Κατ οίκον Εργασία 4 Σκελετοί Λύσεων
|
|
- Έρις Ζωγράφος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κατ οίκον Εργασία 4 Σκελετοί Λύσεων Άσκηση 1 α) Εφαρμογή της BuildHeap στον πίνακα [-,, 3, 5, 10, 17, 8, 1, 11,, 15] έχει τις εξής ενδιάμεσες καταστάσεις. Αρχική Κατάσταση: Μετά από εφαρμογή της PercoladeDown του στοιχείου στη θέση 5: Μετά από εφαρμογή της PercoladeDown του στοιχείου στη θέση 4: Μετά από εφαρμογή της PercoladeDown του στοιχείου στη θέση 3:
2 Μετά από εφαρμογή της PercoladeDown του στοιχείου στη θέση : Μετά από εφαρμογή της PercoladeDown του στοιχείου στη θέση 1: β) Μετά από εφαρμογή της DeleteMin: γ) Μετά από εφαρμογή της IncreaseKey (4, 8): δ) Μετά από εφαρμογή της Insert (4):
3 ε) Μετά από εφαρμογή της Insert (7): Άσκηση Χρησιμοποιούμε τις πιο κάτω δομές typedef struct fourheap{ typedef struct Quadruple { int size; int key1; quadruple data[maxsize]; int key; 4heap; int key3; int key4; quadruple ; και υποθέτουμε πως μία σωρός έχει τύπο fourheap και περιέχει τετράδες τύπου quadruple. Οι πράξεις υλοποιούνται παρόμοια με τις πράξεις σε σωρό. Η βασική διαφορά αφορά στο ότι, σε αδελφούς κόμβους, τα κλειδιά του ενός πρέπει να είναι μικρότερα από τα κλειδιά του άλλου. (α) Η διαδικασία εισαγωγής ξεκινά τοποθετώντας τα 4 νέα στοιχεία στην πρώτη διαθέσιμη θέση του πίνακα, έστω h. Συνδυάζουμε τα στοιχεία της θέσης h με τον πατέρα της, έστω f, έτσι ώστε η θέση h να πάρει τα μεγαλύτερα στοιχεία και ο πατέρας τα μικρότερα. Συνδυάζουμε τα στοιχεία της θέσης h με τον αδελφό της, αν υπάρχει αδελφός, έτσι ώστε ο αδελφός που είχε τα μεγαλύτερα στοιχεία να πάρει τα 4 μεγαλύτερα στοιχεία των δύο κόμβων και ο άλλος τα μικρότερα. Συνεχίσουμε την διαδικασία για h = f μέχρις ότου είτε φθάσουμε στη ρίζα είτε φθάσουμε σε κάποιο σημείο όπου ο κόμβος h έχει μεγαλύτερα στοιχεία από τον πατέρα του. Σε ψευδοκώδικα έχει ως εξής: Insert (4heap E, quadruple x){ check E->size < maxsize; int h = E->size + 1; E->size++; Ε.data[h] = x; while(h>1 && υπάρχει κλειδί στον πατέρα, (contents[ h/ ]), μεγαλύτερο από κάποιο κλειδί του contents[h]) { data[h] = τα 4 μεγαλύτερα κλειδιά των θέσεων contents[ h/ ] και contents[h]; data[ h/ ] τα 4 μικρότερα κλειδιά των θέσεων contents[ h/ ] και contents[h]; if (h = h/ ) brother = h+1; brother = h-1; 3
4 if (brother <= E->size) if (maximum key of data[brother] > maximum key of data[h]) { data[brother] = τα 4 μεγαλύτερα κλειδιά των θέσεων data[brother] και data[h]; data[h]= τα 4 μικρότερα κλειδιά των θέσεων data[brother] και data[h]; data[h] = τα 4 μεγαλύτερα κλειδιά των θέσεων data [brother] και data[h]; data[brother]= τα 4 μικρότερα κλειδιά των θέσεων data[brother] και data[h]; (β) Η διαδικασία εξαγωγής ελαχίστου ξεκινά εξάγοντας το στοιχείο της πρώτης θέσης και τοποθετώντας εκεί τα κλειδιά της τελευταίας θέσης του πίνακα. Ονομάζουμε την πρώτη θέση h. Ελέγχουμε τα παιδιά της θέσης h και συνδυάζουμε τα στοιχεία της με αυτά του παιδιού της με τα μικρότερα κλειδιά, έστω s, έτσι ώστε η θέση h να αποκτήσει τα 4 μικρότερα κλειδιά και η θέση s τα μεγαλύτερα. Στη συνέχεια συνδυάζουμε τα κλειδιά της θέσης s με αυτά του αδελφού της (αν υπάρχει), έστω, q, έτσι ώστε η θέση s να αποκτήσει τα 4 μεγαλύτερα στοιχεία και η θέση q τα 4 μικρότερα. Συνεχίσουμε την διαδικασία για h = s μέχρις ότου είτε φθάσουμε σε φύλλο είτε φθάσουμε σε κάποιο σημείο όπου ο κόμβος h έχει μικρότερα στοιχεία από το μικρότερο παιδί του. Σε ψευδοκώδικα έχει ως εξής: quadrable DeleteMin (4heap E){ if IsEmpty(E) report error; return; min = E->data[1]; E->data[1] = E->data[E->size]; E->size--; h=1; while(h* <= size){ minchild = h*; if (minchild == size) { maxchild = 0; if (max E->data[minchild+1]< min E->[minchild]) { minchild++; maxchild = minchild 1; maxchild = minchild+1; if (min E->data[minchild] < max E->[h]) { data[h] = τα 4 μικρότερα κλειδιά των θέσεων contents[minchild] και contents[h]; data[minchild] = τα 4 μεγαλύτερα κλειδιά των θέσεων contents[minchild] και contents[h]; 4
5 if (maxchild!= 0) { data[minchild] = τα 4 μικρότερα κλειδιά των θέσεων data[minchild] και data[maxchild]; data[maxchild] = τα 4 μεγαλύτερα κλειδιά των θέσεων data[minchild] και data[maxchild]; break; h = minchild; return min; Άσκηση 3 Το πρόβλημα μπορεί να μεταφραστεί σε πρόβλημα εύρεσης του μονοπατιού με το ελάχιστο κόστος σε γράφο όπου κάθε ακμή έχει βάρος 1. (α) Θεωρήστε τον γράφο με βάρη G = (V, E) όπου V = { P 1, P,..., Pn, δηλαδή υπάρχει μία κορυφή για κάθε ιστοσελίδα Ε = {( P i, Pj ) αν υπάρχει σύνδεσμος μεταξύ των ιστοσελίδων P i και Υποθέτουμε ότι οι γράφοι υλοποιούνται με βάση την πιο κάτω δομή: struct graph{ int matrix[max][max]; int size; (β) Το ελάχιστο μονοπάτι μπορεί να υπολογιστεί με μια κατά πλάτος διερεύνηση στο γράφο. Επομένως, εφαρμόζουμε κατά πλάτος διερεύνηση από τον κόμβο εκκίνησης φυλάγοντας για κάθε κόμβο τους κόμβους που έχουμε περάσει στο μονοπάτι από τον κόμβο εκκίνησης και μόλις συναντήσουμε τον κόμβο προορισμούγια πρώτη φορά επιστρέφουμε το μονοπάτι που έχουμε υπολογίσει: Reachable(vertex A, vertex B, graph G){ int Visited[n]; int Previous[n]; Q=MakeEmptyQueue(); for ( i=0; i<= G->size-1; i++ ) // for each w in G Visited[i]=False; Visited[A]= True; Enqueue(A,Q); while (!IsEmpty(Q)){ w = Dequeue(Q); if (w == B) print w; while(w!= A) w = Previous[w]; print w; P j 5
6 return; for ( u = 0; u <= G->size-1; u++ ) if (G->matrix[w][u] > 0) // for each u adjacent to w if (Visited[u]=False) { Previous[u] = w; Visited[u]=True; Enqueue(u,Q); Χρόνος Εκτέλεσης: Ο( V ), όπου V είναι ο αριθμός κορυφών του γράφου. Για να έχουμε αποδοτική συνάρτηση MasterPage, πρέπει να τροποποιήσουμε τη συνάρτηση BFS, έτσι ώστε να υπολογίζει τον αριθμό των διαφορετικών κόμβων που είναι προσβάσιμοι από την σελίδα εκκίνησης. Αν ο αριθμός των προσβάσιμων κόμβων είναι ίσος με τον αριθμό των κόμβων του γράφου, τότε η σελίδα εκκίνησης είναι MasterPage. int Reachable(vertex A, graph G){ Q=MakeEmptyQueue(); int reachable = 1; // Για τον κόμβο Α for ( i=0; i<= G->size-1; i++ ) // for each w in G Visited[i]=False; Visited[A]= True; Enqueue(A,Q); while (!IsEmpty(Q)){ w = Dequeue(Q); for ( u = 0; u <= G->size-1; u++ ) if (G->matrix[w][u] > 0) // for each u adjacent to w if (Visited[u]=False) { Visited[u]=True; Enqueue(u,Q); reachable++; if (G->size == reachable) return 1; return 0; Χρόνος Εκτέλεσης: Ο( V ), όπου V είναι ο αριθμός κορυφών του γράφου. ΜasterPage(graph G) { for ( w=0; w<= G->size-1; i++ ) { // for each w in G if (Reachable(w, G)) { // αν όλοι είναι προσβάσιμοι print w; Χρόνος Εκτέλεσης: Ο( V 3 ), όπου V είναι ο αριθμός κορυφών του γράφου. 6
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 Χρησιμοποιούμε τις δομές: struct hashtable { struct node array[maxsize]; int maxsize; int size; struct node{ int data; int status; Στο πεδίο status σημειώνουμε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 4 Σωροί, Γράφοι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 4 Σωροί, Γράφοι Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 05/04/2013 Ημερομηνία
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 (α) Ο αλγόριθµος χρησιµοποιεί τη διαδικασία DFS(v) η οποία, ως γνωστό, επισκέπτεται όλους τους κόµβους που είναι συνδεδεµένοι µε τον κόµβο v. Για να µετρήσουµε
Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Τοπολογική Ταξινόμηση - Εφαρμογές, Παραδείγματα, Αλγόριθμοι
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: ΓράφοιII -ΤοπολογικήΤαξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Τοπολογική Ταξινόμηση - Εφαρμογές, Παραδείγματα, Αλγόριθμοι Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231 Δομές
ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1
Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Διάσχιση Γράφων Τοπολογική Ταξινόµηση ΕΠΛ 23 Δοµές Δεδοµένων και Αλγόριθµοι - Γράφοι Η πιο γενική µορφή δοµής
Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort
Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-1 Ουρά προτεραιότητας
ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,
Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Τοπολογική Ταξινόµηση ιάσχιση Γράφων ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26 - Γράφοι Ηπιο
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 9: Εισαγωγή στους Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι - ορισμοί και υλοποίηση Διάσχιση Γράφων Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 26: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας -Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ Ουρές Προτεραιότητας (Priority Queues) Θεωρούµε ότι τα προς αποθήκευση στοιχεία έχουν κάποια διάταξη (καθένα έχει µια προτεραιότητα). Τα προς αποθήκευση στοιχεία είναι
ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1
Σωροί Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθµος ταξινόµησης HeapSort Παραλλαγές Σωρών ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων
Άσκηση 1 Χρησιµοποιούµε τη δοµή Κατ οίκον Εργασία 3 Σκελετοί Λύσεων typedef struct Node int data; struct node *lchild; struct node *rbro; node; και υποθέτουµε πως ένα τυχαίο δένδρο είναι υλοποιηµένο ως
Κατ οίκον Εργασία 4 Σκελετοί Λύσεων
Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Αναδρομική διαδικασία Η αναδρομική διαδικασία RecIsheap παίρνει ως παραμέτρους τον πίνακα, το μέγεθός του καθώς και το στοιχείο το οποίο θα τύχει επεξεργασίας.
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Φροντιστήριο 4 Σκελετοί Λύσεων
Φροντιστήριο 4 Σκελετοί Λύσεων Άσκηση 1 Υποθέτουμε πως οι λίστες είναι υλοποιημένες χρησιμοποιώντας τις πιο κάτω δομές. typedef struct Node{ type data; struct node *next; node; node *top; list; Υλοποιούμε
Διάλεξη 29: Γράφοι. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 9: Γράφοι Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Διδάσκων: Παναγιώτης νδρέου ΕΠΛ035 Δομές Δεδομένων και λγόριθμοι για Ηλ. Μηχ.
Ενότητα 7 Ουρές Προτεραιότητας
Ενότητα Ουρές Προτεραιότητας ΗΥ4 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type). Έστω
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 20: Τοπολογική Ταξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ολοκλήρωση Αλγορίθμων Διάσχισης Γράφων (Από Διάλεξη 19) Τοπολογική Ταξινόμηση Εφαρμογές, Παραδείγματα, Αλγόριθμοι
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Άσκηση 1 Ο ζητούμενος ΑΤΔ μπορεί να υλοποιηθεί ως μια ακολουθία από στοιχεία τύπου window συνοδευόμενη από τις πράξεις: MakeNewWindow(L,w) Destroy(L,w) SwitchTo(L,w)
Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας (Priority
Φροντιστήριο 4 Σκελετοί Λύσεων
Φροντιστήριο 4 Σκελετοί Λύσεων 1. Ο ζητούμενος ΑΤΔ μπορεί να υλοποιηθεί ως εξής: (i) Διαδοχική χορήγηση μνήμης Υποθέτουμε ότι οι λίστες μας έχουν μέγιστο μέγεθος max και χρησιμοποιούμε τη δομή type elements[max];
6η Διάλεξη Διάσχιση Γράφων και Δέντρων
ΘΕΩΡΙΑ ΓΡΑΦΩΝ 6 η Διάλεξη Διάσχιση Γράφων και Δέντρων Αλγόριθμος αναζήτησης σε Βαθος Αλγόριθμος αναζήτησης κατά Πλάτος Αλγόριθμοι για Δένδρα Εύρεση ελαχίστων Γεννητορικών (Επικαλύπτοντα) Δένδρων Διάσχιση
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Δομές Δεδομένων. Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός. Καθηγήτρια Μαρία Σατρατζέμη
Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Γράφοι. Ορολογία. Ορισµός: G = (V, E) όπου. Ορολογία (συνέχεια) γράφος ή γράφηµα (graph) V:ένα σύνολο E:µια διµελής σχέση στο V
Γράφοι Ορολογία γράφος ή γράφηµα (graph) Ορισµός: G = (V, E) όπου V:ένα σύνολο E:µια διµελής σχέση στο V Ορολογία (συνέχεια) κάθε v V ονοµάζεται κορυφή (vertex) ή κόµβος (node) κάθε (v 1, v 2 ) Ε ονοµάζεται
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 7 Ουρές Προτεραιότητας ΗΥ240 - Παναγιώτα Φατούρου 2 Ουρές
Ενότητα 7 Ουρές Προτεραιότητας
Ενότητα 7 Ουρές Προτεραιότητας ΗΥ240 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type).
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 28: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή
Διάλεξη 18: Γράφοι I - Εισαγωγή
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 18: Γράφοι I - Εισαγωγή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Εισαγωγή στους Γράφους
ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο
Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα
Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Λίστες -Υλοποίηση ταξινομημένης λίστας με δυναμική δέσμευση μνήμης ΕΠΛ035
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 23: Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Βραχύτερα Μονοπάτια σε γράφους Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης Ο αλγόριθμος
Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 8: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Στατική Δέσμευση
Σημειωματάριο Τετάρτης 29 Νοε. 2017
Σημειωματάριο Τετάρτης 29 Νοε. 2017 Γραφήματα (γράφοι), η αναπαράστασή τους στον υπολογιστή και μερικά προβλήματα σε αυτά Είδαμε σήμερα λίγα πράγματα για γραφήματα (ή γράφους). Γράφημα είναι, στην απλούστερή
Βασικές Δομές Δεδομένων
Βασικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Διαδοχική και Δυναμική Χορήγηση
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
ιάλεξη : λάχιστα εννητορικά ένδρα Αλγόριθμος Prim Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: λάχιστα εννητορικά ένδρα () Minimum Spanning Trees Ο αλγόριθμος του Prim για εύρεση σε γράφους
Εργασία 3 Σκελετοί Λύσεων
Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 Χρησιμοποιούμε τη δομή typedef struct TNode{ int key; struct TNode *left; struct TNode *right; tnode; και υποθέτουμε πως ένα δυαδικό δένδρο είναι υλοποιημένο ως δείκτης
Διάλεξη 18: Γράφοι I Εισαγωγή
Διάλεξη 18: Γράφοι I Εισαγωγή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι ορισμοί και υλοποίηση Διάσχιση Γράφων ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Εισαγωγή στους Γράφους Η πιο
Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Υλοποίηση Λιστών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμές Απλά και Διπλά Συνδεδεμένες Λίστες Κυκλικές Απλά και Διπλά Συνδεδεμένες Λίστες Τεχνικές Μείωσης Μνήμης ΕΠΛ 231 Δομές
Συνδετικότητα γραφήματος (graph connectivity)
Συνδετικότητα γραφήματος (graph connectivity) Συνδετικότητα γραφήματος (graph connectivity) Υπάρχει μονοπάτι μεταξύ α και β; α Παραδείγματα: υπολογιστές ενός δικτύου ιστοσελίδες ισοδύναμες μεταβλητές ενός
Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :
Δένδρα Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Ανάλυση αλγορίθμων (π.χ. δένδρα αναδρομής) Δομές δεδομένων (π.χ. δένδρα αναζήτησης) ακμή Κατηγορίες (αύξουσα
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 10: Λίστες Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εύρεση, εισαγωγή, διαγραφή) Σύγκριση Συνδεδεμένων Λιστών με Πίνακες
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 3η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Απλοί Αλγόριθμοι & Δομές Δεδομένων Δύο Απλές
Αλγόριθμοι Eλάχιστα μονοπάτια
Αλγόριθμοι Eλάχιστα μονοπάτια Μάρθα Σιδέρη Προτεινόμενη βιβλιογραφία: S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani «Αλγόριθμοι» Κλειδάριθμος 009 Κεφάλαιο. http://www.cs.berkeley.edu/~vazirani/algorithms/chap.pdf
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Δυαδικό Δέντρο Αναζήτησης Δυαδικό δέντρο Κάθε κόμβος «γονέας» περιέχει δύο δείκτες που δείχνουν σε δύο κόμβους «παιδιά» του ιδίου τύπου. Αν οι δείκτες προς αυτούς
Δομές δεδομένων (2) Αλγόριθμοι
Δομές δεδομένων (2) Αλγόριθμοι Παράγωγοι τύποι (struct) σύνοψη προηγουμένων Πίνακες: πολλές μεταβλητές ίδιου τύπου Παράγωγοι τύποι ή Δομές (struct): ομαδοποίηση μεταβλητών διαφορετικού τύπου struct Student
Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εύρεση, εισαγωγή, διαγραφή) - Σύγκριση Συνδεδεμένων Λιστών με Πίνακες
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ
ΠΝΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΣ ΔΔΟΜΝΩΝ ΚΙ ΛΓΟΡΙΘΜΟΙ ΗΜΡΟΜΗΝΙ: 14/11/2018 ΔΙΓΝΩΣΤΙΚΟ ΠΝΩ Σ ΔΝΔΡΙΚΣ ΔΟΜΣ ΚΙ ΓΡΦΟΥΣ Διάρκεια: 45 λεπτά Ονοματεπώνυμο:. ρ. Ταυτότητας:. ΒΘΜΟΛΟΓΙ ΣΚΗΣΗ ΒΘΜΟΣ
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 9: Στοίβες:Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθεί η χρήση στοιβών στις εξής εφαρμογές: Υλοποίηση Στοιβών με Δυναμική Δέσμευση Μνήμης Εφαρμογή Στοιβών 1: Αναδρομικές συναρτήσεις Εφαρμογή
Ελάχιστα Γεννητορικά ένδρα
λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι
Βασικές οµές εδοµένων
Βασικές οµές εδοµένων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Αφηρηµένοι Τύποι εδοµένων Οι ΑΤ Στοίβα και Ουρά Υλοποίηση των ΑΤ Στοίβα και Ουρά µε ιαδοχική και υναµική Χορήγηση Μνήµης
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
Δομές Δεδομένων & Αλγόριθμοι
Λίστες Λίστες - Απλά Συνδεδεμένες Λίστες - Διπλά Συνδεδεμένες Λίστες Είδη Γραμμικών Λιστών Σειριακή Λίστα Καταλαμβάνει συνεχόμενες θέσεις κύριας μνήμης Συνδεδεμένη Λίστα Οι κόμβοι βρίσκονται σε απομακρυσμένες
Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες)
Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 13-1 Περιεχόμενο
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων 1. Συντομότατα μονοπάτια 2. Αλγόριθμος Bellman-Ford 3. Αλγόριθμος Dijkstra 4. Floyd-Warshall Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Single-Source Shortest Path Πρόβλημα:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 3: Ελάχιστα Γεννητορικά Δέντρα Ο λγόριθμος Prim Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ελάχιστα Γεννητορικά Δένδρα (ΕΓΔ) Minimum Spanning Trees -Ο αλγόριθμος του Primγια εύρεση
Ενότητα 10 Γράφοι (ή Γραφήµατα)
Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 10: Στοίβες:Υλοποίηση& Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση Στοιβών με Δυναμική Δέσμευση Μνήμης - Εφαρμογή Στοιβών 1: Αναδρομικές συναρτήσεις - Εφαρμογή
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Άσκηση 1 Υπάρχουν διάφοροι τρόποι για να υλοποιήσουμε πράξεις ουράς για την προτεινόμενη εγγραφή. To πρόβλημα που δημιουργείται με οποιαδήποτε από αυτές είναι ότι είναι
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 21: Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Εισαγωγή σε δενδρικές δομές δεδομένων, -Ορισμοί και πράξεις - Αναπαράσταση δενδρικών δομών δεδομένων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 3 Δέντρα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 3 Δέντρα Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 19/03/2013 Ημερομηνία Παράδοσης:
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 17 Σωροί (Heaps) έκδοση 10 1 / 19 Heap Σωρός Ο σωρός είναι μια μερικά ταξινομημένη δομή δεδομένων που υποστηρίζει
Διάλεξη 21: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους
Διάλεξη 2: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους - Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
ΕΠΛ 3 Δομές Δεδομένων και Αλγόριθμοι Νοέμβριος 00 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Έστω ο αριθμός φύλλων που βρίσκονται στο επίπεδο ενός δυαδικού δένδρου. Θέλουμε να αποδείξουμε την πρόταση: Η
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 3: Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους -Ο αλγόριθμος ijkstraγια εύρεση της βραχύτερης απόστασης -Ο αλγόριθμος
Κεφάλαιο 6 Ουρές Προτεραιότητας
Κεφάλαιο 6 Ουρές Προτεραιότητας Περιεχόμενα 6.1 Ο αφηρημένος τύπος δεδομένων ουράς προτεραιότητας... 114 6.2 Ουρές προτεραιότητας με στοιχειώδεις δομές δεδομένων... 115 6.3 Δυαδικός σωρός... 116 6.3.1
Δοµές Δεδοµένων. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2
Δοµές Δεδοµένων Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2 Δοµές Δεδοµένων (Αναπαράσταση,) οργάνωση και διαχείριση συνόλων αντικειµένων για αποδοτική ενηµέρωση και ανάκτηση πληροφορίας.
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 6 Μαΐου 2015 1 / 42 Εύρεση Ελάχιστου Μονοπατιού
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Μάθημα 21: Ουρές (Queues)
Queues Page 1 Μάθημα 21: Ουρές (Queues) Η ουρά (queue) είναι μια δομή δεδομένων. Η βασική λειτουργικότητα είναι η εισαγωγή στοιχείων στην πίσω θέση και η εξαγωγή-διαγραφή στοιχείων από την μπροστινή θέση.
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει τις ακόλουθες λειτουργίες PQinsert : εισαγωγή στοιχείου PQdelmax : επιστροφή του στοιχείου με το μεγαλύτερο* κλειδί και διαγραφή του
Διάλεξη 9: Αφηρημένοι Τύποι Δεδομένων. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 9: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) -Οι ΑΤΔ Στοίβα και Ουρά -Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Στατική
Ουρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ομές εδομένων (Αναπαράσταση,) οργάνωση και διαχείριση συνόλων αντικειμένων για
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Άσκηση 1 Ξεκινούμε με τον αριθμό μας, n, και αρχίζουμε να τον διαιρούμε με ακέραιους ξεκινώντας με το 2 και προχωρώντας στο 3, 4, 5,. Όταν εντοπίσουμε πως ένας αριθμός
Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες)
Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 15-1 Περιεχόμενο
ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 2A Σκελετοί Λύσεων
ΕΠΛ 232: λγόριθµοι και Πολυπλοκότητα Κατ οίκον Εργασία 2A Σκελετοί Λύσεων 1. ια τη σαφή διατύπωση του αλγόριθµου απαιτούνται τα εξής: ιατήρηση της ροής που κτίζεται από τον αλγόριθµο. ιατήρηση της περίσσειας
Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μια σημείωση από τον Α. Δελή για το άρθρο: W. Pugh, Skip Lists: A Probabilistic Alternative to Balanced Trees, Comms of the ACM, 33(), June 10,
Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
Διάλεξη 11: Δέντρα Ι - Εισαγωγή σε Δενδρικές Δομές Δεδομένων
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 11: Δέντρα Ι - Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Εισαγωγή σε δενδρικές δομές δεδομένων, -
Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) :
Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος και Γέφυρα του (με αφετηρία τον ) : Ακμή που περιέχεται σε κάθε μονοπάτι από το στο s a b c d e f g h i j k l Μας δίνεται ένα δίκτυο (κατευθυνόμενο
Προγραμματισμός Ι. Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ακ. Έτος Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Προγραμματισμός Ι Δομές Δεδομένων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2009-2010 Δομές Δεδομένων Μια δομή δεδομένων είναι μια συλλογή δεδομένων με κάποιες
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή
ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες)
Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ232 Προγραμματιστικές Τεχνικές και Εργαλεία Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl232
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)
Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει
Ουρά Προτεραιότητας: Heap
Δομές Δεδομένων Ουρά Προτεραιότητας: Heap Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο (Αναπαράσταση,)