Ηλεκτρονική Μικροσκοπία
|
|
- Χλόη Τοκατλίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ηλεκτρονική Μικροσκοπία Β. Μπίνας, Γ. Κυριακίδης Τμήμα Φυσικής
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά Μη εμπορική Χρήση Όχι Παράγωγο Έργο 4.0 Ελλάδα (Attribution Non Commercial Non-derivatives 4.0 Greece) CC BY-NC-ND 4.0 GR [ή επιλογή ενός άλλου από τους έξι συνδυασμούς] [και αντικατάσταση λογότυπου άδειας όπου αυτό έχει μπει (σελ. 1, σελ. 2 και τελευταία)] Εξαιρείται από την ως άνω άδεια υλικό που περιλαμβάνεται στις διαφάνειες του μαθήματος, και υπόκειται σε άλλου τύπου άδεια χρήσης. Η άδεια χρήσης στην οποία υπόκειται το υλικό αυτό αναφέρεται ρητώς.
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
4 ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Post Doc Researcher, Chemist Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Thl C C C Nanotechnology Department of Physics, University of Crete Transparent Conductive Materials (Head prof. G. Kiriakidis) Institute of Electronic Structure & Laser IESL Foundation for Research and Technology - FORTH F
5 ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ To H.M. ακολουθεί τις ίδιες αρχές λειτουργίας με το Ο.Μ. με την μόνη διαφορά ότι οι φακοί είναι ηλεκτρομαγνητικοί. Αρχές Θεωρίας του Φωτός Γεωμετρική Οπτική: εξετάζει την πορεία του φωτός σαν ακτίνα μέσα από φακούς και υπολογίζει την θέση, το είδος και το μέγεθος του ειδώλου και του αντικειμένου Φυσική Οπτική: εξετάζει και ερμηνεύει φαινόμενα όπως η συμβολή και περίθλαση.!"#$ %&
6 ΦΥΣΙΚΗ ΟΠΤΙΚΗ To H.M. ακολουθεί τις ίδιες αρχές λειτουργίας με το Ο.Μ. με την μόνη διαφορά ότι οι φακοί είναι ηλεκτρομαγνητικοί. Αρχές Θεωρίας του Φωτός Γεωμετρική Οπτική: εξετάζει την πορεία του φωτός σαν ακτίνα μέσα από φακούς και υπολογίζει την θέση, το είδος και το μέγεθος του ειδώλου και του αντικειμένου Φυσική Οπτική: εξετάζει και ερμηνεύει φαινόμενα όπως η συμβολή και περίθλαση. '()*+, -./0, *12
7 ΦΥΣΙΚΗ ΟΠΤΙΚΗ To H.M. ακολουθεί τις ίδιες αρχές λειτουργίας με το Ο.Μ. με την μόνη διαφορά ότι οι φακοί είναι ηλεκτρομαγνητικοί Αρχές Θεωρίας του Φωτός Οπτική: εξετάζει την πορεία του φωτός σαν ακτίνα μέσα από φακούς και υπολογίζει την θέση, το είδος και το μέγεθος του ειδώλου και του αντικειμένου Φυσική Οπτική: εξετάζει και ερμηνεύει φαινόμενα όπως η συμβολή και περίθλαση :;< 8 6=>
8 ΦΥΣΙΚΗ ΟΠΤΙΚΗ την ΓΟ μπορούμε να σχηματίσουμε μία ικανοποιητική εικόνα του πως δουλεύουν οι φακοί και τα μικροσκόπια, απλώς ακολουθώντας της γεωμετρικές διαδρομές των οπτικών ακτίνων ή των ακτίνων (δέσμης) ηλεκτρονίων. MNOPQ E GHIJ E BKL του φακού
9 cdefghijhdk (ο) Αντικείμενο (ο) Είδωλο bστία εστιακό σημείο Είδωλο VWXYZ [ \]^_ [ Y`a
10 ΦΥΣΙΚΗ ΟΠΤΙΚΗ Γεωμετρική Οπτική δεν απαντά σε ερωτήματα όπως: Γιατί η Δ.Ι. του μικροσκοπίου στην ουσία περιορίζεται στο ½ του μήκους κύματος της χρησιμοποιούμενης ακτινοβολίας? Γιατί το φώς δεν διαδίδεται σε ευθεία γραμμή?? Που οφείλονται ορισμένα ιδιόμορφα φαινόμενα όπως ο σχηματισμός κροσσών? (π.χ. στα Η.Μ. τα αντικείμενα περιβάλλονται από φωτοστέφανα που είναι ευρύτερα γνωστά σαν κροσσοί Fresnel ) lmnop q rstu q ovw
11 ΣΥΜΒΟΛΗ Τα κύματα διαδίδονται σφαιρικά στον χώρο Τομήσφαιρικών κυμάτων είναι κύκλοι με όλο και αυξανόμενη ακτίνα Τμήματα των κύκλων (τομές κύκλου) σε πολύ μεγάλη απόσταση από την πηγή είναι σχεδόν επίπεδα xyz{ } ~ } {ƒ
12 ΣΥΜΒΟΛΗ των κυμάτων οδηγεί σε ένα ημιτονοειδές κύμα διάδοσης το οποίο μπορεί να χαρακτηρισθεί από Μήκος κύματος, λ Πλάτος του κύματος Χρόνος ή φάση 360 o Αλλαγή φάσης 90 o 180 o 270 o ˆ Š Œ Ž Š ˆ
13 ΣΥΜΒΟΛΗ Ενισχυτική συμβολή συμβολή διαφορά φάσης των δυο κυμάτων είναι ακέραιο πολλαπλάσιο του 2π, φ=0 η διαφορά φάσης των δυο κυμάτων είναι περιττό πολλαπλάσιο της γωνίας π, 0<φ<180 š œ είναι η χρονική καθυστέρηση του ενός κύματος σε σχέση με το άλλο και μπορεί να εκφραστεί σε μονάδες χρόνου ή μήκους κύματος ή συνηθέστερα σε μονάδες γωνίας (μοίρες).
14 ΣΥΜΒΟΛΗ žÿ
15 Η ΚΥΜΑΤΙΚΗ ΦΥΣΗ ΤΟΥ ΦΩΤΟΣ Κύματα αποκλίνουν συναντήσουν εμπόδιο όταν / Αρχή Γραμμικής Επαλληλίας ª«±²³ µ
16 ΠΕΡΙΘΛΑΣΗ κύμα προσπίπτει σε πέτασμα, μέρος του κύματος συνεχίζει να διαδίδεται ευθύγραμμα, και η άκρη του πετάσματος αποτελεί μια νέαπηγή φωτός και το κύμα διαδίδεται κυκλικά με κέντρο την άκρη του πετάσματος ¹º» ¼½¾» ¹ÀÁ
17 ΠΕΡΙΘΛΑΣΗ ÂÃÄÅÆ Ç ÈÉÊË Ç ÅÌÍ
18 ΠΕΡΙΘΛΑΣΗ σημείο μετώπου κύματος συμπεριφέρεται σαν πηγή ενός δευτερεύοντος σφαιρικού κύματος (ταχύτητα και συχνότητα ίδια με το πρωτεύον) Επακόλουθο του φαινομένου είναι η φαινομενική αλλοίωση του ειδώλου μετά την σχισμή με την εμφάνιση δευτερογενών, τριτογενών κλπ ειδώλων εκατέρωθεν του κεντρικού λόγω συμβολής Μεγαλύτερο διάφραγμα και μικρό μήκος κύματος ÎÏÐÑÒ Ó ÔÕÖ Ó ÑØÙ
19 ΠΕΡΙΘΛΑΣΗ κυμάτων στην επιφάνεια νερού καθώς αυτά περνούν από στενή σχισμή ÚÛÜÝÞ ß àáâã ß Ýäå
20 ΠΕΡΙΘΛΑΣΗ Η «απόκλιση» εξαρτάται από ü ü æçèéê ë ìíîï ë Vassilios Binas Μήκος κύματος Μέγεθος ανοίγματος
21 ΠΕΡΙΘΛΑΣΗ òóôõö øùúû õüý
22 ΠΕΡΙΘΛΑΣΗ þÿf
23 ΣΥΓΚΡΙΣΗ ΣΥΜΒΟΛΗΣ - ΠΕΡΙΘΛΑΣΗΣ Συμβολή Περίθλαση Δύο σημειακές πηγές Μια εκτεταμένη πηγή Σε κάθε σημείο παρατήρησης γίνεται γραμμική άθροιση ηλεκτρικών πεδίων από τις δύο σημειακές πηγές Σε κάθε σημείο παρατήρησης γίνεται γραμμική ολοκλήρωση ηλεκτρικών πεδίων από όλες τις πηγές
24 ΠΕΡΙΘΛΑΣΗ & ΚΑΘΗΜΕΡΙΝΟΤΗΤΑ Περίθλαση εμφανίστηκε και σε «Κύματα» ηλεκτρονίων! Σκιά κρυστάλλου «φωτισμένου» με ηλεκτρόνια. Φαινόμενα Περίθλασης όταν ακτινοβολία Laser φωτίζει μια ακμή!"#$% & '()* L &/ $+, TCM
25 ΠΕΡΙΘΛΑΣΗ -./
26 ΠΕΡΙΘΛΑΣΗ 9:;<= > <CD
27 ΚΡΟΣΣΟΙ FRESNEL ακτίνες μονοχρωματικού φωτός περιθλόνται στην σχισμή Α και συμβάλλουν με τις απευθείας ακτίνες Αν οι διαδρομές ακτίνων Στο Η.Μ. παρατηρείται κυρίως ο πρώτος φωτεινός κροσσός, ο οποίος είναι μεγάλης σημασίας για την ευθυγράμμιση και χρήση του Η.Μ. EGHIJ K LMNO K IPQ
28 ΚΡΟΣΣΟΙ FRESNEL Κοντά στο άνοιγμα Μακριά από το άνοιγμα Σχήμα μεταβάλλεται έντονα Διαμόρφωση αποκτά σταθερό σχήμα RSTUV W XYZ[ W U\]
29 ΚΡΟΣΣΟΙ FRESNEL διόρθωση της εμφάνισης του πρώτου κροσσού επιτυγχάνεται με συνθήκες καλής εστίασης με τον αντικειμενικό φακό. Υπερεστίαση και Υποεστίαση του αντικειμενικού φακού οδηγούν σε εξάλειψη του κροσσού Σημαντικές εφαρμογές Μπορεί να χρησιμοποιηθεί για την εξακρίβωση αν οι φακοί είναι ακτινικά συμμετρικοί, αν δεν είναι τότε ο φακός παρουσιάζει αστιγματισμό που εξακριβώνεται από το φάρδος του κροσσού Μέτρο της Δ.Ι. Ο Κροσσός αποτελεί ένα τέλειο δείγμα ελέγχου test specimen ^_`ab c defg c ahi
30 ΚΡΟΣΣΟΙ FRESNEL υπερεστίαση jklmn o pqrs o mtu
31 ΚΡΟΣΣΟΙ FRESNEL Μικρή υπερεστίαση vwxyz { }~ { y
32 ΚΡΟΣΣΟΙ FRESNEL Ακριβής εστίαση ƒ ˆ Š Œ
33 ΚΡΟΣΣΟΙ FRESNEL υποεστίαση Ž
34 ΔΙΣΚΟΣ AIRY διάφραγμα του φακού ΑΒ περιορίζει την οπτική δέσμη του αντικειμένου Ακόμη και σε απουσία διαφράγματος ο φακός δέχεται περιορισμένου ανοίγματος οπτική δέσμη που καθορίζεται από την καμπυλότητατου φακού Λόγω περιορισμού του φακού το σχηματιζόμενο είδωλο δεν είναι τέλειο š œ ž Ÿ Ÿ
35 ΔΙΣΚΟΣ AIRY ατέλειες δημιουργούνται λόγω περίθλασης στα Α και Β που οδηγούν στην ύπαρξη κροσσών συμβολής Μία σημιακή πηγή απεικονίζεται με έναν φωτεινό δίσκο ο οποίος περικλείεται εναλλακτικάαπό σκοτεινούς και φωτεινούς δίσκους (Airy) ª ««±
36 ΔΙΣΚΟΣ AIRY ατέλειες δημιουργούνται λόγω περίθλασης στα Α και Β που οδηγούν στην ύπαρξη κροσσών συμβολής Μία σημιακή πηγή απεικονίζεται με έναν φωτεινό δίσκο ο οποίος περικλείεται εναλλακτικάαπό σκοτεινούς και φωτεινούς δίσκους (Airy) ²³ µ ¹º» µ¼½
37 ΔΙΣΚΟΣ AIRY Airy ÊËÌ12l r= nsina όpou l : mήkov kύmatov tou jwtόv sto ken ό a : eίnaito misόtou gwniakoύanoίgmatov tou jakoύ kai n : o deίkthv diάqlashv tou mέsou διάμετρος των δίσκων Airy καθορίζεται από το διάφραγμα του φακού και από το μήκος κύματος της ακτινοβολίας από τον δείκτη διάθλασης του μέσου (π.χ. αέρα) που υπάρχει μεταξύ φακού και αντικειμένου, από την ταχύτητα, και το μήκος κύματος του φωτός. ¾ ÀÁÂ Ã ÄÅÆÇ Ã ÁÈÉ
38 ΔΙΣΚΟΣ AIRY ÍÎÏÐÑ Ò ÓÔÕÖ Ò Ð Ø
39 ΔΙΣΚΟΣ AIRY ÙÚÛÜÝ Þ ßàáâ Þ Üãä
40 ΔΙΣΚΟΣ AIRY åæçèé ê ëìíî ê èïð
41 ΔΙΣΚΟΣ AIRY ñòóôõ ö øùú ö ôûü
42 ΔΙΣΚΟΣ AIRY ýþÿf F
43 ΔΙΣΚΟΣ AIRY Ικανότητα, Δ.Ι.: η δυνατότητα ενός οπτικού συστήματος να ξεχωρίζει δύο αντικείμενα και ορίζεται ως η ελάχιστη απόσταση για να φαίνονται δύο αντικείμενα σαν ξεχωριστά και όχι συγκεχυμένα σαν ένα. Όσο μικρότερη αυτή η απόσταση τόσο μεγαλύτερη η Δ.Ι. Rayleigh.: το όριο στο οποίο δύο δίσκοι μπορούν να διακριθούν σε δύο ξεχωριστές οντότητες.
44 ΚΡΙΤΗΡΙΟ RAYLEIGH κριτήριο διαχωρισμού δύο ειδώλων που προέρχονται από δύο όμοιες πηγές που δημιουργούν κύκλους Airy, είναι η απόσταση μεταξύ των δύο κέντρων να συμπίπτει με την ακτίνα του πρώτου σκοτεινού κύκλου. Η ένταση των δύο κορυφών Α και Β πέφτει κατά 19%. DI O = =»
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
Ηλεκτρονική Μικροσκοπία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ηλεκτρονική Μικροσκοπία Β. Μπίνας, Γ. Κυριακίδης Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα
Ηλεκτρονική Μικροσκοπία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ηλεκτρονική Μικροσκοπία Β. Μπίνας, Γ. Κυριακίδης Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
Ηλεκτρονική Μικροσκοπία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ηλεκτρονική Μικροσκοπία Β. Μπίνας, Γ. Κυριακίδης Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
Ηλεκτρονική Μικροσκοπία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ηλεκτρονική Μικροσκοπία Β. Μπίνας, Γ. Κυριακίδης Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
Πειραματικός υπολογισμός του μήκους κύματος μονοχρωματικής ακτινοβολίας
Πειραματικός υπολογισμός του μήκους κύματος μονοχρωματικής ακτινοβολίας Τάξη : Γ Λυκείου Βασικές έννοιες και σχέσεις Μήκος κύματος - Μονοχρωματική ακτινοβολία - Συμβολή ηλεκτρομαγνητικών κυμάτων - Κροσσοί
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Post Doc Researcher, Chemist Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Β: Απλή Τυχαία Δειγματοληψία για την εκτίμηση ποσοστού Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ
ΠΕΡΙΘΛΑΣΗ H κυματική φύση του φωτός το πρόβλημα, η λύση
ΠΕΡΙΘΛΑΣΗ H κυματική φύση του φωτός το πρόβλημα, η λύση ΕΥΘΥΓΡΑΜΜΗ ΔΙΑΔΟΣΗ ΤΟΥ ΦΩΤΟΣ Σύμφωνα με την καθημερινή μας εμπειρία, το φως φαίνεται σαν να ταξιδεύει ευθύγραμμα μέχρι να συναντήσει κάποιο αντικείμενο.
Εργαστήριο Οπτικής ΠΕΡΙΘΛΑΣΗ ΤΟΥ ΦΩΤΟΣ. Μάκης Αγγελακέρης 2010
ΠΕΡΙΘΛΑΣΗ ΤΟΥ ΦΩΤΟΣ Μάκης Αγγελακέρης 2010 Σκοπός της άσκησης Να μπορείτε να περιγράψετε ποιοτικά το φαινόμενο της περίθλασης του φωτός καθώς επίσης να μπορείτε να διακρίνετε τις συνθήκες που χαρακτηρίζουν
Εργαστήριο Οπτικής ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ
ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ Μάκης Αγγελακέρης 010 Σκοπός της άσκησης Να μπορείτε να εξηγήσετε το φαινόμενο της Συμβολής και κάτω από ποιες προϋποθέσεις δύο δέσμες φωτός, μπορεί να συμβάλουν. Να μπορείτε να περιγράψετε
τατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
ΗΜ & Διάδοση ΗΜ Κυμάτων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΗΜ & Διάδοση ΗΜ Κυμάτων Ενότητα 3: Μηχανισμοί Διάδοσης ΗΜ Κυμάτων Σαββαΐδης Στυλιανός Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 2: Εργαλεία Θετικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
Περίθλαση από ακµή και από εµπόδιο.
ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών
Εφαρμοσμένη Οπτική. Περίθλαση Fraunhofer Περίθλαση Fresnel
Εφαρμοσμένη Οπτική Περίθλαση Fraunhofer Περίθλαση Fresnel Περίθλαση - Ορισμός Περίθλαση είναι κάθε απόκλιση από την ευθύγραμμη διάδοση του φωτός, η οποία προκαλείται από παρεμβολή κάποιου εμποδίου. Στη
ΙΔΙΟΤΗΤΕΣ ΜΑΓΝΗΤΙΚΩΝ ΦΑΚΩΝ. Ηλεκτροστατικοί και Μαγνητικοί Φακοί Βασική Δομή Μαγνητικών Φακών Υστέρηση Λεπτοί Μαγνητικοί Φακοί Εκτροπές Φακών
ΙΔΙΟΤΗΤΕΣ ΜΑΓΝΗΤΙΚΩΝ ΦΑΚΩΝ Βασική Δομή Μαγνητικών Φακών Υστέρηση Λεπτοί Μαγνητικοί Φακοί Εκτροπές Φακών ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΓΥΑΛΙΝΟΙ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΟΙ ΦΑΚΟΙ Οι φακοί χρησιμοποιούνται για να εκτρέψουν μία
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Α: Απλή Τυχαία Δειγματοληψία Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες
Κυματική Φύση του φωτός και εφαρμογές. Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ
Κυματική Φύση του φωτός και εφαρμογές Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ Επαλληλία κυμάτων Διαφορά φάσης Δφ=0 Ενίσχυση Δφ=180 Απόσβεση Κάθε σημείο του μετώπου ενός κύματος λειτουργεί
Κυματική Φύση του φωτός και εφαρμογές. Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ
Κυματική Φύση του φωτός και εφαρμογές Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ Επαλληλία κυμάτων Διαφορά φάσης Δφ=0 Ενίσχυση Δφ=180 Απόσβεση ΣΥΜΒΟΛΗ Φως διερχόμενο από δύο σχισμές 1801,
τατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
Ηλεκτρονική Μικροσκοπία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ηλεκτρονική Μικροσκοπία Β. Μπίνας, Γ. Κυριακίδης Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Β: t test για Ανεξάρτητα Δείγματα Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
Ιστορίας της παιδείας από τα κάτω Α03 06
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιστορίας της παιδείας από τα κάτω Α03 06 Ενότητα #9: Βασικές αρχές μικροϊστορίας κατά Μ. Χατζηϊωάννου Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
Συμβολή & Περίθλαση Ηλεκτρομαγνητικών κυμάτων
Συμβολή & Περίθλαση Ηλεκτρομαγνητικών κυμάτων Συμβολή και συμφωνία. Όπως είδαμε στην αρχή του κεφαλαίου δυο κύματα μπορούν να συμβάλλουν, με βάση την αρχή της υπέρθεσης, επιφέροντας μια χωρική διαμόρφωση
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 5Α: ΠΑΡΑΜΕΤΡΙΚΟ Χ 2 Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Γνωστική Ψυχολογία 3
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #5: Βραχύχρονη Μνήμη Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Φυσική Εικόνας & Ήχου Ι (Ε)
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Εικόνας & Ήχου Ι (Ε) Ενότητα 3: Γενικά περί φακών Αθανάσιος Αρααντινός Τμήμα Φωτογραφίας & Οπτικοακουστικών Τεχνών Το περιεχόμενο
Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση ΠεριεχόµεναΚεφαλαίου 35 Περίθλαση απλής σχισµής ή δίσκου Intensity in Single-Slit Diffraction Pattern Περίθλαση διπλής σχισµής ιακριτική ικανότητα; Κυκλικές ίριδες ιακριτική
Κυματική οπτική. Συμβολή Περίθλαση Πόλωση
Κυματική οπτική Η κυματική οπτική ασχολείται με τη μελέτη φαινομένων τα οποία δεν μπορούμε να εξηγήσουμε επαρκώς με τις αρχές της γεωμετρικής οπτικής. Στα φαινόμενα αυτά περιλαμβάνονται τα εξής: Συμβολή
Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας
Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας Α. Στόχοι Οι μαθητές: Να παρατηρήσουν το φαινόμενο της συμβολής / περίθλασης Να αξιοποιήσουν το φαινόμενο της περίθλασης
Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11) Ενότητα #4: Προσέγγιση της Ιστορίας Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ
ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται
Γνωστική Ψυχολογία 3
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #3: Εισαγωγή στη Μνήμη Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. G. Mitsou
ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Διάθλαση σε σφαιρική επιφάνεια Φακοί Ορισμοί Λεπτοί φακοί Συγκλίνοντες φακοί Δημιουργία ειδώλων Αποκλίνοντες φακοί Γενικοί τύποι φακών Σύστημα λεπτών φακών σε επαφή Ασκήσεις Διάθλαση
ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ
ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση d=0.20 mm είναι τοποθετημένο σε απόσταση =1,20 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές
4. Όρια ανάλυσης οπτικών οργάνων
4. Όρια ανάυσης οπτικών οργάνων 29 Μαΐου 2013 1 Περίθαση Οι αρχές ειτουργίας των οπτικών οργάνων που περιγράψαμε μέχρι στιγμής βασίζονται στη γεωμετρική οπτική, δηαδή την περιγραφή του φωτός ως ακτίνες
ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #3: ΕΤΟΙΜΕΣ ΚΟΙΝΟΤΗΤΕΣ Διδάσκων: Γουργιώτου Ευθυμία ΠΑΙΔΑΓΩΓΙΚΟ
Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας
Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Όταν φωτεινή δέσμη φωτός συναντά στην πορεία του εμπόδια ή περνάει από λεπτές σχισμές υφίσταται περίθλαση, φτάνει δηλαδή σε σημεία που δεν προβλέπονται
ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ Ενότητα 7: Η μάθηση στην προσχολική ηλικία: μορφές αποτελεσματική διδασκαλία Διδάσκων: Μανωλίτσης Γεώργιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ
Φυσική ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης.
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική ΙΙ (Ε) Ενότητα 6: Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης Ιωάννης Βαμβακάς Τμήμα Ναυπηγών Μηχανικών Τ.Ε.
Ιστορίας της παιδείας από τα κάτω Α03 06
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιστορίας της παιδείας από τα κάτω Α03 06 Ενότητα #6: Βασικές αρχές μικροϊστορίας κατά Μ. Φερρό Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11) Ενότητα #5: Συμπέρασμα Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
Γνωστική Ψυχολογία 3
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #2: Μνημονικές Δομές και Λειτουργίες Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Γ: κατά Ζεύγη t test Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Ποσοτική Μικροανάλυση Μέθοδος ZAF
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Ποσοτική Μικροανάλυση Μέθοδος ZAF Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Crete Center for Quantum Complexity and Nanotechnology Department
Οπτική και κύματα Δημήτρης Παπάζογλου Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Περίθλαση
Οπτική και κύματα Δημήτρης Παπάζογλου daa@matials.uc.g Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Περίθλαση Κύμα συναντά εμπόδιο - Περίθλαση Τα κύματα παρακάμπτουν το εμπόδιο με αποτέλεσμα
Περίθλαση υδάτινων κυμάτων. Περίθλαση ηλιακού φωτός. Περίθλαση από εμπόδιο
Νανοσκοπία (STED) 50 nm 100 μm Για τη μελέτη βιολογικής δομής και λειτουργίας απαιτείται ιδανικά η απεικόνιση ενός κύβου πλευράς 100 μm με ανάλυση ίση ή καλύτερη των 50 nm! Περίθλαση υδάτινων κυμάτων Περίθλαση
ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #10: ΜΕΤΑΒΑΣΗ ΚΑΙ ΕΚΠΑΙΔΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ Διδάσκων: Γουργιώτου
Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική
Ο15 Κοίλα κάτοπτρα 1. Σκοπός Σκοπός της άσκησης είναι η εύρεση της εστιακής απόστασης κοίλου κατόπτρου σχετικά μεγάλου ανοίγματος και την μέτρηση του σφάλματος της σφαιρικής εκτροπής... Θεωρία.1 Γεωμετρική
Μεγεθυντικός φακός. 1. Σκοπός. 2. Θεωρία. θ 1
Μεγεθυντικός φακός 1. Σκοπός Οι μεγεθυντικοί φακοί ή απλά μικροσκόπια (magnifiers) χρησιμοποιούνται για την παρατήρηση μικροσκοπικών αντικειμένων ώστε να γίνουν καθαρά παρατηρήσιμες οι λεπτομέρειες τους.
Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0
Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 1 c 0 0 Όταν το φως αλληλεπιδρά με την ύλη, το ηλεκτρομαγνητικό πεδίο του
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΕΡΕΥΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΚΕΦΑΛΑΙΟ 2: Ταξινομικά κριτήρια της Έρευνας Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
Περίθλαση από µία σχισµή.
ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων
ΗΜ & Διάδοση ΗΜ Κυμάτων. Μηχανισμοί Διάδοσης ΗΜ Κυμάτων
ΗΜ & Διάδοση ΗΜ Κυμάτων Μηχανισμοί Διάδοσης ΗΜ Κυμάτων Μηχανισμοί Διάδοσης Διάδοση Ελεύθερου Χώρου (Free Space ropagaton) Διάδοση ενός ΗΜ κύματος σε ένα ομοιογενές, χωρίς απώλειες και άπειρων διαστάσεων
Νέα Οπτικά Μικροσκόπια
Νέα Οπτικά Μικροσκόπια Αντίθεση εικόνας (contrast) Αντίθεση πλάτους Αντίθεση φάσης Αντίθεση εικόνας =100 x (Ι υποβ -Ι δειγμα )/ Ι υποβ Μικροσκοπία φθορισμού (Χρησιμοποιεί φθορίζουσες χρωστικές για το
ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 4: Παιδαγωγική και κοινωνική υπόσταση της αξιολόγησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 4: Παιδαγωγική και κοινωνική υπόσταση της αξιολόγησης Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΟΠΤΙΚΗ (Πεδία και Κύµατα) Φύση του φωτός Γεωµετρική Οπτική
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά
ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #8: ΑΞΙΟΛΟΓΗΣΗ ΣΧΕΔΙΟΥ ΜΕΤΑΒΑΣΗΣ ΚΑΙ ΔΙΔΑΚΤΙΚΩΝ ΠΡΑΚΤΙΚΩΝ
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΥΠΕΡΗΧΟΓΡΑΦΙΑ
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΥΠΕΡΗΧΟΓΡΑΦΙΑ Γενικές Αρχές Φυσικής Κ. Χατζημιχαήλ ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΥΠΕΡΗΧΟΓΡΑΦΙΑ Καλώς ήλθατε Καλή αρχή Υπερηχογραφία Ανήκει στις τομογραφικές μεθόδους απεικόνισης Δεν έχει ιονίζουσα
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Post Doc Researcher, Chemist Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology
Τα πρώτα δύο ελάχιστα της έντασης βρίσκονται συμμετρικά από το μέγιστο σε απόσταση φ=±λ/α.
Φασματόμετρα & Ιντερφερομετρα Τα φασματόμετρα και ιντερφερόμετρα (συμβολόμετρα) χρησιμοποιούνται στη φασματοσκοπία για τη μέτρηση είτε του μήκους κύματος, αλλά τα βρίσκουμε και σε συσκευές λέιζερ όπου
ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ. Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Α: Ανάλυση Συσχέτισης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ 2#: ΕΙΣΑΓΩΓΗ ΣTΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ 2#: ΕΙΣΑΓΩΓΗ ΣTΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης
Ιστορίας της παιδείας από τα κάτω Α03 06
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιστορίας της παιδείας από τα κάτω Α03 06 Ενότητα #1: Εισαγωγή: από τη μακροϊστορική στην μικροϊστορική προσέγγιση της παιδείας Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ
Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική
Εφαρμοσμένη Οπτική Γεωμετρική Οπτική Κύρια σημεία του μαθήματος Η προσέγγιση της γεωμετρικής οπτικής Νόμοι της ανάκλασης και της διάθλασης Αρχή του Huygens Αρχή του Fermat Αρχή της αντιστρεψιμότητας (principle
Ασκήσεις (Ηλεκτρισμός-Οπτική) Κ.-Α. Θ. Θωμά
Ασκήσεις (Ηλεκτρισμός-Οπτική) Ηλεκτρισμός 6 η. Ηλεκτρόνια κινούμενα με ταχύτητα 0 m / sec εισέρχονται σε χώρο μαγνητικού πεδίου όπου διαγράφουν κυκλική τροχιά ακτίνας 0.0m. Να βρεθεί η ένταση του μαγνητικού
Περίθλαση και εικόνα περίθλασης
Περίθλαση και εικόνα περίθλασης Η περίθλαση αναφέρεται στη γενική συμπεριφορά των κυμάτων, τα οποία διαδίδονται προς όλες τις κατευθύνσεις καθώς περνούν μέσα από μια σχισμή. Ο όρος εικόνα περίθλασης είναι
Φυσική Εικόνας & Ήχου Ι (Ε)
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Εικόνας & Ήχου Ι (Ε) Ενότητα 4: Υπολογισμός της εστιακής απόστασης f από τη γραμμική μεγέθυνση Μ Αθανάσιος Αραβαντινός Τμήμα Φωτογραφίας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ακτίνες Χ - Lasers Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Ακτίνες Χ - Lasers Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ
ΑΣΚΗΣΗ 0 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ . Γεωμετρική οπτική ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ Η Γεωμετρική οπτική είναι ένας τρόπος μελέτης των κυμάτων και χρησιμοποιείται για την εξέταση μερικών
Φυσική Οπτική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 9: Κυκλικά και ελλειπτικά πολωμένο φως - μετατροπή του σε γραμμικά πολωμένο φως
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Οπτική (Ε) Ενότητα 9: Κυκλικά και ελλειπτικά πολωμένο φως - μετατροπή του σε γραμμικά πολωμένο φως Αθανάσιος Αραβαντινός Τμήμα
Ακτομηχανική και λιμενικά έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 5 η. Διαμόρφωση Κυματισμών στον Παράκτιο Χώρο- Περίθλαση κυματισμών Εύα Λουκογεωργάκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Κυματική Φύση του φωτός και εφαρμογές. Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ
Κυματική Φύση του φωτός και εφαρμογές Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ Επαλληλία κυμάτων Διαφορά φάσης Δφ=0 Ενίσχυση Δφ=180 Απόσβεση ΣΥΜΒΟΛΗ Φως διερχόμενο από δύο σχισμές 1801,
Περίθλαση Fraunhofer. απλή σχισμή, πολλαπλές σχισμές, κυκλική οπή
Περίθλαση Fraunhofer απλή σχισμή, πολλαπλές σχισμές, κυκλική οπή ETY-4 C. C. Katsidis 3 Συμβολή από δύο σχισμές ETY-4 C. C. Katsidis 3 Εποικοδομητική συμβολή l -l =nλ, n=,,,3, ETY-4 C. C. Katsidis 3 3
ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 11: Κριτική αποτίμηση των διαδικασιών αξιολόγησης στο ελληνικό δημοτικό σχολείο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 11: Κριτική αποτίμηση των διαδικασιών αξιολόγησης στο ελληνικό δημοτικό σχολείο Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ
Φυσική Οπτική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 1: Υπολογισμός εστιακής απόστασης θετικού φακού από την μετατόπισή του. Αθανάσιος Αραβαντινός
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Οπτική (Ε) Ενότητα : Υπολογισμός εστιακής απόστασης θετικού φακού από την μετατόπισή του Αθανάσιος Αραβαντινός Τμήμα Οπτικής και
[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2017
[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2017 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και
Γνωστική Ψυχολογία 3
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #4: Αισθητήρια Καταγραφή Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Μαθηματικά και Φυσική με Υπολογιστές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Εφαρμογές στη Φυσική Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #9: Η ΜΕΤΑΒΑΣΗ ΤΩΝ ΠΑΙΔΙΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΣΤΟ ΔΗΜΟΤΙΚΟ