ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα
|
|
- Γάννη Δράκος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα
2 Τι θα κάνουμε σήμερα Εισαγωγικά Χρονική Πολυπλοκότητα (7) Κλάση P (7.2) Κλάση ΝΡ (7.3) ΝΡ-πληρότητα (7.4) Χωρική Πολυπλοκότητα (8) Κλάση PSPACE 1 ρ. Νικόλας Νικολ λάου
3 Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να περιγράψουμε με ένα αλγόριθμο μπορεί να υπολογιστεί με μια μηχανή Turing 2. υπάρχουν προβλήματα που δεν μπορούν να επιλυθούν (π.χ. πρόβλημα τερματισμού 3. υπάρχουν προβλήματα που μπορούν να επιλυθούν Επιλύσιμα προβλήματα Πόσους υπολογιστικούς πόρους απαιτούν; Χρόνο: Πόσα βήματα απαιτούνται από μια ΤΜ για την επίλυση του προβλήματος. Χώρο: Πόσα κελιά πάνω στην ταινία μιας ΤΜ απαιτούνται για την επίλυση του προβλήματος. 2 ρ. Νικόλας Νικολ λάου
4 Χρονική πολυπλοκότητα Έστω Μ μια ΤΜ που τερματίζει σε κάθε είσοδο. O χρόνος εκτέλεσης ή χρονική πολυπλοκότητα της Μ με είσοδο x, TIME M (x): Συνάρτηση f: N -> N όπου f(n) είναι το μέγιστο πλήθος βημάτων που είναι δυνατόν να πραγματοποιήσει η Μ όταν το μήκος της εισόδου της είναι n= x. 3 ρ. Νικόλας Νικολ λάου
5 Ασυμπτωτική Ανάλυση Ορισμός: Κεφαλαίο Όμικρον Έστω f και g δύο συναρτήσεις από το σύνολο Ν στο σύνολο R +. Λέμε ότι f(n)=o(g(n)) εάν υπάρχουν θετικόι ακέραιοι c και n 0 τέτοιοι ώστε, για κάθε ακέραιο n n 0 να ισχύει: f ( n) cg( n) Η g(n) αποτελεί το ασυμπτωτικό άνω φράγμα της f(n). Π.χ. f(n) = 6n 3 + 2n n + 45 => f(n) = O(n 3 ) Ο μεγιστοβάθμιος όρος υπερισχύει των υπολοίπων για μεγάλα n 4 ρ. Νικόλας Νικολ λάου
6 Ασυμπτωτική Ανάλυση Ορισμός: Μικρό Όμικρον Έστω f και g δύο συναρτήσεις από το σύνολο Ν στο σύνολο R +. Λέμε ότι f(n)=ο(g(n)) εάν ισχύει: Π.χ. f ( n) lim = n g( n) Με άλλα λόγια για κάθε ακέραιο c > 0 υπάρχει ακέραιος n 0 τέτοιος ώστε, f ( n) < cg( n) για κάθε ακέραιο n n 0. f(n) = 6n 3 + 2n n + 45 => f(n) = ο(n 4 ) n = o(nlogn) nlogn = o(n 2 ) 0 5 ρ. Νικόλας Νικολ λάου
7 Κλάση Χρονικής Πολυπλοκότητας ΤΙΜΕ(g(n))={L L μπορεί να διαγνωστεί σε χρόνο Ο(g(n)) από κάποια ΤΜ} Έστω Α = {0 κ 1 κ κ 0} Μ1= Για είσοδο w: 1. Διατρέχουμε την ταινία και εάν εντοπίσουμε κάποιο 0 δεξιά κάποιου 1 απορρίπτουμε 2. Ενόσω η ταινία περιέχει 0 και 1: 3. Διατρέχουμε την ταινία διαγράφοντας ένα 0 και ένα 1 4. Εάν η ταινία εξακολουθεί να περιέχει 0 ή 1 απορρίπτουμε. Αλλιώς αποδεχόμαστε TIME M1 (w) = O(n) + (n/2)o(n) + O(n) = O(n 2 ) A TIME( n 2 ) 6 ρ. Νικόλας Νικολ λάου
8 Κλάση P (Polynomial Time) Ορισμός: Η κλάση γλωσσών Ρ αποτελείται από τις γλώσσες που μπορούν να διαγνωστούν σε πολυωνιμικό χρόνο από κάποια Ντετερμινιστική ΤΜ M: P = UTIME k ( n k ) Μια γλώσσα L είναι πολυνωνυμικά αποφασίσιμη αν υπάρχει μηχανή ΝΤΜ πολυωνυμικού χρόνου Μ που την αποφασίζει. Συμπερασματικά: H κλάση P περιέχει προβλήματα που μπορούν να αποφασιστούν σε πολυωνυμικό χρόνο από μια Ντετερμινιστική μηχανή Turing. 7 ρ. Νικόλας Νικολ λάου
9 Παραδειγμα ΔΙΑΔΡΟΜΗ = {<G,s,t> το G είναι ένα κατευθυντό γράφημα που περιλαμβάνει μια διαδρομή από τον κόμβο s μέχρι τον t} M= Για είσοδο <G,s,t> 1. Σημαδεύουμε το κόμβο s 2. Επαναλαμβάνουμε μέχρι να μην σημαδεύονται άλλοι κόμβοι 3. Διατρέχουμε τις ακμές του G. Αν βρούμε ακμή (α,β) όπου α είναι σημασμένος και ο β όχι, σημαδεύουμε το β 4. Εάν ο t είναι σημαδεμένος αποδεχόμαστε. ΤΙΜΕ Μ (<G,s,t>)=O(nm) (n:#κόμβων, m:#ακμών) 8 ρ. Νικόλας Νικολ λάου
10 Κλάση ΝP (Non-Deterministic Polynomial Time) Ορισμός: Η κλάση γλωσσών ΝΡ αποτελείται από τις γλώσσες που μπορούν να διαγνωστούν σε πολυωνιμικό χρόνο από κάποια Μη Ντετερμινιστική ΤΜ M: NP = U NTIME k ( n k ΝΤΙΜΕ(g(n))={L L μπορεί να διαγνωστεί σε χρόνο Ο(g(n)) από κάποια ΝΤΜ} Όλες οι γλώσσες στην ΝΡ μπορούν να επαληθευτούν σε πολυωνιμικό χρόνο από μια ντετερμινιστική ΤΜ. Δοθέντος της ΝΡ γλώσσας Γ και ενός αποτελέσματος w μπορούμε να πούμε σε πολυωνιμικό χρόνο εάν w ανήκει στην Γ ) 9 ρ. Νικόλας Νικολ λάου
11 Παράδειγμα Το πρόβλημα του Πλανώδιου πωλητή: Για ένα σύνολο από πόλεις και κόστη διαδρομών από πόλη σε πόλη, βρες μια διαδρομή που να περνά από κάθε κόμβο του δικτύου ακριβώς μια φορά και να ελαχιστοποιεί την συνολικό κόστος της διαδρομής που θα ακολουθηθεί. Μπορεί να λυθεί σε (n-1)! χρόνο. Μπορεί να επαληθευτεί σε n χρόνο δοθέντος του μονοπατιού 10 Συμπέρασμα. Ορισμένα επιλύσιμα προβλήματα είναι υπολογιστικά δύσκολα
12 P vs NP P=NP???? Ρ=η κλάση των γλωσσών στις οποίες η συμμετοχή μπορεί να διαγνωστεί γρήγορα ΝΡ=η κλάση των γλωσσών στις οποίες η συμμετοχή μπορεί να επαληθευτεί γρήγορα NP EXPTIME = UTIME(2 k n k ) ρ. Νικόλας Νικολ λάου 11
13 Αναγωγιμότητα Πολυωνιμικού Χρόνου Ορισμός: Μια συνάρτηση είναι υπολογίσιμη σε πολυωνυμικό χρόνο εάν υπάρχει ΤΜ πολυωνιμικού χρόνου που την υπολογίζει. Ορισμός: Έστω γλώσσες Α και Β. Λέμε ότι η Α είναι αναγώγιμη σε πολυωνιμικό χρόνο στη Β (Α p Β) εάν υπάρχει συνάρτηση πολυωνιμικού χρόνου f:σ* Σ* τ.ω. για κάθε w w A f ( w) B ρ. Νικόλας Νικολ λάου 12
14 ρ. Νικόλας Νικολάου Αναγωγιμότητα Πολυωνιμικού Χρόνου L 1 p L 2 13
15 ΝΡ-πληρότητα Ορισμός: Μια γλώσσα Β είναι ΝΡ-πλήρης αν ικανοποιεί τις εξής συνθήκες: 1. Η Β ανήκει στην κλάση ΝΡ A NP 2. Κάθε γλώσσα ανάγεται στη Β σε πολυωνιμικό χρόνο. Θεώρημα: Εάν η Β είναι ΝΡ-πλήρης και B P τότε Ρ=ΝΡ. ρ. Νικόλας Νικολ λάου 14
16 Κλάσεις Χρονικής Πολυπλοκότητας ρ. Νικόλας Νικολάου 15
17 Χωρική Πολυπλοκότητα Έστω Μ μια ΤΜ που τερματίζει σε κάθε είσοδο. O χώρος μνήμης ή χωρική πολυπλοκότητα της Μ σε είσοδο x, Space M (x): Συνάρτηση f: N -> N όπου f(n) είναι το μέγιστο πλήθος θέσεων ταινίας που είναι δυνατόν να διατρέξει η Μ όταν το μήκος της εισόδου της είναι n= x. SPACE(g(n))={L L μπορεί να διαγνωστεί από κάποια ντετερμινιστικη ΤΜ χώρου Ο(g(n))} ρ. Νικόλας Νικολ λάου ΝSPACE(g(n))={L L μπορεί να διαγνωστεί από κάποια μη ντετερμινιστικη ΤΜ χώρου Ο(g(n))} 16
18 Η Κλάση PSPACE Ορισμός: Η κλάση γλωσσών PSPACE αποτελείται από τις γλώσσες που μπορούν να διαγνωστούν σε πολυωνιμικό χώρο από κάποια Ντετερμινιστική ΤΜ M: Θεώρημα Savitch: PSPACE = U SPACE NSPACE( f ( n)) Από το θεώρημα του Savitch: k SPACE( f ( n k ) 2 ( n)) ρ. Νικόλας Νικολ λάου PSPACE = NPSPACE 17
19 ρ. Νικόλας Νικολάου Ερωτήσεις; 18
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 14. Χρονική Πολυπλοκότητα 17, 20, 24 Απριλίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να
Chapter 7, 8 : Time, Space Complexity
CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 19 December 2008 1 1 Κλάση NP 2 Μη-Ντετερμινιστικές Μηχανές Turing: Eίναι δυνατόν σε μια συνολική κατάσταση να υπάρχουν πολλές δυνατές επόμενες
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κλάσεις P, NP NP-πληρότητα 15 Απριλίου 2008 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να περιγράψουμε με
Chapter 7, 8 : Time, Space Complexity
CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 12 December 2008 1 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτεμπορούμεναπεριγράψουμεμεένααλγόριθμο μπορεί να
Θεωρία Υπολογισμού και Πολυπλοκότητα Χρονική Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Χρονική Πολυπλοκότητα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μέτρηση της Πολυπλοκότητας (7.1) Η κλάση Ρ (7.2) Η κλάση ΝΡ (7.3) ΝΡ-πληρότητα (7.4)
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις
Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων
Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Απόστολος Φίλιππας Τµήµα Μηχανικών Η/Υ και Πληροφορικής 19 Μαΐου,
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιµότητα Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβληµα αναζήτησης (search problem) Ένα πρόβληµα αναζήτησης είναι ένα πρόβληµα στο
CSC 314: Switching Theory
CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2
Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές
Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα
Φροντιστήριο 11 Λύσεις
Άσκηση 1 Φροντιστήριο 11 Λύσεις Να αποδείξετε ότι η κλάση Ρ είναι κλειστή ως προς τις πράξεις της ένωσης, της συναρμογής και του συμπληρώματος. Θα πρέπει να δείξουμε ότι: (α) Ένωση: Αν οι Λ 1 και Λ 2 είναι
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1,
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα
Λύσεις 4ης Σειράς Ασκήσεων
Λύσεις 4ης Σειράς Ασκήσεων Άσκηση 1 Αναγάγουμε τν Κ 0 που γνωρίζουμε ότι είναι μη-αναδρομική (μη-επιλύσιμη) στην γλώσσα: L = {p() η μηχανή Turing Μ τερματίζει με είσοδο κενή ταινία;} Δοσμένης της περιγραφής
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών 1 Συναρτήσεις και ο υπολογισµός τους 2 Μηχανές Turing 3 Καθολικές γλώσσες προγραµµατισµού 4 Μια µη υπολογίσιµη συνάρτηση 5 Πολυπλοκότητα προβληµάτων 1 Συναρτήσεις Μία συνάρτηση
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G 1, G 2 οι G 1 και G 2 είναι δύο CFG που παράγουν μια κοινή λέξη μήκους 144 } (β) { D,k το D είναι ένα DFA
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 16: Αναγωγές
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 16: Αναγωγές Τι θα κάνουμε σήμερα Το Πρόβλημα του Τερματισμού (4.2) Εισαγωγή στις Αναγωγές Ανεπίλυτα Προβλήματα από την Θεωρία των Γλωσσών (5.1) Απεικονιστικές
Φροντιστήριο 10 Λύσεις
Άσκηση 1 Φροντιστήριο 10 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {0,1} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.
t M (w) T ( w ) O( n) = O(n 2 )
Κεφάλαιο 9 Υπολογιστική Πολυπλοκότητα Σύνοψη Πέρα από το ερώτημα του αν για ένα πρόβλημα υπάρχει Μηχανή Turing, που το επιλύει, μας απασχολεί επίσης και το ερώτημα του αν ένα πρόβλημα είναι «πρακτικά»
Κλάσεις Πολυπλοκότητας
Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή
Φροντιστήριο 9 Λύσεις
Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ Τι θα κάνουμε σήμερα Επιλύσιμα Προβλήματα σχετικά με Ασυμφραστικές Γλώσσες (4.1.2) Το Πρόβλημα του Τερματισμού
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 12: Μηχανές Turing
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 12: Μηχανές Turing Τι θα κάνουμε σήμερα Εισαγωγή στις Μηχανές Turing (TM) Τυπικός Ορισμός Μηχανής Turing (3.1.1) 1 Τι είδαμε μέχρι στιγμής Πεπερασμένα
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w
Κλάση NP, NP-Complete Προβλήματα
Κλάση NP, NP-Complete Προβλήματα Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Προβλήματα Απόφασης & Βελτιστοποίησης 2 Πρόβλημα Απόφασης: Κάθε πρόβλημα που
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα
Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5
Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
Εισαγωγή στους Αλγόριθμους. Παύλος Εφραιμίδης, Λέκτορας
Εισαγωγή στους Αλγόριθμους Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr 1 Περιεχόμενα Μαθήματος Εισαγωγή στου Αλγόριθμους Πολυπλοκότητα Αλγορίθμων Ασυμπτωτική Ανάλυση Θεωρία Γράφων Κλάσεις Πολυπλοκότητας
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91
Ε.Μ.Πoλυτεχνείο ΣΗΜΜΥ, ΣΕΜΦΕ Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Διδάσκων: Ε.Ζαχος Ονοματεπώνυμο:... Αριθμός Μητρώου:... Σχολή:... εξάμηνο:... ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 005 Σύνολο
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θεμελιώσεις Επιστήμης Η/Υ ΠΛΗ30 Τελική Εξέταση 26 Ιουνίου 2013 Ονοματεπώνυμο Φοιτητή Αριθμός Μητρώου Φοιτητή Τμήμα Υπογραφή Φοιτητή Υπογραφή Επιτηρητή Διάρκεια: 180 Ερώτημα Μονάδες Βαθμολογία 1 10+10 2
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Πιο κάτω υπάρχει ένα σχεδιάγραμμα που τοποθετεί τις κλάσεις των κανονικών, ασυμφραστικών, διαγνώσιμων και αναγνωρίσιμων γλωσσών μέσα στο σύνολο όλων των γλωσσών. Ακολουθούν
Φροντιστήριο 8 Λύσεις
Άσκηση 1 Θεωρήστε την πιο κάτω Μηχανή Turing. Φροντιστήριο 8 Λύσεις Σε κάθε σκέλος, να προσδιορίσετε την ακολουθία των φάσεων τις οποίες διατρέχει η μηχανή όταν δέχεται τη διδόμενη λέξη. (α) 11 (β) 1#1
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {w 1w 2 w 1 {0,1} * και w 2 = 0 k 1 m όπου k και m
ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΚΛΑΣΕΩΝ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ
ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΚΛΑΣΕΩΝ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ Κλάσεις Πολυπλοκότητας Περιλαµβάνουν αναδροµικές γλώσσες Οι γλώσσες ταξινοµούνται στις κλάσεις πολυπλοκότητας ανάλογα µε τη δυσκολία απόφασης τους (ποσότητα απαιτούµενων
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία,
Φροντιστήριο 8 Λύσεις
Άσκηση 1 Φροντιστήριο 8 Λύσεις Θεωρήστε την πιο κάτω Μηχανή Turing όπου όλες οι μεταβάσεις που απουσιάζουν οδηγούν στην κατάσταση απόρριψης (q απόρριψης). Σε κάθε σκέλος, να προσδιορίσετε την ακολουθία
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισμού
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισμού 12.1 Συναρτήσεις και ο υπολογισμός τους 12.2 Μηχανές Turing 12.3 Καθολικές γλώσσες προγραμματισμού 12.4 Μια μη υπολογίσιμη συνάρτηση 12.5 Πολυπλοκότητα προβλημάτων 12.6
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
11.1 Συναρτήσεις. ΚΕΦΑΛΑΙΟ 11: Θεωρία υπολογισµών
ΚΕΦΑΛΑΙΟ : Θεωρία υπολογισµών. Συναρτήσεις και ο υπολογισµός τους. Μηχανές Turig.3 Καθολικές γλώσσες προγραµµατισµού.4 Μια µη υπολογίσιµη συνάρτηση.5 Πολυπλοκότητα προβληµάτων.6 Κρυπτογραφία δηµόσιου κλειδιού.
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { a 2n b n c 3n n 2 } : H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την
Chapter 7, 8 : Completeness
CSC 314: Switching Theory Chapter 7, 8 : Completeness 19 December 2008 1 1 Αναγωγές Πολυωνυμικού Χρόνου Ορισμός. f: Σ * Σ * ονομάζεται υπολογίσιμη σε πολυνωνυμικό χρόνο αν υπάρχει μια πολυωνυμικά φραγμένη
Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο;
Αποφασισιµότητα / Αναγνωρισιµότητα Ορέστης Τελέλης telelis@unipi.gr Μη Επιλύσιµα Προβλήµατα Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 2/12/2015 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/2015
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w w = (ab) 2m b m (ba) m, m 0 } (β) Να διατυπώσετε
NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων
NP-πληρότητα Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Πολυωνυμικός μετασχηματισμός Ένας πολυωνυμικός μετασχηματισμός από την L 1 Σ 1 * στην L 2 Σ 2 * είναι μια συνάρτηση
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { ww rev w {a, b} * και w αποτελεί καρκινική λέξη } (α) H ζητούμενη μηχανή
Δομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 12: Μη ντετερμινιστικές μηχανές Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης
Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 2: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα)
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα) Τι θα κάνουμε σήμερα Εισαγωγή Επιλύσιμα Προβλήματα σχετικά με τις Κανονικές Γλώσσες (4.1.1) Επιλύσιμα Προβλήματα
Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Διαγνώσιμες Γλώσσες (4.1) Επιλύσιμα Προβλήματα σχετικά με Κανονικές Γλώσσες Επιλύσιμα Προβλήματα
ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ
Ενότητα 4 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Θεωρία Υπολογισµού Theory of Computation
1 ο µέρος Θεωρία Υπολογισµού Theory of Computation 1 Υπολογισιµότητα - Computability o Υπολογισιµότητα (Computability) n Τι µπορεί να υπολογιστεί και τι όχι; o Υπολογιστική πολυπλοκότητα (Computational
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι
Σε αυτό το µάθηµα. Εισαγωγή στις Μηχανές Turing. Μηχανή Turing (Turing Machine - TM) Μηχανές Turing. Παραδείγµατα Μηχανών Turing
Σε αυτό το µάθηµα Εισαγωγή στις Μηχανές Turing Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Παραδείγµατα Μηχανών Turing Παραλλαγές: Πολυταινιακές, Μη ντετερµινιστικές
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος στη δεύτερη έκδοση
Πρόλογος του επιµελητή xiii Πρόλογος στην πρώτη έκδοση xv Προς τους ϕοιτητές.......................... xv Προς τους διδάσκοντες........................ xvii Ηπρώτηέκδοση........................... xviii
ρυθιμός αύξησης συναρτήσεων
ρυθμός αύξησης συναρτήσεων Παύλος Εφραιμίδης 1 περιεχόμενα Ασυμπτωτικός συμβολισμός Καθιερωμένοι συμβολισμοί και συνήθεις συναρτήσεις 2 ασυμπτωτική πολυπλοκότητα Πολυπλοκότητα χειρότερης περίπτωσης Συγχωνευτική
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε
Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα
Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w#z w, z {a,b}* και η z είναι υπολέξη της w}. Συγκεκριμένα,
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 9 P vs NP 1 / 13 Δυσκολία επίλυσης υπολογιστικών προβλημάτων Κάποια προβλήματα είναι εύκολα να λυθούν με
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσhmμy 1η ενότητα: Βασικές έννοιες θεωρίας υπολογισμού: υπολογιστικά προβλήματα, υπολογισιμότητα, πολυπλοκότητα Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσhmμy 3η ενότητα: Βασικές έννοιες θεωρίας υπολογισμού: υπολογιστικά προβλήματα, υπολογισιμότητα, πολυπλοκότητα Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης
Ασκήσεις Επανάληψης. Επανάληψη Εαρινό Εξάμηνο 2019 Σελίδα 1
Ασκήσεις Επανάληψης Άσκηση 1 (Τελική Εξέταση 5/015) Να δείξετε ότι η πιο κάτω γλώσσα δεν είναι διαγνώσιμη. { Μ L(M) {ΘΕΩΡΙΑ, ΥΠΟΛΟΓΙΣΜΟΥ} και L(M) 3} (Για την αναγωγή μπορείτε να χρησιμοποιήσετε τη γνωστή
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3)
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) 3.1 Ασυμπτωτικός συμβολισμός (Ι) Οι ορισμοί που ακολουθούν μας επιτρέπουν να επιχειρηματολογούμε με ακρίβεια για την ασυμπτωτική συμπεριφορά. Οι f(n) και g(n) συμβολίζουν
Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή.
Μη ντετερµινιστικές Μηχανές Turing - NTMs (1/6) Μηχανές Turing: Μη ντετερµινισµός, Επιλύσιµα Προβλήµατα Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 10 εκεµβρίου 2016
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνο ΣHMΜY
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνο ΣHMΜY 2η ενότητα: Βασικές έννοιες θεωρίας υπολογισμού: υπολογιστικά προβλήματα, υπολογισιμότητα, πολυπλοκότητα Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {1010 2 10 3 10 n 1 10 n 1 n 1}. (β) Να διατυπώσετε
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισμού
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισμού Συναρτήσεις και υπολογισιμότητά τους Μηχανές Turig Στοιχειώδης γλώσσα προγραμματισμού Μη υπολογίσιμη συνάρτηση Πολυπλοκότητα προβλημάτων Προβλήματα κλάσης P, NP, NP- Complete
num(m(w 1 ;... ; w k )) = f(num(w 1 ),..., num(w k ))
Υπολογισμοί με Μ.Τ. Εστω M = (K, Σ, δ, s, {y, n}) μια Μ.Τ. Κάθε συνολική κατάσταση τερματισμού της οποίας η κατάσταση τερματισμού είναι το y, θα ονομάζεται συνολική κατάσταση αποδοχής, ενώ αν η κατάσταση
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία
Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing
Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μηχανές Turing (3.1) Τυπικό Ορισμός Παραδείγματα Παραλλαγές Μηχανών Turing (3.2) Πολυταινιακές
Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)
Το πρόβλημα μονοδρόμησης (The One-Way Street Problem) Το πρόβλημα Σχετίζεται με τη διαχείριση της κίνησης οχημάτων στους δρόμους Αν δεν υπήρχαν καθυστερήσεις στην κίνηση στις πόλεις Αποφυγή σπατάλης ενέργειας
Κεφάλαιο 5 Ανάλυση Αλγορίθμων
Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι
Ασκήσεις (2) Άσκηση 1
Άσκηση 1 Ασκήσεις () Εισαγωγή στην Ανάλυση Αλγορίθμων Υποθέστε ότι συγκρίνουμε την υλοποίηση της ταξινόμησης με εισαγωγή και της ταξινόμησης με συγχώνευση στον ίδιο υπολογιστή. Για εισόδους μεγέθους n,
Κεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 1 Πέντε Αντιπροσωπευτικά Προβλήματα Έκδοση 1.4, 30/10/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 1.2 Πέντε Αντιπροσωπευτικά Προβλήματα 1. Χρονοπρογραμματισμός Διαστημάτων
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική
Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π
Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός
Δομές Δεδομένων & Αλγόριθμοι
Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Διάλεξη 17: Συμφωνία με Βυζαντινά Σφάλματα. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι
Διάλεξη 17: Συμφωνία με Βυζαντινά Σφάλματα ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Βυζαντινά Σφάλματα Τι θα δούμε σήμερα Κάτω Φράγμα για Αλγόριθμους Συμφωνίας με Βυζαντινά Σφάλματα: n > 3f Αλγόριθμος Συμφωνίας
Συνδυαστική Βελτιστοποίηση
Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 1 Άγγελος Σιφαλέρας sifalera@uom.gr 4 η Διάλεξη Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 2 Knapsack Problem, (1/9) Ένας επενδυτής διαθέτει ένα χρηματικό
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες
για NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ΑΛΕΞΑΝΔΡΕΙΟ Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Πτυχιακή εργασία ΑΣΤΡΟΠΕΚΑΚΗ ΔΕΣΠΟΙΝΑ
ΑΛΕΞΑΝΔΡΕΙΟ Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Πτυχιακή εργασία ΑΣΤΡΟΠΕΚΑΚΗ ΔΕΣΠΟΙΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΚΟΤΙΝΗ ΙΣΑΒΕΛΛΑ ΘΕΣΣΑΛΟΝΙΚΗ 2010 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 4 ΚΕΦΑΛΑΙΟ
L A P. w L A f(w) L B (10.1) u := f(w)
Κεφάλαιο 10 NP -πληρότητα Σύνοψη Οι γλώσσες στην κλάση πολυπλοκότητας P μπορούν να αποφασίζονται σε πολωνυμικό χρόνο. Οι επιστήμονες πιστεύουν, αν και δε μπορούν να το αποδείξουν ότι η P είναι ένα γνήσιο
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Προσεγγιστικοί Αλγόριθμοι Απόδοση χειρότερης
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θεμελιώσεις Επιστήμης Η/Υ ΠΛΗ30 Τελική Εξέταση 2 Ιουλίου 2014 Ονοματεπώνυμο Φοιτητή Αριθμός Μητρώου Φοιτητή Τμήμα Υπογραφή Φοιτητή Υπογραφή Επιτηρητή Διάρκεια: 180 Ερώτημα Μονάδες Βαθμολογία 1 8+8+4 2