Chapter 7, 8 : Time, Space Complexity
|
|
- Ζηνόβιος Μέλιοι
- 8 χρόνια πριν
- Προβολές:
Transcript
1 CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 19 December
2 Κλάση NP 2
3 Μη-Ντετερμινιστικές Μηχανές Turing: Eίναι δυνατόν σε μια συνολική κατάσταση να υπάρχουν πολλές δυνατές επόμενες συνολικές καταστάσεις (μεταβάσεις). Ο υπολογισμός σε μια ΝΜΤ είναι ένα μονοπάτι από συνολικές καταστάσεις. Ο υπολογισμός σε μια ΜΜΤ είναι ένα δένδρο από συνολικές καταστάσεις. Mια ΜΜΤ M δέχεται μια είσοδο x εάν υπάρχει τουλάχιστον ένα πεπερασμένο μονοπάτι υπολογισμού (a 0, L, a m ), a i : συνολική κατάσταση, στοδέντρουπολογισμούτηςm με ρίζα a 0 = (s, BxB) και φύλλο a m = (h, uyv), όπου a i a i+1. Για κάποιες εισόδους η M το δένδρο υπολογισμού μπορεί να είναι άπειρο. 3
4 Λειτουργία ΜΜΤ Ορισμός. Για μια ΜΜT M, L(M) να είναι το σύνολο όλων των λέξεων που δέχεται η M. Στάδιο Εικασίας (μαντέματος, guessing) Μαντεύει ποια είναι η κατάλληλη μεταβίβαση για την είσοδο που έχει και την εκτελεί. Στάδιο επαλήθευσης: Ελέγχει ντετερμινιστικά αν το μάντεμα ήταν σωστό για την είσοδο που έχει. 4
5 Πολυπλοκότητα Χρόνου σε μια ΜΜΤ Πολυπλοκότητα Χρόνου σε μια ΜΜΤ M: Για x L(M), Time M (x) είναι ο αριθμός βημάτων στο πιο σύντομο μονοπάτι υπολογισμού αποδοχής της x. Δηλ. στοστάδιοτουμαντέματος, μαντεύει με την πρώτη προσπάθεια το σωστό (αν υπάρχει). Εάν η M απορρίπτει την x, θέτουμε Time M (x) =. Η M έχει φράγμα χρόνου t(n) εάν Time M (x) max{ x + 1, t( x )} για όλα τα x L(M). Ορισμός. Μια γλώσσα έχει χρονική πολυπλοκότητα f(n) εάν αποφασίζεται από μια ΜΜΤ σε φράγμα χρόνο f(n). 5
6 Πολυπλοκότητα Χρόνου και Χώρου για ΜΜΤ Πολυπλοκότητα Χώρου σε μια ΜΜΤ M: Εάν x L(M), τότε θέτουμε Space M (x), να είναι ο αριθμός των κελιών ταινίας στην ταινίας εργασίας (διαβάζει, γράφει) που επισκέπτεται η M είναι ένα υπολογιστικό μονοπάτι αποδοχής που χρησιμοποιεί τον ελάχιστο χώρο. Εάν η M απορρίπτει την x, θέτουμε Space M (x) =. Η M έχει φράγμα χώρου s(n) εάν Space M (x) max{ x + 1, s( x )} για όλα τα x L(M). Ορισμός. Μια γλώσσα έχει χωρική πολυπλοκότητα s(n) εάν αποφασίζεται από μια MΜΤ φράγμα χώρου f(n). 6
7 Κλάσεις Πολυπλοκότητας σε ΜΜΤ NTIME( t(n) ) = {L(M) M είναι μια ΜΜΤ με φράγμα χρόνου t(n)} NSPACE( s(n) ) = {L(M) M είναι μια ΜΜΤ με φράγμα χώρου s(n)} NP = U c>0 NTIME(n c ) (Non-Deterministic Polynomial Time) NPSPACE = U c>0 NSPACE(n c )(Non-Deterministic Polynomial Space) 7
8 Γνωστά Θεωρήματα Παρατηρείστε: P NP Πόρισμα 1. PSPACE = NPSPACE (από Θεώρημα Savitch και PSPACE NPSPACE) Πόρισμα 2. NP PSPACE (αφού ΝP NPSPACE = PSPACE) 8
9 Πλεονέκτημα Μη Ντετερμινισμού Μια μη-ντετερμινιστική μηχανή Turing μπορεί να μαντεύει τα υποψήφια μονοπάτια μπορεί να είναι εκθετικού πλήθους Μια ντετερμινιστική μηχανή Turing θα έπρεπε να τα ελέγχει όλα για να βρει το σωστό εκθετικός χρόνος Μια μη-ντετερμινιστική μηχανή μπορεί να μαντέψει το σωστό και να ελέγξει ότι όντως είναι. Κλάση NP Περιλαμβάνειταπροβλήματαγιαταοποίαμιαμηντετερμινιστική μηχανή μπορεί να μαντέψει ένα μονοπάτι υπολογισμού του προβλήματος (μια υποψήφια λύση) και να ελέγξει εάν είναι σωστό σε πολυωνυμικό χρόνο. 9
10 Ένα Μεγάλο Ερώτημα ΗκλάσηNP φαίνεται ότι περιέχει μεγαλύτερη πληθώρα προβλημάτων Υπάρχει ανάλογο του Πορίσματος 1 (PSPACE=NPSPACE) για τις (χρονικές) κλάσεις P και NP? Δηλ. P=NP? Το ερώτημα παραμένει ανοικτό από το 1970 και θεωρείται το πιο σημαντικό ανοικτό ερώτημα στη Θεωρία Πολυπλοκότητας co-np = κλάση συνόλων Α τα οποία τα συμπληρώματα ανήκουν στην NP. Οι μη ντετερμινιστικές κλάσεις πολυπλοκότητας που είναι χρονικά φραγμένες δεν είναι γνωστό ότι είναι κλειστές ως προς το συμπλήρωμα. 10
11 Προβλήματα που ανήκουν στην κλάση NP Το πρόβλημα SAT ανήκει στην κλάση NP. Απόδειξη. Σχεδιάζουμε μια ΜΜΤ M η οποία αποφασίζει σε πολυωνυμικό μη ντετερμινιστικό χρόνο για οποιαδήποτε στιγμιότυπο I=(X,F) του προβλήματος SAT εάν είναι ικανοποιήσιμο. 1 η φάση. Έστω F το στιγμιότυπο του SAT στην είσοδο της μηχανής. Μετρά τις μεταβλητές του F(=n)καιγράφεισεμιαδεύτερηταινίατη λέξη BI n. 2 η φάση (Μη-ντετερμινιστική φάση). Μη ντετερμινιστικά (μαντεύοντας), αντικαθιστά τη λέξη B I n με μια λέξη w {>, }. 3 η φάση (Ντετερμινιστική φάση). Ελέγχει εάν w ικανοποιεί την F. Ο αλγόριθμος τρέχει σε πολυωνυμικό μη ντετερμινιστικό χρόνο. Γιατί? 11
12 Παράδείγμα. Να δείξετε ότι το πρόβλημα του πλανώδιου πωλητή ανήκει στην κλάση NP. Απόδειξη. Είσοδος:I= (D, B) πίνακας n n, στοιχεία : d ij Μάντεμα (μη ντετερμινιστική φάση): Μαντεύει μια λύση για το I: ΗΜΜΤ γράφει σε μια 2 η ταινία μια συμβολοσειρά από 0, 1 και t μήκους I. Έλεγχος (ντετερμινιστική φάση): 1. Ελέγχει αν η λέξη που έγραψε είναι μια δυαδική κωδικοποίηση μιας μετάθεσης n αριθμών διαχωρισμένων με ένα κενό, δηλ. της μορφής π(1) t π(2) L t π(n). A. Εάν ναι, τότε υπολογίζει το κόστος της μετάθεσης π, c(π) με βάση των πίνακα με τα κόστη διαδρομών D. a) Εάν c(π) B αποφασίζει YES. 2. Αλλιώς αποφασίζει NO. Ο αλγόριθμος ολοκληρώνεται σε πολυωνυμικό μη ντετερμινιστικό χρόνο. 12
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κλάσεις P, NP NP-πληρότητα 15 Απριλίου 2008 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να περιγράψουμε με
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 14. Χρονική Πολυπλοκότητα 17, 20, 24 Απριλίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να
Chapter 7, 8 : Time, Space Complexity
CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 12 December 2008 1 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτεμπορούμεναπεριγράψουμεμεένααλγόριθμο μπορεί να
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα Τι θα κάνουμε σήμερα Εισαγωγικά Χρονική Πολυπλοκότητα (7) Κλάση P (7.2) Κλάση ΝΡ (7.3) ΝΡ-πληρότητα (7.4) Χωρική
CSC 314: Switching Theory
CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2
Λύσεις 4ης Σειράς Ασκήσεων
Λύσεις 4ης Σειράς Ασκήσεων Άσκηση 1 Αναγάγουμε τν Κ 0 που γνωρίζουμε ότι είναι μη-αναδρομική (μη-επιλύσιμη) στην γλώσσα: L = {p() η μηχανή Turing Μ τερματίζει με είσοδο κενή ταινία;} Δοσμένης της περιγραφής
Chapter 7, 8 : Completeness
CSC 314: Switching Theory Chapter 7, 8 : Completeness 19 December 2008 1 1 Αναγωγές Πολυωνυμικού Χρόνου Ορισμός. f: Σ * Σ * ονομάζεται υπολογίσιμη σε πολυνωνυμικό χρόνο αν υπάρχει μια πολυωνυμικά φραγμένη
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 12: Μη ντετερμινιστικές μηχανές Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις
Κλάσεις Πολυπλοκότητας
Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιµότητα Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβληµα αναζήτησης (search problem) Ένα πρόβληµα αναζήτησης είναι ένα πρόβληµα στο
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1,
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
Πεπερασμένα Αυτόματα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Πεπερασμένα Αυτόματα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πεπερασμένα Αυτόματα είναι απλούστερες
num(m(w 1 ;... ; w k )) = f(num(w 1 ),..., num(w k ))
Υπολογισμοί με Μ.Τ. Εστω M = (K, Σ, δ, s, {y, n}) μια Μ.Τ. Κάθε συνολική κατάσταση τερματισμού της οποίας η κατάσταση τερματισμού είναι το y, θα ονομάζεται συνολική κατάσταση αποδοχής, ενώ αν η κατάσταση
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 24: Μη Ντεντερμινιστικές Μηχανές Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές
Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης
Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι
Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5
Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΚΛΑΣΕΩΝ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ
ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΚΛΑΣΕΩΝ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ Κλάσεις Πολυπλοκότητας Περιλαµβάνουν αναδροµικές γλώσσες Οι γλώσσες ταξινοµούνται στις κλάσεις πολυπλοκότητας ανάλογα µε τη δυσκολία απόφασης τους (ποσότητα απαιτούµενων
Φροντιστήριο 10 Λύσεις
Άσκηση 1 Φροντιστήριο 10 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {0,1} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.
t M (w) T ( w ) O( n) = O(n 2 )
Κεφάλαιο 9 Υπολογιστική Πολυπλοκότητα Σύνοψη Πέρα από το ερώτημα του αν για ένα πρόβλημα υπάρχει Μηχανή Turing, που το επιλύει, μας απασχολεί επίσης και το ερώτημα του αν ένα πρόβλημα είναι «πρακτικά»
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και P-Πληρότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική Μηχ. Turing (ΝTM)
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {w 1w 2 w 1 {0,1} * και w 2 = 0 k 1 m όπου k και m
Κυκλώματα και βασικές Ιδιότητες
Κυκλώματα και βασικές Ιδιότητες Κύκλωμα C Κατευθυνόμενος ακυκλικός γράφος με n πηγές (κάθε μία αντιστοιχεί σε ένα bit εισόδου) και μία καταβόθρα (το bit εξόδου). Οι ενδιάμεσοι κόμβοι αντιστοιχούν σε κάποια
Φροντιστήριο 11 Λύσεις
Άσκηση 1 Φροντιστήριο 11 Λύσεις Να αποδείξετε ότι η κλάση Ρ είναι κλειστή ως προς τις πράξεις της ένωσης, της συναρμογής και του συμπληρώματος. Θα πρέπει να δείξουμε ότι: (α) Ένωση: Αν οι Λ 1 και Λ 2 είναι
Στοιχεία Θεωρίας Υπολογισμού
Κεφάλαιο 3 Στοιχεία Θεωρίας Υπολογισμού Στο κεφάλαιο αυτό παρουσιάζεται μια εισαγωγή σε βασικές έννοιες της θεωρίας υπολογισμού, με έμφαση στην υπολογιστική πολυπλοκότητα. Η εξοικείωση με τις έννοιες αυτές
Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη
Υποθέσεις - - Θεωρήματα Μαθηματικά Πληροφορικής 1ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ Τι θα κάνουμε σήμερα Επιλύσιμα Προβλήματα σχετικά με Ασυμφραστικές Γλώσσες (4.1.2) Το Πρόβλημα του Τερματισμού
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το
Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος
Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος
Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr
Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας
Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π
Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θεμελιώσεις Επιστήμης Η/Υ ΠΛΗ30 Τελική Εξέταση 2 Ιουλίου 2014 Ονοματεπώνυμο Φοιτητή Αριθμός Μητρώου Φοιτητή Τμήμα Υπογραφή Φοιτητή Υπογραφή Επιτηρητή Διάρκεια: 180 Ερώτημα Μονάδες Βαθμολογία 1 8+8+4 2
Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ
Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου
Υποθέσεις - Θεωρήματα. Μαθηματικά Πληροφορικής 1ο Μάθημα. Η χρυσή τομή. Υποθέσεις - Εικασίες
Υποθέσεις - - Θεωρήματα Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Μαθηματικά Πληροορικής ο Μάθημα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι
Κλάση NP, NP-Complete Προβλήματα
Κλάση NP, NP-Complete Προβλήματα Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Προβλήματα Απόφασης & Βελτιστοποίησης 2 Πρόβλημα Απόφασης: Κάθε πρόβλημα που
Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα
Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό
ΔΥΣΚΟΛΙΑ ΣΤΗΝ ΠΡΟΣΕΓΓΙΣΙΜΟΤΗΤΑ
ΔΥΣΚΟΛΙΑ ΣΤΗΝ ΠΡΟΣΕΓΓΙΣΙΜΟΤΗΤΑ Επιμέλεια : Γεωργίου Κωστής Παρουσίαση στα πλαίσια του μαθήματος: Δίκτυα και πολυπλοκότητα Φεβρουάριος 004 μπλ Κίνητρα για τη μελέτη της μη προσεγγισιμότητας Ο πληρέστερος
ILP-Feasibility conp
Διάλεξη 19: 23.12.2014 Θεωρία Γραμμικού Προγραμματισμού Γραφέας: Χαρίλαος Τζόβας Διδάσκων: Σταύρος Κολλιόπουλος 19.1 Θεωρία Πολυπλοκότητας και προβλήματα απόφασης Για να μιλήσουμε για προβλήματα και τον
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θεμελιώσεις Επιστήμης Η/Υ ΠΛΗ30 Τελική Εξέταση 26 Ιουνίου 2013 Ονοματεπώνυμο Φοιτητή Αριθμός Μητρώου Φοιτητή Τμήμα Υπογραφή Φοιτητή Υπογραφή Επιτηρητή Διάρκεια: 180 Ερώτημα Μονάδες Βαθμολογία 1 10+10 2
L A P. w L A f(w) L B (10.1) u := f(w)
Κεφάλαιο 10 NP -πληρότητα Σύνοψη Οι γλώσσες στην κλάση πολυπλοκότητας P μπορούν να αποφασίζονται σε πολωνυμικό χρόνο. Οι επιστήμονες πιστεύουν, αν και δε μπορούν να το αποδείξουν ότι η P είναι ένα γνήσιο
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G 1, G 2 οι G 1 και G 2 είναι δύο CFG που παράγουν μια κοινή λέξη μήκους 144 } (β) { D,k το D είναι ένα DFA
Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation
Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation Διδάσκων: Στάθης Ζάχος Επιμέλεια Διαφανειών: Μάκης Αρσένης CoReLab ΣΗΜΜΥ - Ε.Μ.Π. Φεβρουάριος 2017 Διδάσκων: Στάθης Ζάχος ( CoReLab
Διαλογικά Συσ τήματα Αποδείξεων Διαλογικά Συστήματα Αποδείξεων Αντώνης Αντωνόπουλος Κρυπτογραφία & Πολυπλοκότητα 17/2/2012
Αντώνης Αντωνόπουλος Κρυπτογραφία & Πολυπλοκότητα 17/2/2012 Εισαγωγή Ορισμός Επέκταση του NP συστήματος αποδείξεων εισάγωντας αλληλεπίδραση! Ενα άτομο προσπαθεί να πείσει ένα άλλο για το ότι μία συμβολοσειρά
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w
Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή.
Μη ντετερµινιστικές Μηχανές Turing - NTMs (1/6) Μηχανές Turing: Μη ντετερµινισµός, Επιλύσιµα Προβλήµατα Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 10 εκεµβρίου 2016
conp and Function Problems
conp and Function Problems 1 Ένα πρόβλημα απόφασης λέμε ότι επιλύεται σε μηντετερμινιστικό πολυωνυμικό χρόνο αν υπάρχει ένας μηντετερμινιστικός αλγόριθμος που, εκμεταλλευόμενος μια τυχαία επιλογή, μπορεί
HEAD INPUT. q0 q1 CONTROL UNIT
Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου
Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.
Σύνοψη Προηγούµενου Κανονικές Γλώσσες () ιαδικαστικά του Μαθήµατος. Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Εισαγωγή: Υπολογισιµότητα και Πολυπλοκότητα. Βασικές
Υπολογισιμότητα και Πολυπλοκότητα Computability and Complexity
Υπολογισιμότητα και Πολυπλοκότητα Computability and Complexity Διδάσκων: Στάθης Ζάχος Επιμέλεια Διαφανειών: Μάκης Αρσένης CoReLab ΣΗΜΜΥ - ΕΜΠ Απρίλιος 2017 Διδάσκων: Στάθης Ζάχος ( CoReLab - NTUA) Υπολ
Recursive and Recursively Enumerable sets I
Recursive and Recursively Enumerable sets I Ορισμός Το σύνολο A είναι αναδρομικό ανν η χαρακτηριστική του συνάρτηση X A είναι αναδρομική. Το σύνολο A είναι αναδρομικά αριθμήσιμο (recursively enumerable)
Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)
Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του
Ελληνικό Ανοικτό Πανεπιστήµιο Σπουδές στην Πληροφορική. Φαινόµενα πολυπλοκότητας στα Μαθηµατικά και στη Φυσική: ύο όψεις του ίδιου νοµίσµατος;
Ελληνικό Ανοικτό Πανεπιστήµιο Σπουδές στην Πληροφορική Φαινόµενα πολυπλοκότητας στα Μαθηµατικά και στη Φυσική: ύο όψεις του ίδιου νοµίσµατος; Γιάννης Κ. Σταµατίου ΣΕΠ ΠΛΗ 10 Πάτρα, Ιουνιος 2003 οµή και
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,
Φροντιστήριο 9 Λύσεις
Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 10. Μηχανές Turing 20,23 Μαρτίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Μηχανές Turing: Ένα Γενικό Μοντέλο Υπολογισμού Ποια μοντέλα υπολογισμού μπορούν να δεχθούν γλώσσες
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπ
Θεωρία Υπολογισμού Ενότητα 11: Κλειστότητα, ΠΑ & καν. εκφράσεις Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες
Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων
Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Απόστολος Φίλιππας Τµήµα Μηχανικών Η/Υ και Πληροφορικής 19 Μαΐου,
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει την ακόλουθη γλώσσα. { a n b n+2 c n 2 n 2 } Λύση: H ζητούμενη μηχανή Turing μπορεί να
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91
Ε.Μ.Πoλυτεχνείο ΣΗΜΜΥ, ΣΕΜΦΕ Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Διδάσκων: Ε.Ζαχος Ονοματεπώνυμο:... Αριθμός Μητρώου:... Σχολή:... εξάμηνο:... ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 005 Σύνολο
NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων
NP-πληρότητα Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Πολυωνυμικός μετασχηματισμός Ένας πολυωνυμικός μετασχηματισμός από την L 1 Σ 1 * στην L 2 Σ 2 * είναι μια συνάρτηση
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 21: Υπολογισμοί ΜΤ - Αναδρομικές Γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Μηχανές Turing (T.M) I
Μηχανές Turing (T.M) I Οι βασικές λειτουργίες μιας TM είναι: Διάβασε το περιεχόμενο του τρέχοντος κυττάρου Γράψε 1 ή 0 στο τρέχον κύτταρο Κάνε τρέχον το αμέσως αριστερότερο ή το αμέσως δεξιότερο κύτταρο
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 4. Πεπερασμένα Αυτόματα 6 Φεβρουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Μοντέλα Υπολογισμού 1930 : Μηχανή Turing : αφαιρετική μηχανή (μοντελοποίηση ενός υπολογιστή)
Σε αυτό το µάθηµα. Εισαγωγή στις Μηχανές Turing. Μηχανή Turing (Turing Machine - TM) Μηχανές Turing. Παραδείγµατα Μηχανών Turing
Σε αυτό το µάθηµα Εισαγωγή στις Μηχανές Turing Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Παραδείγµατα Μηχανών Turing Παραλλαγές: Πολυταινιακές, Μη ντετερµινιστικές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 3ο μέρος σημειώσεων: Μέθοδος της Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια
Τυχαιότητα (Randomness) I
I Χρησιμοποιώντας το μοντέλο δένδρων υπολογισμού, θα ορίσουμε κλάσεις πολυπλοκότητας που βασίζονται στις πιθανότητες, με βάση τυχαίες επιλογές. Αυτή η προσέγγιση είναι πολύ χρήσιμη από πρακτική άποψη,
Θεωρία Υπολογισμού και Πολυπλοκότητα Χρονική Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Χρονική Πολυπλοκότητα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μέτρηση της Πολυπλοκότητας (7.1) Η κλάση Ρ (7.2) Η κλάση ΝΡ (7.3) ΝΡ-πληρότητα (7.4)
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Πιο κάτω υπάρχει ένα σχεδιάγραμμα που τοποθετεί τις κλάσεις των κανονικών, ασυμφραστικών, διαγνώσιμων και αναγνωρίσιμων γλωσσών μέσα στο σύνολο όλων των γλωσσών. Ακολουθούν
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσhmμy 6η ενότητα: Αυτόματα, τυπικές γλώσσες, γραμματικές Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής http://www.corelab.ece.ntua.gr/courses/introcs
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 26: Καθολική Μηχανή Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που
Ισοδυναμία Αιτ. Και μη Αιτ. Π.Α.
Ισοδυναμία Αιτ. Και μη Αιτ. Π.Α. Δύο Π.Α. Μ 1 και Μ 2 είναι ισοδύναμα ανν L(M 1 ) = L(M 2 ). Έστω Μ = (Q, Σ, q 0, Δ, F) μη Αιτ. Π.Α. Για κάθε κατάσταση q Q, ορίζουμε ως Ε(q) Q το σύνολο των καταστάσεων
a n = 3 n a n+1 = 3 a n, a 0 = 1
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 10: Αυτόματα Στοίβας II
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 10: Αυτόματα Στοίβας II Τι θα κάνουμε σήμερα Ισοδυναμία αυτομάτων στοίβας με ασυμφραστικές γραμματικές (2.2.3) 1 Ισοδυναμία PDA με CFG Θεώρημα: Μια
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα)
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα) Τι θα κάνουμε σήμερα Εισαγωγή Επιλύσιμα Προβλήματα σχετικά με τις Κανονικές Γλώσσες (4.1.1) Επιλύσιμα Προβλήματα
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνο ΣHMΜY
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνο ΣHMΜY 2η ενότητα: Βασικές έννοιες θεωρίας υπολογισμού: υπολογιστικά προβλήματα, υπολογισιμότητα, πολυπλοκότητα Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 8 : Αυτόματα NFA - DFA. Αλέξανδρος Τζάλλας
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 8 : Αυτόματα NFA - DFA Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής
Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές
Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα
Αλγόριθμοι για αυτόματα
Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε
Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)
Το πρόβλημα μονοδρόμησης (The One-Way Street Problem) Το πρόβλημα Σχετίζεται με τη διαχείριση της κίνησης οχημάτων στους δρόμους Αν δεν υπήρχαν καθυστερήσεις στην κίνηση στις πόλεις Αποφυγή σπατάλης ενέργειας
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων Σηµειώσεις Μέρος 4 ο ιδάσκων: Α. Ντελόπουλος Το παρόν αποτελεί σηµειώσεις που αντιστοιχούν σε µέρος των διαλέξεων για το µάθηµα 771 Η - Θεωρία Υπολογισµών και
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 8: Πεπερασμένα Αυτόματα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή
CSC 314: Switching Theory. Chapter 3: Turing Machines
CSC 314: Switching Theory Chapter 3: Turing Machines 21 November 2008 1 Dr. Vicky Papadopoulou 1 Μηχανές Turing: Ένα Γενικό Μοντέλο Υπολογισμού Ποια μοντέλα υπολογισμού μπορούν να δεχθούν γλώσσες της μορφής
CSC 314: Switching Theory. Chapter 3: Turing Machines
CSC 314: Switching Theory Chapter 3: Turing Machines 28 November 2008 1 1 Υπολογισμοί σε Μηχανές Turing Πως χρησιμοποιούμε μια μηχανή Turing? Για την αναγνώριση μιας γλώσσας? Σύμβαση για την αναγνώριση
Blum Complexity. Αλγόριθμοι και Πολυπλοκότητα ΙΙ. Παναγιώτης Γροντάς. Δεκέμβριος
Blum Complexity Αλγόριθμοι και Πολυπλοκότητα ΙΙ Παναγιώτης Γροντάς µπλ Δεκέμβριος 2011 Ιστορικά Στοιχεία Manuel Blum (1938, Caracas Venezuela) Turing Award (1995) Foundations Of Computational Complexity
Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Διαγνώσιμες Γλώσσες (4.1) Επιλύσιμα Προβλήματα σχετικά με Κανονικές Γλώσσες Επιλύσιμα Προβλήματα
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσhmμy 3η ενότητα: Βασικές έννοιες θεωρίας υπολογισμού: υπολογιστικά προβλήματα, υπολογισιμότητα, πολυπλοκότητα Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης