθε στοιχείο u, να βρούμε την ακριβή θέση του uστον πίνακα. Έχουμε χρησιμοποιήσει αντίστοιχη ιδέα στον αλγόριθμο ταξινόμησης BucketSort. Μια απλή λύση είναι να απεικονίσουμε το σύνολο S U(όπου U είναι το πεδίο ορισμού της S) με ένα διάνυσμα διφίων(διάνυσμα δυαδικών ψηφίων, bit-vector). Παρόμοια δομή χρησιμοποιήσαμε και στον αλγόριθμο ταξινόμησης bucketsort. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 4
5 Bit vectors(διανύσματα Διφύων) Ένα bit-vectorείναι μονοδιάστατος πίνακας με nbits, Bits[1..n], τέτοιος ώστε: Bits[u] = 1, αν u S και Bits[u] = 0, αν u S Για παράδειγμα αν U= {1,,9} τότε το σύνολο S= {1, 3, 7} αναπαρίσταται ως το bit-vector: Bits = [1,0,1,0,0,0,1,0,0] Ο χρόνος εύρεσης και εισαγωγής/αναζήτησης κάποιου στοιχείου είναι σε χρόνο Ο(1)! Πρόβλημα: Αν το U είναι πολύ μεγαλύτερο από το S τότε σπαταλάμε πάρα πολύ χώρο! Λύση: οκατακερματισμός (hashing)που είναι μια οικογένεια μεθόδων που αντιστοιχεί ένα κλειδί σε μία θέση ενός πίνακα (keyto-address transformation). ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 5
6 Βασική Ιδέα Κατακερματισμού Έστω το σύνολο ακεραίων S από το πεδίο ορισμού U S= {0, 1, 2, 3, 4, 5, 8, 30, 57} (U=[0..99]) Θα φτιάξουμε ένα Πίνακα Κατακερματισμού(Hash Table), o οποίος στο παράδειγμα μας έχει μέγεθος hsize=5(το μέγεθος είναι συνήθως συναρτήσει του διαθέσιμου χώρου) Χρησιμοποιώντας κάποια συνάρτηση κατακερματισμού (hashing function) h(key), θα εισάγουμε τα στοιχεία του S στο hashtable. Παράδειγμα(hsize: 5) H data Hash Function h(key): key mod hsize 0 0, 5, 30 To mod(%)είναι το υπόλοιπο της διαίρεσης Κλειδί u h(u) Αν ψάχνουμε το key=21, τότε ξέρω ότι πρέπει να ψάξω στην θέση 1(21mod5) Αν ψάχνω το key=4; 1 1, 2 2, , 8 4 4, ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 6
7 Κατακερματισμός Ορισμοί & Ερωτήματα Πίνακας κατακερματισμού (hashtable)είναι μια δομή δεδομένων που υποστηρίζει τις διαδικασίες insert και find σε (σχεδόν) σταθερό χρόνο O(1). Ένας πίνακας κατακερματισμού χαρακτηρίζεται από 1. το μέγεθος του, hsize,και 2. κάποια συνάρτηση κατακερματισμού hη οποία αντιστοιχεί κλειδιά στο σύνολο των ακεραίων [0,, hsize 1] (εφόσον εφαρμοστεί το MOD) Tα δεδομένα αποθηκεύονται στον πίνακα H[0,, hsize 1]: το κλειδί k αποθηκεύεται στον H στη θέση H[h(k)]. Ωστόσο τα hashtableδεν είναι ιδανικό για να ανακτούμε τα στοιχεία ταξινομημένα, ή γενικότερα, για αναζητήσεις σε κάποιο εύρος (range queries). π.χ. Αν ψάχνω κλειδιά μεταξύ 2-10 (range query); θα πρέπει δυστυχώς να κοιτάξω σε όλες τις θέσεις του πίνακα. Επίσης, δημιουργούνται δύο νέα σημαντικά ερωτήματα: 1. ποια είναι καλή επιλογή για τη συνάρτηση κατακερματισμού h; 2. τι θα πρέπει να γίνεται αν πολλά κλειδιά είναι στο ίδιο bucket (κάδο). Τέτοιου είδους συγκρούσεις (collisions), είναι πολύ πιθανό να συμβούν. Δηλαδή για δύο κλειδιά k 1,k 2,με k 1 k 2, το bucketνα είναι ο ίδιος h(k 1 ) = h(k 2 ) ; ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 7
8 1) Επιλογή Συνάρτησης Κατακερματισμού Ιδιότητες μιας καλής συνάρτησης κατακερματισμού: 1. Θα πρέπει να χρησιμοποιεί ολόκληρο τον πίνακα [0 hsize 1]. 2. Θα πρέπει να σκορπίζει ομοιόμορφα τα κλειδιά στον πίνακα Η. 3. Θα πρέπει να υπολογίζεται εύκολα. Η συνάρτηση hαρχικά αντιστοιχίζει το κλειδί σε κάποιο ακέραιο αριθμό aκαι στη συνέχεια παίρνει την τιμή «amodhsize». Πρέπει επίσης να μπορούμε να υπολογίζουμε την συνάρτηση κατακερματισμού για συμβολοσειρές! ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 8
9 Παράδειγμα Συνάρτησης Κατακερματισμού // Η συνάρτηση κατακερµατισµού αθροίζει όλους τους χαρακτήρες του string s, και στην συνέχεια βρίσκει το υπόλοιπο από την διαίρεση µε το hsize int hash(char *s, int hsize) { int hash = 0; } while ((*s)!= '\0') { hash += (*s); s++; } return (hash % hsize); int main() { char *name1 = "cat"; char *name2 = "car"; char *name3 = "cap"; Κλειδί u h(u) H data 0 car printf("%s hashes to bucket %d\n", name1, hash(name1, 5)); printf("%s hashes to bucket %d\n", name2, hash(name2, 5)); printf("%s hashes to bucket %d\n", name3, hash(name3, 5)); 1 2 cat 3 cap 4 } return 0; Output> car hashes to bucket 2 cat hashes to bucket 0 cap hashes to bucket 3 ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 9
10 1) Επιλογή Συνάρτησης Κατακερματισμού Έστω ότι το κλειδί είναι αλυσίδα από 3 χαρακτήρες s[0]..s[2]. Παραδείγματα συνάρτησης κατακερματισμού είναι: A) Function 1 (Απλή συνάρτηση): Tο άθροισμα των κωδικών ASCII των χαρακτήρων s[0] + s[1] + s[2] Πρόβλημα:Λέξεις μπορούν να έχουν το ίδιο άθροισμα π.χ. Οι λέξεις cat και tac θα έχουν το άθροισμα == B) Function 2 (Βελτιωμένη Λύση): (Υποθέστε ότι οι χαρακ. είναι Ascii-7bit) (s[0]+127*0) + (s[1]+127*1) +(s[1]+127*2) Τώρα κάθε επί-μέρους άθροισμα απέχει το πιο λίγο κατά 128 από το επόμενο. Ωστόσο εάν έχουμε χαρακτήρες σε κάποια άλλη κωδικοποίηση π.χ. UNICODE-16bit τότε αυτό μας δίδει πολύ μεγάλους αριθμούς. C) Function 3 (Η συνάρτηση hashcode() στην γλώσσα JAVA) s[n-1] + s[n-2] * s[1]*31 (n-2) + s[0]*31 (n-1) Όπου n είναι to μήκος του string. Tο hash κάποιου κενού string είναι 0. π.χ. cat => n=3 => (t)99+(a)97* (c)116* 31 2 = 114,582 H επιλογή του 31 δεν είναι τυχαία. Είναι Prime & επίσης υπολογίζεται αποδοτικά με ένα shift(a * 31 == (a << 5-1)(Άλλοι αριθμοί που έχουν τέτοιες ιδιότητες 17,31,127, ) ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 10
11 1. Συνάρτηση Κατακερματισμού (συνέχεια) Συνάρτηση Κατακερματισμού Πολλές φορές οι συμβολοσειρές μπορεί να είναι πολύ μεγάλες «1304 Lincoln Ave, Alameda, 94501, CA, USA», που θα κάνει ακριβό τον υπολογισμό της συνάρτησης κατακερματισμού. Για αυτό μπορεί να χρησιμοποιούνται επιλεκτικά κάποιοι χαρακτήρες (π.χ. κάθε 10ος) Μέγεθος Πίνακα Κατακερματισμού Αν το μέγεθος του πίνακα κατακερματισμού είναι πολύ μεγάλο (π.χ. 10,000) και οι τιμές παράγονται όλες σε κάποιο μικρό-διάστημα τότε θα υπάρχουν πολλές συγκρούσεις. Παράδειγμα: Ένα σύνολο λέξεων όπου κάθε λέξη αποτελείται από 10 χαρακτήρες ASCII- 7bit. Το συνολικό άθροισματης κάθε λέξης είναι το πολύ 10x127=1,270. Άρα όλες οι πιθανές 127^10 γραμματοσειρές θα βρίσκονται στις πρώτες 1270%10000=1270 θέσεις του πίνακα και οι υπόλοιπες =8730 θα είναι άδειες παρόλο που χρησιμοποιήσαμε το MODulo. To θέμα της εύρεσης της πιο κατάλληλης συνάρτησης κατακερματισμού είναι δύσκολο. Πάντοτε θα είναι πιθανή η ύπαρξη συγκρούσεων! Πως γίνεται η διαχείριση συγκρουόμενων κλειδιών; Οι τεχνικές λύσεις διακρίνονται σε 2 κατηγορίες: μέθοδοι με Αλυσίδωση (Chaining)και μέθοδοι Ανοικτής Διεύθυνσης(Open Addressing) ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 11
12 Διαχείριση συγκρούσεων με Αλυσίδωση (Chaining) Αφού περισσότερα από ένα κλειδιά μπορούν να πάρουν την ίδια τιμή από τη συνάρτηση κατακερματισμού, μπορούμε να θεωρήσουμε ότι κάθε θέση του πίνακα δείχνει σε μια ευθύγραμμη απλά συνδεδεμένη λίστα. Για κάθε i, στη θέση Η[i] του πίνακα βρίσκουμε λίσταπου περιέχει όλα τα κλειδιά που απεικονίζονται από τη συνάρτηση hστη θέση αυτή. Για να βρούμε κάποιο κλειδί k, πρέπει να ψάξουμε στη λίστα που δείχνεται στη θέση H[h(k)]. Εισαγωγές και εξαγωγές στοιχείων μπορούν να γίνουν εύκολα με βάση τις διαδικασίες συνδεδεμένων λιστών. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 12
13 Παράδειγμα Διαχείρισης με Αλυσίδωση hsize = 11 ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 13
14 Ανάλυση της Τεχνικής Αλυσίδωσης Εισαγωγή Στοιχείου: απαιτεί χρόνο Ο(1). (προσθήκη στην αρχή) Εύρεση/διαγραφή Κλειδιού k συνεπάγεται τη διέλευση της λίστας H[h(k)]. Για να αναλύσουμε τον χρόνο εκτέλεσης των πιο πάνω διαδικασιών ορίζουμε τον συντελεστή φορτίου (loadfactor) λτου πίνακα Hως τον λόγο λ = (αριθμός των στοιχείων που αποθηκεύει ο πίνακας) / hsize π.χ. 100 τιμές σε 5 buckets => λ=20.0 Εύρεση bucket Δηλαδή, κατά μέσο όρο, κάθε λίστα του πίνακα έχει μήκος λ. To στοιχείο δεν υπάρχει (χειρίστη περίπτωση): O(1+λ) To στοιχείο υπάρχει (μέση περίπτωση): O(1+λ/2) Όπου Ο(1) κόστος για εύρεση του bucket και Ο(λ) & Ο(λ/2) αντίστοιχα για ανάλυση των στοιχείων της λίστας. Αναζήτηση Λίστας Ιδανικάθα θέλαμε ο λόγος λ να έχει σταθερή τιμή (συνήθως κοντά στο 1), ώστε οι διαδικασίες να εκτελούνται σε σταθερό χρόνο. Στην συνέχεια θα δούμε τεχνικές δυναμικής αύξησης / μείωσηςτου πίνακα σε συνδυασμό με διαδικασίες επανακερματισμού, έτσι ώστε το μέγεθος του πίνακα να είναι πάντα ανάλογο του αριθμού των στοιχείων. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 14
15 Διαχείριση Συγκρούσεων με ανοικτή διεύθυνση Hαντιμετώπιση συγκρούσεων με αλυσίδωσηπεριλαμβάνει επεξεργασία δεικτών και δυναμική χορήγηση μνήμης.επίσης δημιουργούνται overflow chains, τα οποία θα κάνουν τις αναζητήσεις ακριβότερες στην συνέχεια Η στρατηγική ανοικτής διεύθυνσηςεπιτυγχάνει την αντιμετώπιση συγκρούσεων χωρίς τη χρήση δεικτών. Τα στοιχεία αποθηκεύονται κατ ευθείαν στον πίνακα κατακερματισμού ως εξής: Για να εισαγάγουμετο κλειδί k στον πίνακα: 1. υπολογίζουμε την τιμή i=h(k), και 2. αν η θέση Η[i] είναι κενή τότε αποθηκεύουμε εκεί το k, 3. διαφορετικά, δοκιμάζουμε τις θέσεις f(i), f(f(i)),, για κάποια συνάρτηση f, μέχρις ότου βρεθεί κάποια κενή θέση όπου και τοποθετούμε το k. Για την αναζήτηση κάποιου κλειδιού k μέσα στον πίνακα: 1. υπολογίζουμε την τιμή i=h(k), και 2. κάνουμε διερεύνηση της ακολουθίας, i, f(i), f(f(i)),, μέχρι, είτε να βρούμε το κλειδί, είτε να βρούμε κενή θέση, ή να περάσουμε από όλες τις θέσεις του πίνακα. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 15
16 Γραμμική Αναζήτηση Ανοικτής Διεύθυνσης(Linear Probing) Hαρχική συνάρτηση κατακερματισμού είναι f(x) = x mod hsize Όταν υπάρξει σύγκρουση (collision) δοκιμάζουμε αναδρομικά την επόμενη συνάρτηση μέχρι να βρεθεί κενή θέση: f(x)= (f(x) +i) mod hsize (i=1,2,3, ) Δηλαδή η αναζήτηση κενής θέσης γίνεται σειριακά, και η αναζήτηση ονομάζεται γραμμική(linear probing). Παράδειγμα: hsize= 11, εισαγωγή 11, 12, 15, 19, 26, collision 26 collision 48 collision 48 ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 16
17 Σχόλια για το Linear Probing Εισαγωγή Εφόσον ο πίνακας κατακερματισμού δεν είναι γεμάτος, είναι πάντα δυνατό να εισάγουμε κάποιο καινούριο κλειδί. Αν γεμίσει θα κάνουμε rehash τον πίνακα (θα το δούμε στην συνέχεια) Αν οι γεμάτες θέσεις του πίνακα είναι μαζεμένες (clustered)τότε ακόμα και αν ο πίνακας είναι σχετικά άδειος, πιθανόν να χρειαστούν πολλές δοκιμές για εύρεση κενής θέσης (κατά την εκτέλεση διαδικασίας insert), ή για εύρεση στοιχείου. Αναζήτηση Η αναζήτηση γίνεται όπως και την εισαγωγή (σταματάμε όταν βρούμε κενή θέση). Μπορεί να αποδειχθεί ότι για ένα πίνακα μισογεμάτο (δηλαδή λ = 0.5) και μια ομοιόμορφη κατανομή τότε: 1. Ανεπιτυχή Διερεύνηση: O αριθμός βημάτων είναι ~ Επιτυχή Διερεύνηση: O αριθμός βημάτων είναι ~1.5. Αν το λ πλησιάζει το 1, τότε οι πιο πάνω αναμενόμενοι αριθμοί βημάτων αυξάνονται εκθετικά. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 17
18 Σχόλια για το Linear Probing Εξαγωγή Πρέπει να είμαστε προσεκτικοί με τις εξαγωγές στοιχείων 1. μια θέση από την οποία έχει αφαιρεθεί στοιχείο δεν μπορεί να θεωρηθεί ως άδεια (γιατί;) διότι στην find δεν θα ξέρουμε που να σταματήσουμε 2. έτσι μαρκάρουμε τη θέση ως deleted, και 3. κατά τη διαδικασία find, αγνοούμε θέσεις deleted, και προχωρούμε μέχρις ότου είτε να βρούμε το κλειδί που ψάχνουμε, είτε να βρούμε (πραγματικά) μια άδεια θέση είτε να σαρώσουμε ολόκληρο τον πίνακα). ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 18
19 Επανακατακερματισμός(Rehashing) Αν ο hashπίνακας αρχίσει να γεμίζει, παρατηρείται μεγάλος αριθμός συγκρούσεων (collisions) με αποτέλεσμα τη μειωμένη επίδοση. H μειωμένη επίδοση παρατηρείται και σε πράξεις εισαγωγής αλλά στις πράξεις αναζήτησης. Σε τέτοιες περιπτώσεις, όταν η τιμή λ υπερβεί κάποιο όριο, πολλές υλοποιήσεις hash-πινάκων, αυτόματα εφαρμόζουν επανά-κατακερματισμό. Αυτό το όριο σε τυπικές υλοποιήσεις είναι συνήθως λ=0.7 (π.χ. Java) Επανακατακερματισμός(rehashing) Δημιούργησε ένα καινούριο πίνακα μεγαλύτερου (διπλάσιου) μεγέθους. Εισήγαγε όλα τα στοιχεία του παλιού πίνακα στον καινούριο. Επέστρεψε τη μνήμη του παλιού πίνακα. Ακριβή διαδικασία, αλλά καλείται σπάνια. Σε συστήματα πραγματικού χρόνου (real-time systems)το rehashing μπορεί να πάρει περισσότερο χρόνο από ότι υπάρχει! Εκεί το rehashingγίνεται σταδιακά (δηλαδή κρατούμε το παλιό και νέο HashTable), και σε κάθε εισαγωγή μετακινούμε K στοιχεία στο νέο table μέχρι να μετακινηθούν όλα τα στοιχεία(οπόταν διαγράφεται το παλιό table) ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 19
20 Μερικές Εφαρμογές του Κατακερματισμού Εφαρμογές Κατακερματισμού (Μνήμης &Μαγνητ. Δίσκου) Unique:Έχετε ένα αρχείο από strings και θέλετε με ένα πέρασμα (χρόνος O(n)), να βρείτε όλες τις μοναδικές λέξεις σε αυτό. Ευρετήρια Λέξεων σε Μηχανές Αναζήτησης: Ψάχνουμε σε μια μηχανή αναζήτησης την λέξη car + rental. H μηχανή μας επιστρέφει την τομή των αποτελεσμάτων (συνόλων) car και rental σε χρόνο O(1). FindFunction:Σε εργαλεία επεξεργασίας κειμένου (text editors, word, κτλ) το πρόγραμμα προσφέρει την δυνατότητα εύρεσης λέξεων. Πολλές φορές η πρώτη εκτέλεση του find είναι αργή (πχ. Microsoft Help) διότι χρειάζεται χρόνος για την δημιουργία του hash table). Σε μεταγλωττιστές,πίνακες κατακερματισμού που ονομάζονται SymbolTablesαποθηκεύουν πληροφορίες για όλες τις μεταβλητές. Διερεύνηση γράφων που δεν είναι εξ αρχής γνωστοί. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 20
Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing)
Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit Διανύσματα Τεχνικές Κατακερματισμού & Συναρτήσεις
Διαβάστε περισσότεραΔιάλεξη 18: Τεχνικές Κατακερματισμού I (Hashing)
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 18: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit-Διανύσματα
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 25: Τεχνικές Κατακερματισμού II Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Διαχείριση Συγκρούσεων με Ανοικτή Διεύθυνση a) Linear Probing, b) Quadratic Probing c) Double Hashing Διατεταγμένος
Διαβάστε περισσότεραΔιάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing)
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Διαχείριση Συγκρούσεων με Ανοικτή Διεύθυνση a) Linear
Διαβάστε περισσότεραΔιάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing)
Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Διαχείριση Συγκρούσεων με Ανοικτή Διεύθυνση a) Linear Probing, b) Quadratic Probing c) Double
Διαβάστε περισσότεραΣτην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα:
Τεχνικές Κατακερµατισµού Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Τεχνικές Κατακερµατισµού ιαχείριση Συγκρούσεων µε Αλυσίδωση ιαχείριση Συγκρούσεων µε Ανοικτή ιεύθυνση ιπλός Κατακερµατισµός,
Διαβάστε περισσότεραΔομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε7: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Hashing, Final Exam Διδάσκων: Κωνσταντίνος Κώστα ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. Ε7-1
Διαβάστε περισσότεραΔομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί
Διαβάστε περισσότεραΔομές Δεδομένων. Κατακερματισμός. Δομές Δεδομένων & Αλγόριθμοι. Εργαστήριο Γνώσης και Ευφυούς Πληροφορικής 1
Δομές Δεδομένων Κατακερματισμός Πληροφορικής 1 Πρόβλημα Insert, Search και DELETE εγγραφής Σε σταθερό χρόνο Σε πίνακα εγγραφών όπου το πεδίο τιμών στα κλειδιά >> Μέγεθος Πίνακα (M) το πλήθος των εγγραφών
Διαβάστε περισσότερα10. Πίνακες Κατακερματισμού
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 10. Πίνακες Κατακερματισμού 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 16/12/2016 Πίνακες
Διαβάστε περισσότεραΤα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο
Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων
Διαβάστε περισσότεραΟργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο
Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών
Διαβάστε περισσότεραΔυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2018-2019 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)
Διαβάστε περισσότεραΟ ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις
Ο ΑΤΔ Λεξικό Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος Υλοποιήσεις Πίνακας με στοιχεία bit (0 ή 1) (bit vector) Λίστα ακολουθιακή (πίνακας) ή συνδεδεμένη Είναι γνωστό το μέγιστο
Διαβάστε περισσότεραΔυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου) μέγεθος
Διαβάστε περισσότεραΠίνακες (Μια παλιά άσκηση) Πίνακες Κατακερματισμού (Hash Tables) Πίνακες (Μια παλιά άσκηση) Εισαγωγή. A n
Πίνακες (Μια παλιά άσκηση) Πίνακες Κατακερματισμού (Hash Tables) Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς A n O(1) (στην πρώτη ελέυθερη θέση στο τέλος του πίνακα).
Διαβάστε περισσότεραΔυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2017-2018 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)
Διαβάστε περισσότεραΔυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή
Διαβάστε περισσότεραΚατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1
Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Διαβάστε περισσότεραCuckoo Hashing. Αλγόριθμοι και Πολυπλοκότητα. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Cuckoo Hashing Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο β Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη συλλογή αντικειμένων που αναγνωρίζονται με «κλειδί» (π.χ.
Διαβάστε περισσότεραΚατακερματισμός (Hashing)
Κατακερματισμός (Hashing) O κατακερματισμός είναι μια τεχνική οργάνωσης ενός αρχείου. Είναι αρκετά δημοφιλής μέθοδος για την οργάνωση αρχείων Βάσεων Δεδομένων, καθώς βοηθάει σημαντικά στην γρήγορη αναζήτηση
Διαβάστε περισσότεραΣυναρτήσεις Κατακερματισμού και Πίνακες Κατακερματισμού
Μια συνάρτηση κατακερματισμού (hash function) h απεικονίζει κλειδιά ενός δοσμένου τύπου σεακεραίουςενόςσταθερούδιαστήματος [0,N 1]όπουΝτομέγεθοςτουπίνακα. Πχ: Συναρτήσεις Κατακερματισμού και Πίνακες Κατακερματισμού
Διαβάστε περισσότεραΠληροφορική 2. Δομές δεδομένων και αρχείων
Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες
Διαβάστε περισσότεραΔομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση
Δομές Αναζήτησης χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης
Διαβάστε περισσότεραΔιάλεξη 18: B-Δένδρα
Διάλεξη 18: B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή & Ισοζυγισμένα Δένδρα 2-3 Δένδρα, Περιγραφή Πράξεων της Εισαγωγής και άλλες πράξεις Β-δένδρα Διδάσκων: Κωνσταντίνος
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Διαβάστε περισσότεραΔιάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Διαβάστε περισσότεραΚατακερµατισµός. Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο
Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινομημένα Αρχεία Φυσική διάταξη των εγγραφών
Διαβάστε περισσότεραΔιάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231
Διαβάστε περισσότεραΠίνακες Συμβόλων. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση
Πίνακες Συμβόλων χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης
Διαβάστε περισσότεραΔυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή
Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής
Διαβάστε περισσότεραΔυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή
Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής
Διαβάστε περισσότεραΔυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή
Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής
Διαβάστε περισσότεραΕργαστήριο 2 Δυναμικές Δομές Δεδομένων Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι
Μεταγλωττιστές Εργαστήριο 2 Δυναμικές Δομές Δεδομένων Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι 2015-1016 Δομές Δεδομένων Μια δομή δεδομένων είναι μια συλλογή δεδομένων με κάποιες ιδιότητες
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί
Διαβάστε περισσότεραΠίνακες Κατακερματισμού. Hash Tables. Προγραμματισμός II 1
Πίνακες Κατακερματισμού Hash Tables Προγραμματισμός II lalis@inf.uth.gr Δομές αναζήτησης μέχρι στιγμής Δομή Αναζήτηση Table Ο(Ν) Sorted Table Ο(log N) List Ο(Ν) Sorted List Ο(N) Balanced Binary Tree Ο(log
Διαβάστε περισσότεραAdvanced Data Indexing
Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Κατακερματισμός Hashing (1ο Μέρος) Η Αναζήτηση απαιτεί Δομές Λύσεις Για να υποστηριχθεί η αποδοτική αναζήτηση απαιτείται η χρήση κατάλληλων δομών-ευρετηρίων
Διαβάστε περισσότεραΔυναμικός Κατακερματισμός
Δυναμικός Κατακερματισμός Καλό για βάση δεδομένων που μεγαλώνει και συρρικνώνεται σε μέγεθος Επιτρέπει τη δυναμική τροποποίηση της συνάρτησης κατακερματισμού Επεκτάσιμος κατακερματισμός μια μορφή δυναμικού
Διαβάστε περισσότεραΕισαγωγή στο Bison. Μεταγλωττιστές, Χειμερινό εξάμηνο
Εισαγωγή στο Bison Μεταγλωττιστές, Χειμερινό εξάμηνο 2016-2017 Συντακτική Ανάλυση Αποτελεί την δεύτερη φάση της μετάφρασης. Εύρεση της σχέσης που υπάρχει των λεκτικών μονάδων ενός προγράμματος. Παράδειγμα
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 2:Αλφαριθμητικές Σειρές Χαρακτήρων (Strings)- Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγικές Έννοιες σε Strings(Αρχικοποίηση, Ανάγνωση & Εκτύπωση) Πίνακες από Strings
Διαβάστε περισσότεραHY240 : Δομές Δεδομένων. Φροντιστήριο Προγραμματιστικής Εργασίας 2 ο και 3 ο Μέρος
HY240 : Δομές Δεδομένων Φροντιστήριο Προγραμματιστικής Εργασίας 2 ο και 3 ο Μέρος Εισαγωγή Στο 2 ο μέρος της εργασίας θα πρέπει να γίνουν τροποποιήσεις στο πρόγραμμα που προέκυψε κατά την υλοποίηση του
Διαβάστε περισσότεραΔιάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 26: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας -Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι
Διαβάστε περισσότεραΔομές Δεδομένων. Ενότητα 11: Τεχνικές Κατακερματισμού. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής.
Ενότητα 11: Τεχνικές Κατακερματισμού Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΕργαστήριο 2: Πίνακες
Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 4: Δείκτες (pointers) και Πίνακες Δεικτών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Πίνακες Δεικτών - Πολυδιάστατοι πίνακες - Πέρασμα παραμέτρων σε προγράμματα
Διαβάστε περισσότεραΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2016-2017 ΕΡΓΑΣΙΑ ΕΞΑΜΗΝΟΥ Ποιος πρέπει να ολοκληρώσει αυτή την εργασία? Φοιτητές έτους >= 2 που
Διαβάστε περισσότεραΤαξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort 1, c 3, a 3, b 7, d 7, g 7, e B 0 1 3 4 5 6 7 8 9 1 BucketSort (Ταξινόμηση Κάδου) - Αρχικά θεωρείται ένα κριτήριο κατανομής με βάση το οποίο
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Διαβάστε περισσότεραΚεφ.11: Ευρετήρια και Κατακερματισμός
Κεφ.11: Ευρετήρια και Κατακερματισμός Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Κεφ. 11: Ευρετήρια-Βασική θεωρία Μηχανισμοί ευρετηρίου χρησιμοποιούνται για την επιτάχυνση
Διαβάστε περισσότεραΔομές Δεδομένων. Ενότητα 12: Κατακερματισμός: Χειρισμός Συγκρούσεων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής.
Ενότητα 12: Κατακερματισμός: Χειρισμός Συγκρούσεων Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΔιάλεξη 2: Επανάληψη Προγραμματισμού Συμβολοσειρές (strings) Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 2: Επανάληψη Προγραμματισμού Συμβολοσειρές (strings) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Εισαγωγικές Έννοιες σε Strings - Πίνακες από Strings - Συναρτήσεις
Διαβάστε περισσότεραΔιάλεξη 24: B-Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 24: B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Εισαγωγή & Ισοζυγισμένα Δένδρα - 2-3 Δένδρα, Εισαγωγή και άλλες πράξεις -Β-δένδρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές
Διαβάστε περισσότεραΔιάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εύρεση, εισαγωγή, διαγραφή) - Σύγκριση Συνδεδεμένων Λιστών με Πίνακες
Διαβάστε περισσότεραΠίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση
Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T 0 1 2 3 4 5 6 7 U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους
Διαβάστε περισσότεραΕξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα
Ιεραρχία Μνήμης Υπολογιστή Εξωτερική Μνήμη Εσωτερική Μνήμη Κρυφή Μνήμη (Cache) μεγαλύτερη χωρητικότητα Καταχωρητές (Registers) Κεντρική Μονάδα (CPU) μεγαλύτερη ταχύτητα Πολλές σημαντικές εφαρμογές διαχειρίζονται
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Δομές Ευρετηρίων και Κατακερματισμός Αρχείων II Β. Μεγαλοοικονόμου Δ. Χριστοδουλάκης (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και
Διαβάστε περισσότεραΔοµές Δεδοµένων. 15η Διάλεξη Δέντρα Δυαδικής Αναζήτησης και Κατακερµατισµός. Ε. Μαρκάκης
Δοµές Δεδοµένων 15η Διάλεξη Δέντρα Δυαδικής Αναζήτησης και Κατακερµατισµός Ε. Μαρκάκης Περίληψη Υλοποιήσεις άλλων λειτουργιών σε ΔΔΑ: Επιλογή k-οστού µικρότερου Διαµέριση Αφαίρεση στοιχείου Ένωση 2 δέντρων
Διαβάστε περισσότεραΟργάνωση Αρχείων. Βάσεις Δεδομένων : Οργάνωση Αρχείων 1. Blobs
Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Οργάνωση Αρχείων Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση
Διαβάστε περισσότεραΕιδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 4: Δείκτες και Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Πίνακες Δεικτών, Παραδείγματα, Πολυδιάστατοι πίνακες Πέρασμα παραμέτρων σε προγράμματα C Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες:
Διαβάστε περισσότεραΠΛΗ111. Ανοιξη Μάθηµα 8 ο. Αναζήτηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 8 ο Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Αναζήτηση Αναζήτηση σε ιατεταγµένο Πίνακα υαδική Αναζήτηση Κατακερµατισµός
Διαβάστε περισσότεραΕργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort
Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ο αλγόριθμος ταξινόμησης Radix Sort -Δυο εκδοχές: Most Significant Digit (MSD) και Least Significant
Διαβάστε περισσότεραΒάσεις Δεδομένων ΙΙ Ενότητα 5
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Δεδομένων ΙΙ Ενότητα 5: Δομές Ευρετηρίων - ISAM Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότεραΔιάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Διαβάστε περισσότεραΜεταγλωττιστές. Συντακτικός Αναλυτής Κατασκευή Πίνακα Συμβόλων (ΠΣ) Εργαστήριο 7. Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι
Μεταγλωττιστές Εργαστήριο 7 Συντακτικός Αναλυτής Κατασκευή Πίνακα Συμβόλων (ΠΣ) Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι 2016-2017 Πίνακας Συμβόλων Συγκεντρώνει πληροφορίες για τα ονόματα
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
Διαβάστε περισσότεραΔιάλεξη 14: Δέντρα IV - B-Δένδρα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 14: Δέντρα IV - B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - 2-3 Δένδρα, Εισαγωγή και άλλες πράξεις - Άλλα Δέντρα: Β-δένδρα, Β+-δέντρα,
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING)
ΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING) Κατακερµατισµός Στόχος Έχουµε ένα σύνολο από κλειδιά {Κ 0,, Κ n-1 } και θέλουµε να υλοποιήσουµε Insert() και LookUp() (ίσως και Delete()) απλά και γρήγορα στην πράξη.
Διαβάστε περισσότεραΔομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Γραμμικές Λίστες Βασικές Έννοιες Βασικές Έννοιες. Αναπαράσταση με τύπο και με δείκτη. Γραμμικές Λίστες. Βασικές Λειτουργίες. Δομές Δεδομένων: Βασικές Έννοιες Αντικείμενο
Διαβάστε περισσότεραStandard Template Library (STL) C++ library
Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η / Υ Κ Α Ι Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Standard Template Library (STL) C++ library Δομές Δεδομένων Μάριος Κενδέα kendea@ceid.upatras.gr Εισαγωγή Η Standard Βιβλιοθήκη προτύπων
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Άσκηση 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών HY460 Συστήματα Διαχείρισης Βάσεων Δεδομένων Διδάσκοντες: Δημήτρης
Διαβάστε περισσότεραΔιάλεξη 11: Φροντιστήριο για Στοίβες. Διδάσκων: Παναγιώτης Ανδρέου. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ.
Διάλεξη 11: Φροντιστήριο για Στοίβες Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ. 1 ΑΤΔ Στοίβα- Πράξεις Θυμηθείτε τον ΑΤΔ στοίβα με τις πράξεις του: MakeEmptyStack()
Διαβάστε περισσότεραΟργάνωση Αρχείων. Βάσεις Δεδομένων : Οργάνωση Αρχείων 1. Blobs
Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Οργάνωση Αρχείων Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση
Διαβάστε περισσότεραΔιάλεξθ 22: Τεχνικζσ Κατακερματιςμοφ I (Hashing)
Διάλεξθ 22: Τεχνικζσ Κατακερματιςμοφ I (Hashing) Στθν ενότθτα αυτι κα μελετθκοφν τα εξισ επιμζρουσ κζματα: - Αναςκόπθςθ Προβλιματοσ και Προκαταρκτικϊν Λφςεων Bit-Διανφςματα - Τεχνικζσ Κατακερματιςμοφ &
Διαβάστε περισσότεραAdvanced Data Indexing
Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Κατακερματισμός - Hashing (2 ο Μέρος) Μέθοδοι Κατακερματισμού integer universe Direct Addressing Hashing with chaining Hashing by Division Hashing
Διαβάστε περισσότεραΕνότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις
ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Ενότητα : Κατακερματισμός Ασκήσεις και Λύσεις Άσκηση 1 Χρησιμοποιήστε τη συνάρτηση κατακερματισμού της διαίρεσης ως πρωτεύουσα συνάρτηση κατακερματισμού και τη συνάρτηση
Διαβάστε περισσότεραΔιάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Διαβάστε περισσότεραΤα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο
Οργάνωση Αρχείων 1 Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση
Διαβάστε περισσότεραΕνότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ
Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΔΕΔΟΜΕΝΑ ΑΛΓΟΡΙΘΜΟΙ -ΠΛΗΡΟΦΟΡΙΑ: Δεδομένα: Αναπαράσταση της Πραγματικότητας Μπορούν να γίνουν αντιληπτά με μια από τις αισθήσεις μας Πληροφορία: Προκύπτει από
Διαβάστε περισσότεραΔιάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 28: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα
Διαβάστε περισσότεραΑλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 20: Αλγόριθμοι ΤαξινόμησηςIII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Ε. QuickSort Γρήγορη Ταξινόμηση - Έμμεση Ταξινόμηση - Εξωτερική Ταξινόμηση Διδάσκων:
Διαβάστε περισσότεραΔιάλεξη 08: ΛίστεςΙΙ Κυκλικές Λίστες. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 0: ΛίστεςΙΙ Κυκλικές Λίστες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Κυκλικές Απλά Συνδεδεμένες Λίστες - Κυκλικές Διπλά Συνδεδεμένες Λίστες - Τεχνικές Μείωσης Χώρου Διδάσκων:
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες
Διαβάστε περισσότεραΔομές Δεδομένων Standard Template Library (STL) 23/3/2017 ΜΠΟΜΠΟΤΑΣ ΑΓΟΡΑΚΗΣ
Δομές Δεδομένων Standard Template Library (STL) 23/3/2017 ΜΠΟΜΠΟΤΑΣ ΑΓΟΡΑΚΗΣ mpompotas@ceid.upatras.gr Εισαγωγή - STL Η Standard Βιβλιοθήκη προτύπων (STL) είναι μια βιβλιοθήκη λογισμικού για την C++ Δημιουργήθηκε
Διαβάστε περισσότεραΛΥΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΑΣΚΗΣΗΣ Όλγα Γκουντούνα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΑΔ. ΕΤΟΣ 2011-12 ΔΙΔΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής Τιμολέων Σελλής Καθηγητής Άσκηση 1
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι. Εαρινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ31: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 013 Φροντιστήριο 10 ΛΥΣΕΙΣ Άσκηση 1 Να δείξετε όλα τα στάδια της εκτέλεσης του αλγορίθμου του Dijkstra για εύρεση
Διαβάστε περισσότεραΔομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 5: Απαριθμητές (enums) Δομές (structures)και Ενώσεις (unions) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Απαριθμητές - Δομές, φωλιασμένες δομές, τρόποι δήλωσης
Διαβάστε περισσότεραΔοµές Δεδοµένων. 16η Διάλεξη Κατακερµατισµός. Ε. Μαρκάκης
Δοµές Δεδοµένων 16η Διάλεξη Κατακερµατισµός Ε. Μαρκάκης Περίληψη Συναρτήσεις κατακερµατισµού Χωριστή αλυσίδωση Γραµµική διερεύνηση Διπλός κατακερµατισµός Δυναµικός κατακερµατισµός Προοπτική Δοµές Δεδοµένων
Διαβάστε περισσότεραΔομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)
Διαβάστε περισσότεραΔιάλεξη 08: Λίστες ΙΙ Κυκλικές Λίστες
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 0: Λίστες ΙΙ Κυκλικές Λίστες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Κυκλικές Απλά Συνδεδεμένες Λίστες - Κυκλικές Διπλά Συνδεδεμένες
Διαβάστε περισσότεραΚατ οίκον Εργασία 3 Σκελετοί Λύσεων
Άσκηση 1 Χρησιµοποιούµε τη δοµή Κατ οίκον Εργασία 3 Σκελετοί Λύσεων typedef struct Node int data; struct node *lchild; struct node *rbro; node; και υποθέτουµε πως ένα τυχαίο δένδρο είναι υλοποιηµένο ως
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΗ ΑΣΚΗΣΗ 2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΗ ΑΣΚΗΣΗ 2 Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 05/03/2013 Ημερομηνία
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #4 2 Γενικά Στο Τετράδιο #4 του Εργαστηρίου θα αναφερθούμε σε θέματα διαχείρισης πινάκων
Διαβάστε περισσότεραΕργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας
Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Αναζήτηση με linearsearch, binarysearch, ternarysearch - Ανάλυση Πολυπλοκότητας ternarysearch
Διαβάστε περισσότερα