ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης
|
|
- ĒΜιχαήλ Ζαχαρίου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 4ο μέρος σημειώσεων: Ακολουθίες Επίλυσης, Επίλυση για όρους Horn, Λογικός Προγραμματισμός Τμήμα Επιστήμης Υπολογιστών
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά Μη εμπορική Χρήση Παρόμοια Διανομή 3.0 Ελλάδα (Attribution Non Commercial ShareAlike 3. Greece) CC BY-NC-SA 3.0 GR Εξαιρείται από την ως άνω άδεια υλικό που περιλαμβάνεται στις διαφάνειες του μαθήματος, και υπόκειται σε άλλου τύπου άδεια χρήσης. Η άδεια χρήσης στην οποία υπόκειται το υλικό αυτό αναφέρεται ρητώς. Χρηματοδότηση 1. Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. 2. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. 3. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
3 4.5.2 Ακολουθίες Επίλυσης Μερικά δένδρα επίλυσης έχουν απλή δομή. Για παράδειγμα, για το σύνολο όρων S = {,{ Ψ, Q},{ ΨQ, R}, ΨR } το δένδρο ανασκευής έχει τη μορφή : { Ψ, Q} Q { ΨQ, R} R ΨR Αυτό το δένδρο έχει την ιδιότητα ότι κάθε επίλυση γίνεται μεταξύ ενός όρου του S και ενός άλλου όρου (ο οποίος μπορεί επίσης να ανήκει στο S). Με άλλα λόγια, ποτέ δεν επιλύονται δύο όροι οι οποίοι προκύπτουν από προηγούμενες επιλύσεις. Δένδρα επίλυσης με αυτή την ιδιότητα μπορούν να αναπαρασταθούν σε γραμμική μορφή και λέγονται ακολουθίες επίλυσης. Η ακολουθία επίλυσης του προηγούμενου παραδείγματος είναι η { Ψ, Q} { ΨQ, R} ΨR Ύ Ύ Ύ Q Ύ Ύ Ύ R Ύ Ύ. Oρισμός: Έστω S ένα σύνολο όρων. Μια ακολουθία επίλυσης του S είναι μια πεπερασμένη ακολουθία όρων C0, C1,..., C n για την οποία (α) C0 Ξ S και (β) για i = 1,2,..., n, Ci είναι ο όρος επίλυσης του Ci - 1 με κάποιο μέλος του S. Αν C n = τότε η C0, C1,..., C n καλείται ακολουθία ανασκευής. Είναι εύκολο να δούμε ότι, αν υπάρχει μια ακολουθία ανασκευής για ένα σύνολο S, τότε το S είναι μη-ικανοποιήσιμο. Το αντίστροφο δεν ισχύει: δεν είναι απαραίτητο κάθε μη-ικανοποιήσιμο σύνολο να έχει μια ακολουθία ανασκευής. Παράδειγμα: Το σύνολο S = {{, Q},{ Ψ, Q},{ ΨQ, R},{ ΨQ, ΨR }} έχει το παρακάτω δένδρο ανασκευής:
4 {, Q } { Ψ, Q} { Ψ Q, R} { ΨQ, ΨR} Q ΨQ Το σύνολο είναι μη-ικανοποιήσιμο αλλά δεν έχει ακολουθία ανασκευής. Λήμμα 3: Αν ένα σύνολο όρων S έχει μια ακολουθία ανασκευής, τότε το S περιέχει ένα μοναδιαίο όρο. Απόδειξη: Κάθε ακολουθία ανασκευής τερματίζει με μια επίλυση της μορφής res( A, Ψ A ) = για κάποιο Α. Εξ ορισμού το Α ή το Ψ A πρέπει να ανήκει στο S. Οι ακολουθίες ανασκευής είναι πιο αποδοτικές από τα δένδρα ανασκευής. Επομένως, μπορούμε να επικεντρώσουμε το ενδιαφέρον μας σε κάποιο υποσύνολο όρων για το οποίο η ύπαρξη ή μη-ύπαρξη μιας ακολουθίας ανασκευής είναι ικανή και αναγκαία συνθήκη για την (μη-)ικανοποιησιμότητα ενός συνόλου τέτοιων όρων. Ορισμός: Ένας όρος Horn είναι ένας όρος ο οποίος περιέχει το πολύ ένα θετικό γράμμα. Παράδειγμα: Οι όροι T,,, Ψ,{ Ψ, Q},{ Ψ, Q, ΨR} είναι όροι Horn, αλλά οι {, Q},{, Q, ΨR},{ Ψ, Q, R, Ψ S} δεν είναι. Λήμμα 4: Ο όρος επίλυσης δύο όρων Horn είναι όρος Horn. Απόδειξη: Ας υποθέσουμε ότι ο αριθμός των θετικών γραμμάτων δύο όρων C και CΆ είναι n και nάαντίστοιχα. Αν υπάρχει res( S, SΆ), τότε ο όρος αυτός προκύπτει από τη διαγραφή ενός θετικού γράμματος από τον ένα όρο και ενός αρνητικού γράμματος από τον άλλο. Επομένως, ο αριθμός των θετικών γραμμάτων στον res( C, CΆ) είναι n + nά-1. Αν οι C και CΆ είναι όροι Horn τότε n 1 και nά 1. Άρα n + nά-1 1 επομένως ο res( C, CΆ) είναι όρος Horn. Πόρισμα: Αν ένα σύνολο όρων Horn είναι μη-ικανοποιήσιμο, τότε είτε πρέπει να περιέχει το, είτε ένα θετικό μοναδιαίο όρο. Απόδειξη: Από το Λήμμα 3, αν ένα σύνολο όρων Horn είναι μη-ικανοποιήσιμο, πρέπει να περιέχει τουλάχιστον ένα μοναδιαίο όρο χωρίς αρνητικά γράμματα. Οι μόνοι όροι Horn χωρίς αρνητικά γράμματα είναι οι όροι και A για κάποιο γράμμα Α.
5 4.5.3 Μέθοδος της Επίλυσης για όρους Horn Ο αλγόριθμος καταασκευής δένδρου ανασκευής εφαρμόζεται και σε όρους Horn. Σε αυτήν την περίπτωση το αποτέλεσμα είναι πάντα μια ακολουθία ανασκευής. Παράδειγμα: Κατασκευάστε μια ακολουθία ανασκευής για το σύνολο S = {,{ Ψ, Q},{ ΨQ, ΨR},{ Ψ, R}}. (1) Δεν υπάρχει όρος που να περιέχει Α και Ψ A για κάποιο Α (2) Υπάρχει τουλάχιστον ένας όρος που περιέχει μόνο θετικά γράμματα (3) C =, i = 1 (4) Ψ ΟS (5) S1 = { Q,{ ΨQ, ΨR}, R} (6) αναδρομική κλήση του αλγορίθμου με είσοδο S1 1. δεν υπάρχει όρος που να περιέχει Α και Ψ A για κάποιο Α 2. υπάρχει τουλάχιστον ένας όρος που περιέχει μόνο θετικά γράμματα 3. CΆ= Q, iά= 1 4. ΨQ ΟS1 5. S11 = { ΨR, R} 6. αναδρομική κλήση του αλγορίθμου με είσοδο S11 i. Το S 11 περιέχει R και Ψ R, οπότε ο αλγόριθμος τερματίζει R επιστρέφοντας την ακολουθία : ΨR Ύ Ύ. R 7. Αναμορφώνουμε την ακολουθία { ΨQ, ΨR} Ύ Ύ ΨQ 8. iά= nά- 1 R Q 9. Επιστρέφουμε την ακολουθία { ΨQ, ΨR} Ύ Ύ ΨQ Ύ Ύ {, R} { Ψ, Q} (7) Αναμορφώνουμε την ακολουθία { ΨQ, ΨR} Ύ Ύ Ύ { Ψ, ΨQ} Ύ Ύ Ύ Ψ (8) i = n -1 (9) Επιστρέφουμε την ακολουθία { Ψ, R} { Ψ, Q} { ΨQ, ΨR} Ύ Ύ Ύ { Ψ, ΨQ} Ύ Ύ Ύ Ψ Ύ Ύ και ο αλγόριθμος τερματίζει. Η ακολουθία αυτή δεν είναι μοναδική. Υπάρχουν και άλλες για το ίδιο σύνολο S. Για παράδειγμα οι ακολουθίες : { ΨQ, ΨR } { Ψ, Q} { Ψ, R} Ύ Ύ Ύ Ύ { Ψ, ΨQ} Ύ Ύ Ύ Ψ Ύ Ύ { Ψ, } Ύ Ύ Ύ Ύ { Ψ, Ψ } Ύ Ύ Ύ Ψ Ύ Ύ { ΨQ, ΨR } { Ψ, R} Q R {, R} { Q, R} {, Q} Ύ Ύ Ψ Ύ R Ύ Ύ Ψ Ύ Ψ Ύ ΨQ Ύ Ύ Ψ Ύ Ψ Ύ Ύ Υπάρχουν συνολικά 12 ακολουθίες ανασκευής για το σύνολο S. Όλες οι ακολουθίες μπορούν να αναπασταθούν σε ένα γράφο ο οποίος ονομάζεται δίκτυο ανασκευής. Γενικά, αν ένα σύνολο όρων Horn είναι ικανοποιήσιμο, τότε το δίκτυο ανασκευής δεν περιέχει το. Για παράδειγμα, το δίκτυο ανασκευής του συνόλου
6 S = {{ Ψ, Q},{ Ψ, S},{ ΨQ, R},{ Ψ S, R}, } δεν περιέχει το (κατασκευάστε το). Το σύνολο είναι ικανοποιήσιμο: η ερμηνεία I = {, Q, R, S} είναι μοντέλο του S. Διαδικασία ελέγχου ικανοποιησιμότητας ενός συνόλου όρων Horn Κατασκευάζουμε συστηματικά το δίκτυο ανασκευής και σταματάμε όταν προκύψει ο όρος, οπότε το σύνολο είναι μη-ικανοποιήσιμο, ή όταν το δίκτυο είναι πλήρες (αν δεν περιέχει το τότε είναι ικανοποιήσιμο). Η διαδικασία είναι μη-αποδοτική. Ευτυχώς, δεν χρειάζεται να θεωρήσουμε όλες τις δυνατές ακολουθίες ανασκευής, όπως αποδεικνύει το ακόλουθο θεώρημα. Θεώρημα: Αν S είναι ένα μη-ικανοποιήσιμο σύνολο όρων Horn και C κάποιο μέλος του S, τότε, είτε το S -{ C} είναι μη-ικανοποιήσιμο είτε υπάρχει ακολουθία ανασκευής για το S η οποία ξεκινά με το C. To θεώρημα αυτό μας είναι χρήσιμο αν μπορούμε να είμαστε σίγουροι για την επιλογή ενός όρου C από το S για το οποίο το S -{ C} είναι μη-ικανοποιήσιμο. Υποθέστε ότι μας δίνεται ένα σύνολο όρων W το οποίο είναι ικανοποιήσιμο και θέλουμε να διαπιστώσουμε αν W = A για κάποιο A Ο W. Αυτό θα συμβαίνει αν το σύνολο W Ά= W Θ{ Ψ A} είναι μη-ικανοποιήσιμο. Εφόσον το W Ά- { ΨA} = W είναι ικανοποιήσιμο, το θεώρημα λέει ότι το W Ά θα είναι μη-ικανοποιήσιμο αν και μόνο αν υπάρχει μια ακολουθία ανασκευής που ξεκινά με το Ψ A. Άρα πρέπει να αναζητούμε συστηματικά μια ακολουθία ανασκευής αυτού του είδους. Παράδειγμα: Δεδομένου ότι το σύνολο W = {{ Q, ΨS },,{ Ψ, Q},{ Ψ, Ψ Q, R}} είναι ικανοποιήσιμο, αποφασίστε αν W = R { Ψ, ΨQ, R} { Ψ, Q} ΨR Ύ Ύ Ύ Ύ { Ψ, ΨQ} Ύ Ύ Ύ Ψ Ύ Ύ Άρα, το W Θ{ Ψ R} είναι μη-ικανοποιήσιμο, οπότε W = R. Παράδειγμα: Δεδομένου ότι το σύνολο W = {{ Ψ, ΨR, S},{ Ψ, ΨQ, T},{ ΨQ, R},{ ΨS, U},{ Ψ T, U}} είναι ικανοποιήσιμο, αποφασίστε αν W = U. Οι παρακάτω ακολουθίες ξεκινούν με Ψ U : { ΨS, U } { Ψ, ΨR, S} { ΨQ, R} ΨU Ύ Ύ Ύ ΨS Ύ Ύ Ύ Ύ { Ψ, ΨR} Ύ Ύ Ύ { Ψ, ΨQ} { ΨT, U} { Ψ, ΨQ, T} ΨU Ύ Ύ Ύ ΨT Ύ Ύ Ύ Ύ { Ψ, ΨQ} Δεν υπάρχει ακολουθία ανασκευής η οποία ξεκινά με το. Ψ U. Άρα W ΉU Χρειαζόμαστε μια μέθοδο για να παράγουμε δίκτυα ανασκευής συστηματικά. Είναι ευκολότερο να βρεθεί μια τέτοια μέθοδος αν το δίκτυο γίνει δένδρο. Αυτό γίνεται με την αντικατάσταστη ακμών που συγκλίνουν με παράλληλες ακμές. Παράδειγμα: Το δίκτυο ανασκευής
7 ΨR { Ψ, ΨQ, R} { Ψ, ΨQ} { Q, ΨS} { Ψ, Q} { Ψ, ΨS } ΨQ { Ψ, Q} { Q, ΨS} Ψ ΨS μετασχηματίζεται στο δένδρο
8 ΨR { Ψ, ΨQ, R} { Ψ, ΨQ} { Q, ΨS} { Ψ, Q} { Ψ, ΨS } ΨQ { Q, ΨS} { Ψ, Q} Ψ ΨS ΨS Ψ Χρησιμοποιούμε την εξής σύμβαση: αν δύο ή περισσότερα κλαδιά ξεκινούν από τον ίδιο κόμβο τότε γράφονται από τα αριστερά προς τα δεξιά με τη σειρά που οι ετικέτες τους εμφανίζονται στο αρχικό σύνολο. Αναζήτηση στο δένδρο: Ξεκινώντας από τη ρίζα του δένδρου ακολουθούμε πάντα το αριστερό κλαδί. Όταν συναντήσουμε ένα φύλλο, επιστρέφουμε στην προηγούμενη διακλάδωση και εξερευνούμε το αριστερότερο ανεξερεύνητο κλαδί. Αυτή η μέθοδος αναζήτησης λέγεται διάσχιση προδιάταξης (pre-order traversal). Παράδειγμα: Στο ακόλουθο δένδρο
9 θα επισκεφτούμε τους κόμβους με την εξής σειρά: 1,2,4,5,9,10,6,3,7,8. Σε σχέση με μια μέθοδο αναζήτησης, η σειρά με την οποία μας δίνονται οι όροι έχει σημασία στο πόσο γρήγορα θα βρεθεί ο όρος (αν υπάρχει). Παράδειγμα: Για το σύνολο = {{ Ψ, Q},{ Ψ Q, }, } η διάταξη προδιάταξης δεν τερματίζεται. 4.6 Λογικός Προγραμματισμός Η μέθοδος της επίλυσης για όρους Horn βρίσκει εφαρμογή στον Λογικό Προγραμματισμό. Οι όροι Horn μεταφράζονται σε δεδομένα (facts), κανόνες (rules) και ερωτήσεις (queries). Θετικοί μοναδιαίοι όροι (π.χ.,,q) μεταφράζονται σε δεδομένα. Ένας όρος με ένα θετικό γράμμα και ένα ή περισσότερα αρνητικά γράμματα μεταφράζεται σε έναν κανόνα. Ο όρος { ΨA 1, ΨA 2,..., ΨA n, A} αναπαριστά την πρόταση ΨA 1 Ϊ ΨA 2 Ϊ.... Ϊ ΨA n Ϊ A η οποία είναι ισοδύναμη με την πρόταση A1 Ω A2 Ω... Ω An A. Στο λογικό προγραμματισμό συνηθίζεται οι κανόνες να γράφονται στη μορφή A A1, A2,..., An, με την ερμηνεία «το Α είναι αληθές αν τα A1, A2,..., An είναι αληθή». Η επίλυση εφαρμόζεται στο λογικό προγραμματισμό ως εξής: οι κανόνες A A1, A2,..., An και Am B1, B2,..., Bk όπου Am Ξ { A1, A2,..., An } επιλύονται δίνοντας τον κανόνα A A1, A2,..., Am - 1, B1, B2,..., Bk, Am + 1,..., An Παράδειγμα: Θεωρείστε τις εξής προτάσεις 1. «αν βρέξει, ο αγώνας θα αναβληθεί» 2. «αν ο αγώνας θα αναβληθεί, θα πάμε στο πάρτυ» 3. «αν πάμε στο πάρτυ και βρέχει, θα πάρουμε το λεωφορείο» 4. «αν πάρουμε το λεωφορείο, θα χρειαστούμε χρήματα» 5. «θα βρέξει» Μπορούμε να συμπεράνουμε ότι «θα χρειαστούμε χρήματα».
10 Πρέπει να γράψουμε τις προτάσεις σε μορφή όρων Horn και στη μορφή που χρησιμοποιούνται στο Λογικό Προγραμματισμό. Ορίζουμε τα παρακάτω προτασιακά γράμματα: : «θα βρέξει» Q: «ο αγώνας θα αναβληθεί» R: «θα πάμε στο πάρτυ» S: «θα πάρουμε το λεωφορείο» V: «θα χρειστούμε χρήματα» Τότε, οι προτάσεις (1)-(5) γράφονται ως εξής: 1. Q 2. R Q 3. S Q, 4. V S 5. ή σε μορφή όρων Horn: {{ Ψ, Q},{ ΨQ, R},{ ΨQ, Ψ, S},{ Ψ S, V}, }. Η ερώτηση «θα χρειαστούμε χρήματα; μεταφράζεται σαν Ψ V. Για να διαπιστώσουμε αν είναι λογική συνέπεια των προτάσεων (1)-(5), πρέπει να βρούμε μια ακολουθία ανασκευής ξεκινώντας από το Ψ V. Η ακολουθία { S, V } { Q,, S} {, Q} ΨV Ύ Ύ Ψ Ύ ΨS Ύ Ύ Ψ Ύ Ψ Ύ { ΨQ, Ψ} Ύ Ύ Ψ Ύ Ψ Ύ Ύ, δείχνει ότι το V είναι λογική συνέπεια των (1)-(5). Δυστυχώς, ο περιορισμός σε όρους Horn δεν μας επιτρέπει να εκφράσουμε κανόνες της μορφής «αν πάμε στο πάρτυ και δεν βρέχει, θα περπατήσουμε». Αν το γράμμα U δηλώνει την πρόταση «θα περπατήσουμε», τότε η πρόταση αυτή θα είναι ισοδύναμη με την R ΩΨ U, δηλαδή με τον όρο { Ψ R,, U} ο οποίος δεν είναι όρος Horn. Αν περιλάβομε όρους που δεν είναι Horn τότε δεν μπορούμε να είμαστε σίγουροι ότι κάθε μη-ικανοποιήσιμο σύνολο έχει μια ακολουθία ανασκευής. Στη γλώσσα rolog, οι παραπάνω προτάσεις μπορούν να εκφραστούν στη μορφή ενός λογικού προγράμματος: q:-p. r:-q. s:-q,r. v:-s. p. Αφού φορτωθεί το πρόγραμμα interpreter της rolog, η ερώτηση?-v επιστρέφει yes.
Πληρότητα της μεθόδου επίλυσης
Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον
Διαβάστε περισσότεραΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012
ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει
Διαβάστε περισσότερα4.3 Ορθότητα και Πληρότητα
4.3 Ορθότητα και Πληρότητα Συστήματα αποδείξεων όπως η μορφολογική παραγωγή και η κατασκευή μοντέλων χρησιμοποιούνται για να δείξουμε την εγκυρότητα εξαγωγών συμπερασμάτων. Ένα σύστημα αποδείξεων μπορεί
Διαβάστε περισσότεραHY Λογική Διδάσκων: Δ. Πλεξουσάκης
HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο,
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 3ο μέρος σημειώσεων: Μέθοδος της Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια
Διαβάστε περισσότεραΛογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και
Διαβάστε περισσότεραΛογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons
Διαβάστε περισσότεραΛογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης
Διαβάστε περισσότεραΛογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης a. Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης
Διαβάστε περισσότεραHY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6
HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,
Διαβάστε περισσότεραΛογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #7: Μονοτονία- Ακρότατα-Αντιγραφή Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Διαβάστε περισσότερατατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Β: Απλή Τυχαία Δειγματοληψία για την εκτίμηση ποσοστού Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 21: Υπολογισμοί ΜΤ - Αναδρομικές Γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΕισαγωγή στις Βάσεις Δεδομζνων II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Εισαγωγή στις Βάσεις Δεδομζνων II Ενότητα: Λογική και Θεωρία Συνόλων Διδάσκων: Πηγουνάκης Κωστής ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Διαβάστε περισσότεραΠεριεχόμενα Ορισμός και λειτουργία των μηχανών Turing Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Επ. Καθ. Π. Κατσαρός Τμήμ
Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότεραΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 11: Καθολική μηχανή Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 9: Εσωτερική πράξη και κλάσεις ισοδυναμίας - Δομές Ισομορφισμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΟργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης έχουν ληφθεί
Διαβάστε περισσότεραΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ. Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και
Διαβάστε περισσότεραΜακροοικονομική Θεωρία Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μακροοικονομική Θεωρία Ι Διάλεξη 5: Συνολική Ζήτηση και Συνολική Προσφορά (Μέρος Α) Διδάσκων: Γιαννέλλης Νικόλαος ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
Διαβάστε περισσότεραΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11) Ενότητα #4: Προσέγγιση της Ιστορίας Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εισαγωγή στην Επιστήμη και Τεχνολογία των Υπηρεσιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εισαγωγή στην Επιστήμη και Τεχνολογία των Υπηρεσιών Εργαστήριο: XQuery - 2 Όνομα Καθηγητή: Χρήστος Νικολάου Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότερατατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ Ενότητα 3: Συναθροιστική Ζήτηση- Εφαρμόζοντας το Υπόδειγμα IS-LM Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες
Διαβάστε περισσότεραΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #3: ΕΤΟΙΜΕΣ ΚΟΙΝΟΤΗΤΕΣ Διδάσκων: Γουργιώτου Ευθυμία ΠΑΙΔΑΓΩΓΙΚΟ
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Α: Απλή Τυχαία Δειγματοληψία Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις
Διαβάστε περισσότεραΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ Ενότητα 7: Η μάθηση στην προσχολική ηλικία: μορφές αποτελεσματική διδασκαλία Διδάσκων: Μανωλίτσης Γεώργιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπ
Θεωρία Υπολογισμού Ενότητα 11: Κλειστότητα, ΠΑ & καν. εκφράσεις Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΓνωστική Ψυχολογία 3
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #3: Εισαγωγή στη Μνήμη Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #8: ΑΞΙΟΛΟΓΗΣΗ ΣΧΕΔΙΟΥ ΜΕΤΑΒΑΣΗΣ ΚΑΙ ΔΙΔΑΚΤΙΚΩΝ ΠΡΑΚΤΙΚΩΝ
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 2: Θεωρία Πιθανοτήτων Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Διδακτική Φυσικών Επιστημών στην Προσχολική Εκπαίδευση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Διδακτική Φυσικών Επιστημών στην Προσχολική Εκπαίδευση Ενότητα: Εισαγωγή Καλογιαννάκης Μιχάλης Παιδαγωγικό Τμήμα Προσχολικής Εκπαίδευσης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΜακροοικονομική Θεωρία Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μακροοικονομική Θεωρία Ι Διάλεξη 3: Το Υπόδειγμα IS-LM (Μέρος Α) Διδάσκων: Γιαννέλλης Νικόλαος ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Διαβάστε περισσότεραΛογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 10: Συνδυασμοί μηχανών Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΓνωστική Ψυχολογία 3
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #2: Μνημονικές Δομές και Λειτουργίες Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 21: Δυϊκή Θεωρία, Θεώρημα Συμπληρωματικής Χαλαρότητας και τρόποι χρήσης του Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΣχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΙΣΤΟΡΙΑΣ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΔΙΑΣΠΟΡΑ (A06 11) Ενότητα #5: Συμπέρασμα Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 1: Δυϊκή Θεωρία, Οικονομική Ερμηνεία Δυϊκού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΛογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΥπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 14: Γραμματικές Χωρίς Συμφραζόμενα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΔιοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότεραΓνωστική Ψυχολογία 3
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γνωστική Ψυχολογία 3 Ενότητα #5: Βραχύχρονη Μνήμη Διδάσκων: Οικονόμου Ηλίας ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #6: ΕΤΟΙΜΑ ΠΑΙΔΙΑ Διδάσκων: Γουργιώτου Ευθυμία ΠΑΙΔΑΓΩΓΙΚΟ
Διαβάστε περισσότεραΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons
Διαβάστε περισσότεραΑρχεία και Βάσεις Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 13η: Κλείσιμο Συνόλου Γνωρισμάτων - Ελάχιστη κάλυψη - Αποσύνθεση - Συναρτησιακές Εξαρτήσεις Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης
Διαβάστε περισσότεραΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ 2#: ΕΙΣΑΓΩΓΗ ΣTΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ 2#: ΕΙΣΑΓΩΓΗ ΣTΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης
Διαβάστε περισσότεραΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΑΣΗ ΑΠΟ ΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ: ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΣΧΕΔΙΑΣΜΟΙ ΚΑΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ Ενότητα #10: ΜΕΤΑΒΑΣΗ ΚΑΙ ΕΚΠΑΙΔΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ Διδάσκων: Γουργιώτου
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής
Διαβάστε περισσότεραΜακροοικονομική Θεωρία Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μακροοικονομική Θεωρία Ι Διάλεξη 6: Συνολική Ζήτηση και Συνολική Προσφορά (Μέρος Β) Διδάσκων: Γιαννέλλης Νικόλαος ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
Διαβάστε περισσότεραΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 3: Εργαλεία Κανονιστικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #16: Βασικά Θεωρήματα του Διαφορικού Λογισμού Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 7: Πεπερασμένη αναπαράσταση γλωσσών Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 10: Ισοδυναμία ντετερμινιστικών και μη ντετερμινιστικών αυτομάτων Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΟργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΥπολογιστές Ι. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Δομή του προγράμματος Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 4: Θεωρία Μέτρησης Po lya Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 17: Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
Διαβάστε περισσότεραΙστορίας της παιδείας από τα κάτω Α03 06
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιστορίας της παιδείας από τα κάτω Α03 06 Ενότητα #9: Βασικές αρχές μικροϊστορίας κατά Μ. Χατζηϊωάννου Διδάσκων: Χουρδάκης Αντώνιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Ενότητα 1: Εισαγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΜαθηματική Ανάλυση Ι
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 5: Όρια και Συνέχεια Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Διαβάστε περισσότεραΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 2: Εργαλεία Θετικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Διαβάστε περισσότεραΔομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 5: Εντολές επανάληψης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότεραΜαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 26: Καθολική Μηχανή Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #8: Όριο και Συνέχεια Συνάρτησης Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Διαβάστε περισσότεραΠρογραμματισμός Η/Υ. Συναρτήσεις & Υποπρογράμματα. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Συναρτήσεις & Υποπρογράμματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Τμηματικός Προγραμματισμός Η επίλυση ενός προβλήματος διευκολύνεται
Διαβάστε περισσότεραΘεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Δεσμευμένη Πιθανότητα. Ολική Πιθανότητα-Θεώρημα Bayes, Ανεξαρτησία και Συναφείς Έννοιες. Γεώργιος Ζιούτας Τμήμα
Διαβάστε περισσότεραΔομημένος Προγραμματισμός
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Δομημένος Προγραμματισμός Ενότητα: Συναρτήσεις θεωρία Δ. Ε. Μετάφας Τμ. Ηλεκτρονικών Μηχ. Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΠεριεχόμενα Τι περιγράφει ένα ΣΔ ΣΔ και παραγωγές Θεωρία Υπολογισμού Ενότητα 15: Συντακτικά Δέντρα Επ. Καθ. Π. Κατσαρός Τμήμα Πληροφορικής Επ. Καθ. Π.
Θεωρία Υπολογισμού νότητα 15: Συντακτικά Δέντρα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΑναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΔομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα6: Εμφωλυευμένες δομές κώδικα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
Διαβάστε περισσότεραΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Ενότητα: Το Παραπρόγραμμα ή κρυφό Αναλυτικό Πρόγραμμα Διδάσκων: Κατσαρού Ελένη ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΣΠΟΥΔΩΝ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ Άδειες
Διαβάστε περισσότεραΠρογραμματισμός Η/Υ. 8 η ενότητα: Περιβαλλοντικά και μαθηματικά προβλήματα. Τμήμα. Τεχνολόγων Περιβάλλοντος. ΤΕΙ Ιονίων Νήσων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Προγραμματισμός Η/Υ 8 η ενότητα: Περιβαλλοντικά και μαθηματικά προβλήματα Τμήμα Τεχνολόγων Περιβάλλοντος ΤΕΙ Ιονίων Νήσων Το περιεχόμενο του μαθήματος διατίθεται
Διαβάστε περισσότεραΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 4: Παιδαγωγική και κοινωνική υπόσταση της αξιολόγησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΟΣΗΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΕΦΑΛΑΙΟ 4: Παιδαγωγική και κοινωνική υπόσταση της αξιολόγησης Διδάσκων: Νίκος Ανδρεαδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότερα3 η ΕΝΟΤΗΤΑ Συναρτήσεις στο MATLAB
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 3 η ΕΝΟΤΗΤΑ Συναρτήσεις στο MATLAB Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 11 : Γραμματικές χωρίς συμφραζόμενα. Αλέξανδρος Τζάλλας
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεωρία Υπολογισμού Ενότητα 11 : Γραμματικές χωρίς συμφραζόμενα Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Τμήμα Μηχανικών Πληροφορικής
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 25: Γραμματικές Χωρίς Περιορισμούς Τμήμα Πληροφορικής ΘΥ 25: Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος
Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ομομορφισμοί και Πηλικοδάκτυλιοι Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 14 Ο Π Ιδιαιτέρως, αν τα f(x), g(x) είναι σχετικώς
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους Ενότητα 7η
Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότερα