Τεχνολογίες Υλοποίησης Αλγορίθµων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνολογίες Υλοποίησης Αλγορίθµων"

Transcript

1 Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών Ενότητα 7 1 / 48

2 Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ϱητώς. 2 / 48

3 Χρηµατοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδηµαϊκά Μαθήµατα στο Πανεπιστήµιο Πατρών» έχει χρηµατοδοτήσει µόνο τη αναδιαµόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράµµατος «Εκπαίδευση και ια Βίου Μάθηση» και συγχρηµατοδοτείται από την Ευρωπαϊκή Ενωση (Ευρωπαϊκό Κοινωνικό Ταµείο) και από εθνικούς πόρους. 3 / 48

4 Περιεχόµενα Αλγόριθµοι Συντοµότερων ιαδροµών και Υλοποιήσεις Γενικά κόστη ακµών Αλγόριθµος Bellman-Ford Ελεγκτής Ορθότητας Αλγορίθµων Συντοµότερων ιαδροµών Αρχέτυπα για Αλγορίθµους Γραφηµάτων 4 / 48

5 Γενικευµένος Αλγόριθµος ΕΣ ΑΚ for all { v V d(v) = ; π(v) = nil; d(s) = 0; while e = (u, v) E : d(v) > d(u) + c(e) { d(v) = d(u) + c(e); π(v) = e; Γράφηµα προκατόχων (οριζόµενο από τους δείκτες π): P = {e : e = π(v) E, v V 5 / 48

6 Γενικευµένος Αλγόριθµος ΕΣ ΑΚ Ιδιότητες 1 d(s) = 0 ανν π(s) = nil, και d(v) < ανν π(v) nil, για v s 2 Αν π(v) = e = (u, v), τότε d(v) d(u) + c(e) 3 Αν π(v) nil, τότε η v είτε ϐρίσκεται σε έναν κύκλο του P, είτε είναι προσπελάσιµη από έναν κύκλο στο P, είτε είναι προσπελάσιµη από την s στο P. Αν π(s) nil, τότε η s ϐρίσκεται σε έναν κύκλο του P. 4 Οι κύκλοι στο P έχουν αρνητικό κόστος 5 Αν η v ϐρίσκεται σε έναν κύκλο του P ή είναι προσπελάσιµη από έναν κύκλο στο P, τότε δ(v) = 6 Αν v V f και d(v) = δ(v), τότε µια s-v διαδροµή στο P η οποία έχει κόστος δ(v) 7 Αν d(v) = δ(v) v V f, τότε το επαγώµενο από τις κορυφές του V f υπογράφηµα του P είναι ένα Σ 6 / 48

7 Γενικευµένος Αλγόριθµος ΕΣ ΑΚ Προβλήµατα ΠΧΠ εκθετική (ακόµη και σε απουσία αρνητικών κύκλων) Ο αλγόριθµος δεν τερµατίζει όταν αρνητικοί κύκλοι 7 / 48

8 Γενικευµένος Αλγόριθµος ΕΣ ΑΚ Αντιµετώπιση 1ου προβλήµατος ιατήρηση ενός συνόλου κορυφών U: κορυφές που προσωρινά δεν παραβιάζουν την τριγωνική ανισότητα U {u : d(u) < και (u, v) E µε d(u) + c(u, v) < d(v) for all { v V d(v) = ; π(v) = nil; d(s) = 0; U = {s; while U { επιλογή u U; U = U {u; for all e = (u, v) E { if d(v) > d(u) + c(e) then { U = U {v; d(v) = d(u) + c(e); π(v) = e; 8 / 48

9 Γενικευµένος Αλγόριθµος ΕΣ ΑΚ Αντιµετώπιση 1ου προβλήµατος Ποια κορυφή u U πρέπει να επιλέξουµε ; Υπαρξη Βέλτιστης Επιλογής (ι) Για κάθε v V f µε d(v) > δ(v), κορυφή u U µε d(u) = δ(u) και η οποία ϐρίσκεται σε µια s-v Σ (ιι) Οταν µια κορυφή u µε d(u) = δ(u) διαγράφεται από το U, τότε δεν προστίθεται ποτέ ξανά στο U 9 / 48

10 Γενικευµένος Αλγόριθµος ΕΣ ΑΚ Αντιµετώπιση 1ου προβλήµατος Σχέση µεταξύ (d, π) και (dist, pred) pred[v] = π(v), dist[v] = { d(v) αν d(v) < αυθαίρετη αν d(v) = + Αναπαράσταση του + d(v) = + ανν v s και π(v) = nil Σύγκριση d < d(v), d IR (pred[v] == nil && v!= s) d < dist[v] 10 / 48

11 Αλγόριθµος Bellman-Ford Αντιµετώπιση 2ου προβλήµατος Πώς επιλέγουµε κορυφές από το U ; Οργάνωση του αλγορίθµου σε ϕάσεις U i = U στην αρχή της ϕάσης i, i 0, U 0 = {s Στην ϕάση i, όλες οι κορυφές του U i διαγράφονται από το U και οι νέες κορυφές που προστίθενται στο U εισάγονται στο U i+1 Υλοποίηση του U µε χρήση ουράς Q Φάση i: όλες οι κορυφές του U i ϐρίσκονται στην αρχή της Q και όλες οι κορυφές του U i+1 ϐρίσκονται στο τέλος της Q, χωρισµένες από έναν διαχωριστή µε τιµή nil Οταν ο διαχωριστής nil ϐρίσκεται στην αρχή της Q, τότε αυξάνεται ϐηµατικά η phase_count node_array<bool> in_q : in_q[v] = true, ανν v Q (αποφυγή επανεισαγωγών στην Q) 11 / 48

12 Αλγόριθµος Bellman-Ford Ο αλγόριθµος τερµατίζει όταν Q =, ή όταν i = n Στην πρώτη περίπτωση (Q = ): d(v) = δ(v), v V Στη δεύτερη περίπτωση (i = n): d(v) = δ(v), v V + V f Οι κορυφές του V αντιµετωπίζονται σε µια µεταγενέστερη ϕάση 12 / 48

13 Αλγόριθµος Bellman-Ford Πρόβληµα ΕΣ ΑΚ bool BELLMAN_FORD_T(const graph& G, node s, const edge_array<nt>& c, node_array<nt>& dist, node_array<edge>& pred) Επιστρέφει false αν δ(v) = για κάποια κορυφή v αλλιώς, επιστρέφει true Χρόνος: O(nm) 13 / 48

14 Αλγόριθµος Bellman-Ford Πρόβληµα ΕΣ ΑΚ // BF: helper template <class NT> bool BELLMAN_FORD_T(const graph& G, node s, const edge_array<nt>& c, node_array<nt>& dist, node_array<edge>& pred ) { int n = G.number_of_nodes(); int phase_count = 0; b_queue<node> Q(n+1); node_array<bool> in_q(g,false); node u,v; edge e; forall_nodes(v,g) pred[v] = nil; dist[s] = 0; Q.append(s); in_q[s] = true; Q.append((node) nil); // end marker 14 / 48

15 Αλγόριθµος Bellman-Ford Πρόβληµα ΕΣ ΑΚ while( phase_count < n ) { u = Q.pop(); if ( u == nil) { phase_count++; if ( Q.empty() ) return true; Q.append((node) nil); continue; else in_q[u] = false; NT du = dist[u]; forall_adj_edges(e,u) { v = G.opposite(u,e); // makes it also work for ugraphs NT d = du + c[e]; if ( (pred[v] == nil && v!= s) d < dist[v] ) { dist[v] = d; pred[v] = e; if (!in_q[v] ) { Q.append(v); in_q[v] = true; // BF: postprocessing return false; 15 / 48

16 Αλγόριθµος Bellman-Ford Πρόβληµα ΕΣ ΑΚ Μεταγενέστερη Φάση: Q µετά από n φάσεις Πρόβληµα: µπορεί να υπάρχουν κορυφές στο V που δεν είναι ακόµη προσπελάσιµες από έναν κύκλο στο γράφηµα P Πώς µπορούµε να ϐρούµε αυτές τις κορυφές χωρίς να χρειαστεί να εκτελέσουµε τον αλγόριθµο για έναν µεγαλύτερο αριθµό ϕάσεων ; 16 / 48

17 Αλγόριθµος Bellman-Ford Πρόβληµα ΕΣ ΑΚ Βασικές Ιδιότητες µετά από n φάσεις δ k (v) = min{c(p) : p µια s-v διαδροµή µε το πολύ k ακµές 1 d(v) δ n (v) και αν v U, τότε d(v) < δ n 1 (v) 2 s V f ανν π(s) = nil 3 Κάθε κορυφή u U ϐρίσκεται είτε σε έναν κύκλο του P, είτε είναι προσπελάσιµη από έναν κύκλο στο P 4 Κάθε κορυφή v V είναι προσπελάσιµη στο G από κάποια u U 5 Αν π(s) nil, τότε κάθε κορυφή προσπελάσιµη από την s ϐρίσκεται είτε σε έναν κύκλο του P, είτε είναι προσπελάσιµη από έναν κύκλο στο P 17 / 48

18 Αλγόριθµος Bellman-Ford Πρόβληµα ΕΣ ΑΚ Μεταγενέστερη Φάση Εστω V f (π(s) = nil), και R V f το σύνολο των κορυφών που είναι προσπελάσιµες από την s στο P Ολες οι κορυφές w R που είναι προσπελάσιµες από µια κορυφή u U ανήκουν στο V και εποµένως πρέπει να ενηµερωθούν οι π(w) Ενηµέρωση π(w), w R Εκτέλεση ΑΠΒ από κάθε u U όταν µια κορυφή w R προσπελαύνεται µέσω της ακµής (z, w), τότε ϑέτουµε π(w) = (z, w) όλες οι κορυφές του R V είναι προσπελάσιµες από τις κορυφές του U και από την (3) προσπελάσιµες από έναν κύκλο στο P 18 / 48

19 Αλγόριθµος Bellman-Ford Πρόβληµα ΕΣ ΑΚ Μεταγενέστερη Φάση: Πώς προσδιορίζονται οι κορυφές του R ; ΑΠΒ από την s στο P, αφού πρώτα «κρύψουµε» τις ακµές που δεν ανήκουν στο P και µετά τις επαναφέρουµε στο αρχικό γράφηµα // BF: postprocessing if (pred[s]!= nil) return false; node_array<bool> in_r(g,false); forall_edges(e,g) if (e!= pred[g.target(e)]) ((graph*) &G)->hide_edge(e); DFS(G,s,in_R); // sets in_r[v] = true for v in R ((graph*) &G)->restore_all_edges(); node_array<bool> reached_from_node_in_u(g,false); forall_nodes(v,g) if (in_q[v] &&!reached_from_node_in_u[v]) Update_pred(G,v,in_R,reached_from_node_in_U,pred); 19 / 48

20 Αλγόριθµος Bellman-Ford Πρόβληµα ΕΣ ΑΚ Μεταγενέστερη Φάση: Πώς προσδιορίζονται οι κορυφές του R ; (συνέχεια) // BF: helper inline void Update_pred(const graph& G, node v, const node_array<bool>& in_r, node_array<bool>& reached_from_node_in_u, node_array<edge>& pred) { reached_from_node_in_u[v] = true; edge e; forall_adj_edges(e,v) { node w = G.target(e); if (!reached_from_node_in_u[w] ) { if ( in_r[w] ) pred[w] = e; Update_pred(G,w,in_R,reached_from_node_in_U,pred); 20 / 48

21 Γενικός Αλγόριθµος ΕΣ ΑΚ template <class NT> bool SHORTEST_PATH_T(const graph& G, node s, const edge_array<nt>& c, node_array<nt>& dist, node_array<edge>& pred ) { if ( Is_Acyclic(G) ) { ACYCLIC_SHORTEST_PATH_T(G,s,c,dist,pred); return true; bool non_negative = true; edge e; forall_edges(e,g) if (c[e] < 0) non_negative = false; if (non_negative) { DIJKSTRA_T(G,s,c,dist,pred); return true; return BELLMAN_FORD_T(G,s,c,dist,pred); 21 / 48

22 Ελεγκτής Ορθότητας Αλγορίθµων ΕΣ ΑΚ Ανάπτυξη προγράµµατος CHECK_SP_T(G,s,c,dist,pred) το οποίο ϑα ελέγχει αν το Ϲεύγος (dist, pred) είναι µια σωστή λύση του προβλήµατος ΕΣ ΑΚ (G, s, c) Εσφαλµένη λύση: σταµατάει αµέσως η εκτέλεση του προγράµµατος µε διαγνωστικό µήνυµα λάθους ("assertion failed") Σωστή λύση: επιστρέφει ένα node_array<int> label µε label[v] < 0, αν v V label[v] = 0, αν v V f label[v] > 0, αν v V + 22 / 48

23 Ελεγκτής Ορθότητας Αλγορίθµων ΕΣ ΑΚ Ορισµοί { αν pred[s] U f nil = {v; s-v διαδροµή στο P αν pred[s] = nil U + = {v; v s και pred[v] = nil U = {v; v ϐρίσκεται σε έναν κύκλο του P ή είναι προσπελάσιµη από έναν κύκλο στο P 23 / 48

24 Ελεγκτής Ορθότητας Αλγορίθµων ΕΣ ΑΚ Ελεγχοι Ορθότητας Το Ϲεύγος (dist, pred) είναι µια σωστή λύση αν ικανοποιούνται οι παρακάτω συνθήκες/έλεγχοι: 1 v U + αν διαδροµή s-v στο G 2 Ολοι οι κύκλοι στο P έχουν αρνητικό κόστος 3 ακµή (v, w) E µε v U και w U f 4 e = (v, w) E: αν v U f και w U f, τότε dist[v] + c[e] dist[w] 5 v U f : αν v = s, τότε dist[v] = 0, και αν v s τότε dist[v] = dist[u] + c[pred[v]] όπου u είναι η αρχική κορυφή της pred[v] 24 / 48

25 Υλοποίηση Ελεγκτή Συνθ. (1) & Κατηγοριοποίηση κορυφών Αρχικά όλες οι κορυφές έχουν label ίσο µε UNKNOWN Εκτέλεση ΑΠΒ για προσδιορισµό όλων των κορυφών που είναι προσπελάσιµες από την s, και έλεγχος για όλα τα v s: pred[v] = nil ανν s-v διαδροµή Σε όλες τις κορυφές που δεν είναι προσπελάσιµες από την s: ανάθεση τιµής label ίσο µε PLUS // condition (1) enum{ NEG_CYCLE = -2, ATT_TO_CYCLE = -1, FINITE = 0, PLUS = 1, CYCLE = 2, ON_CUR_PATH = 3, UNKNOWN = 4 ; node_array<int> label(g,unknown); node_array<bool> reachable(g,false); DFS(G,s,reachable); node v; forall_nodes(v,g) { if (v!= s) { assert( (pred[v] == nil) == (reachable[v] == false)); if (reachable[v] == false) label[v] = PLUS; 25 / 48

26 Υλοποίηση Ελεγκτή Συνθ. (1) & Κατηγοριοποίηση κορυφών s v w v Ακολουθούµε τη διαδροµή [v, source(pred[v]), source(pred[source(pred[v])]),...] µέχρι να συναντήσουµε µια κορυφή δύο ϕορές (U ) ή µέχρι να µην µπορούµε να προχωρήσουµε άλλο (U f ) U : κορυφές που ανήκουν σε έναν κύκλο στο P (label CYCLE) και κορυφές που είναι προσπελάσιµες από έναν κύκλο στο P (label ATT_TO_CYCLE) Η διαπέραση µιας διαδροµής δεν πρέπει να γίνει πολλές ϕορές η διαπέραση σταµατά όταν συναντήσουµε µια κορυφή µε label UNKNOWN Κατά τη διαπέραση όλες οι κορυφές της διαδροµής εισάγονται σε µία στοίβα S και παίρνουν label ON_CUR_PATH 26 / 48

27 Υλοποίηση Ελεγκτή Συνθ. (1) & Κατηγοριοποίηση κορυφών s v w v // classification of nodes if (pred[s] == nil) label[s] = FINITE; forall_nodes(v,g) { if ( label[v] == UNKNOWN ) { stack<node> S; node w = v; while ( label[w] == UNKNOWN ) { label[w] = ON_CUR_PATH; S.push(w); w = G.source(pred[w]); // label all nodes on current path 27 / 48

28 Υλοποίηση Ελεγκτή Συνθ. (1) & Κατηγοριοποίηση κορυφών s v Εξέταση κορυφής w µε label UNKNOWN w v Αν label[w]=finite, τότε όλες οι κορυφές της διαδροµής U f Αν label[w]=cycle ή label[w]=att_to_cycle, τότε όλες οι κορυφές (εκτός της w) είναι προσπελάσιµες από έναν κύκλο. Αν επίσης η w ανήκει στην τρέχουσα διαδροµή, τότε ανήκει στον κύκλο // label all nodes on current path int t = label[w]; if ( t == ON_CUR_PATH ) { node z; do { z = S.pop(); label[z] = CYCLE; while ( z!= w ); while (!S.empty() ) label[s.pop()] = ATT_TO_CYCLE; else // t is CYCLE, ATT_TO_CYCLE, or FINITE { if ( t == CYCLE ) t = ATT_TO_CYCLE; while (!S.empty() ) label[s.pop()] = t; 28 / 48

29 Υλοποίηση Ελεγκτή Συνθήκη (2) Για κάθε κορυφή v µε label[v]=cycle διαπερνούµε τον κύκλο στον οποίο ανήκει, υπολογίζουµε το κόστος του και ελέγχουµε αν είναι αρνητικό. Αν ναι, τότε δίνουµε σε όλες τις κορυφές του κύκλου νέο label ίσο µε NEG_CYCLE. Αυτό εξασφαλίζει ότι κάθε κύκλος διαπερνάται µόνο µία ϕορά // condition (2) forall_nodes(v,g) { if ( label[v] == CYCLE ) { node w = v; NT cycle_length = 0; do { cycle_length += c[pred[w]]; label[w] = NEG_CYCLE; w = G.source(pred[w]); while (w!= v); assert(cycle_length < 0); 29 / 48

30 Υλοποίηση Ελεγκτή Συνθήκες (3), (4) & (5) 3 ακµή (v, w) E µε v U και w U f 4 e = (v, w) E: αν v U f και w U f, τότε dist[v] + c[e] dist[w] 5 v U f : αν v = s, τότε dist[v] = 0, και αν v s τότε dist[v] = dist[u] + c[pred[v]] όπου u είναι η αρχική κορυφή της pred[v] //conditions (3), (4), and (5) if ( label[s] == FINITE ) assert(dist[s] == 0); edge e; forall_edges(e,g) { node v = G.source(e); node w = G.target(e); if ( label[w] == FINITE ) { assert( label[v] == FINITE label[v] == PLUS); if ( label[v] == FINITE ) { assert( dist[v] + c[e] >= dist[w] ); if ( e == pred[w] ) assert( dist[v] + c[e] == dist[w] ); 30 / 48

31 Υλοποίηση Ελεγκτή Το πλήρες πρόγραµµα template <class NT> node_array<int> CHECK_SP_T(const graph& G, node s, const edge_array<nt>& c, const node_array<nt>& dist, const node_array<edge>& pred) { // condition (1) // classification of nodes // condition (2) // conditions (3), (4), and (5) return label; 31 / 48

32 Αρχέτυπα για Αλγορίθµους Γραφηµάτων Αλγόριθµοι γραφηµάτων ακµές/κορυφές γραφηµάτων είναι συσχετισµένες µε τιµές ενός συγκεκριµένου (αριθµητικού) τύπου πρέπει να µπορούν να εφαρµοσθούν σε οποιονδήποτε αριθµητικό τύπο που ικανοποιεί κάποιες προϋποθέσεις (π.χ. είναι γραµµικά διατεταγµένος) Ο µηχανισµός αρχετύπων χρησιµοποιείται γιαυτό το σκοπό 32 / 48

33 Αρχέτυπα για Αλγορίθµους Γραφηµάτων Παράδειγµα: αλγόριθµος ΕΣ ΑΚ template <class NT> void DIJKSTRA_T(const graph& G, node s, const edge_array<nt>& c, node_array<nt>& dist, node_array<edge>& pred); Η παράµετρος αρχετύπου NT µπορεί να συγκεκριµενοποιηθεί µε οποιονδήποτε αριθµητικό τύπο που πληροί κάποιες συντακτικές και σηµασιολογικές προϋποθέσεις Π.χ. πρέπει να είναι γραµµικά διατεταγµένος και η λειτουργία της πρόσθεσης πρέπει να είναι µονότονη 33 / 48

34 Αρχέτυπα για Αλγορίθµους Γραφηµάτων Επιθυµητοί Στόχοι Οι πιο συχνά χρησιµοποιούµενες συγκεκριµενοποιήσεις πρέπει να είναι προµεταγλωττισµένες Οι προ-συγκεκριµενοποιηµένες εκδοχές πρέπει να µπορούν να χρησιµοποιούνται εναλλακτικά µε τις εκδοχές αρχετύπων 34 / 48

35 Αρχέτυπα για Αλγορίθµους Γραφηµάτων Μηχανισµός LEDA Για κάθε συνάρτηση Alg που υλοποιεί κάποιον αλγόριθµο τρία αρχεία Alg.h: ϐρίσκεται στον κατάλογο LEDAROOT/incl/LEDA και περιέχει τις δηλώσεις όλων των συναρτήσεων Η προ-συγκεκριµενοποιηµένη εκδοχή έχει όνοµα Alg, ενώ η εκδοχή αρχετύπου έχει όνοµα Alg_T Alg.t: ϐρίσκεται στον κατάλογο LEDAROOT/incl/LEDA/templates και περιέχει τον ορισµό της συνάρτησης αρχετύπου _Alg.c: ϐρίσκεται στον κατάλογο LEDAROOT/src και περιέχει τις υλοποιήσεις των συγκεκριµενοποιήσεων µε ϐάση τη συνάρτηση αρχετύπου Το αρχείο αυτό είναι προµεταγλωττισµένο στο αρχείο κώδικα αντικειµένου _Alg.o που περιέχεται σε κάποια από τις ϐιβλιοθήκες της LEDA 35 / 48

36 Αρχέτυπα για Αλγορίθµους Γραφηµάτων Μηχανισµός LEDA Χρήση των διαφορετικών εκδοχών Συνάρτηση αρχετύπου #include <LEDA/templates/Alg.t> Προ-συγκεκριµενοποιηµένη συνάρτηση #include <LEDA/Alg.h> 36 / 48

37 Αρχέτυπα για Αλγορίθµους Γραφηµάτων Παράδειγµα: αλγόριθµος Dijkstra // file dijkstra.h #ifndef DIJKSTRA_H #define DIJKSTRA_H #include <LEDA/graph.h> template <class NT> void DIJKSTRA_T(const graph& G, node s, const edge_array<nt>& c, node_array<nt>& dist, node_array<edge>& pred); // next come the pre-instantiated versions // void DIJKSTRA(const graph& G, node s, const edge_array<int>& c, node_array<int>& dist, node_array<edge>& pred); // and, similarly, for double,... #endif 37 / 48

38 Αρχέτυπα για Αλγορίθµους Γραφηµάτων Παράδειγµα: αλγόριθµος Dijkstra // file dijkstra.t #include <LEDA/dijkstra.h> template <class NT> void DIJKSTRA_T(const graph& G, node s, const edge_array<nt>& c, node_array<nt>& dist, node_array<edge>& pred) { /* implementation of DIJKSTRA_T */ 38 / 48

39 Αρχέτυπα για Αλγορίθµους Γραφηµάτων Παράδειγµα: αλγόριθµος Dijkstra // file _dijkstra.c #include <LEDA/templates/dijkstra.t> void DIJKSTRA(const graph& G, node s, const edge_array<int>& c, node_array<int>& dist, node_array<edge>& pred) { DIJKSTRA_T(G,s,c,dist,pred); // and, similarly, for double / 48

40 Αρχέτυπα για Αλγορίθµους Γραφηµάτων Παράδειγµα: αλγόριθµος Dijkstra Χρήση προ-συγκεκριµενοποιηµένης εκδοχής σε πρόγραµµα εφαρµογής #include <LEDA/dijkstra.h> // define G, s, c, dist, pred with number type int DIJKSTRA(G,s,c,dist,pred); 40 / 48

41 Αρχέτυπα για Αλγορίθµους Γραφηµάτων Παράδειγµα: αλγόριθµος Dijkstra Χρήση εκδοχής αρχετύπου σε πρόγραµµα εφαρµογής #include <LEDA/templates/dijkstra.t> // define G, s, c, dist, pred for any number type NT DIJKSTRA_T(G,s,c,dist,pred); // define G, s, c, dist, pred for number type int // and use template version DIJKSTRA_T(G,s,c,dist,pred); // use pre-instantiated version DIJKSTRA(G,s,c,dist,pred); 41 / 48

42 Αρχέτυπα για Αλγορίθµους Γραφηµάτων Μια συνιστώµενη διαφορετική µέθοδος Τα.t-αρχεία δεν πρέπει να συµπεριλαµβάνονται άµεσα στα προγράµµατα εφαρµογής, διότι µπορεί να περιέχουν ϐοηθητικές συναρτήσεις οι οποίες να δηµιουργούν πρόβληµα µε τον χώρο ονοµάτων του προγ/τος εφαρµογής ηµιουργία ενδιάµεσων αρχείων Π.χ. συγκεκριµενοποίηση της DIJKSTRA_T µε τον τύπο δεδοµένων real της LEDA // real_dijkstra.h #include <LEDA/real.h> void DIJKSTRA(const graph& G, node s, const edge_array<real>& c, node_array<real>& dist, node_array<edge>& pred) 42 / 48

43 Αρχέτυπα για Αλγορίθµους Γραφηµάτων Μια συνιστώµενη διαφορετική µέθοδος // real_dijkstra.c #include "real_dijkstra.h" #include <LEDA/templates/dijkstra.t> void DIJKSTRA(const graph& G, node s, const edge_array<real>& c, node_array<real>& dist, node_array<edge>& pred) { DIJKSTRA_T(G,s,c,dist,pred); Το αρχείο real_dijkstra.h συµπεριλαµβάνεται στο πρόγραµµα εφαρµογής, ενώ το αρχείο real_dijkstra.c προµεταγλωττίζεται και προστίθεται στη ϐιβλιοθήκη κώδικα αντικειµένου από τον διασυνδετή 43 / 48

44 Τέλος Ενότητας 44 / 48

45 Σηµείωµα Ιστορικού Εκδόσεων Εργου Το παρόν έργο αποτελεί την έκδοση / 48

46 Σηµείωµα Ιστορικού Εκδόσεων Εργου Copyright Πανεπιστήµιο Πατρών, Χρήστος Ζαρολιάγκης, «Τεχνολογίες Υλοποίησης Αλγορίθµων». Εκδοση: 1.0. Πάτρα ιαθέσιµο από τη δικτυακή διεύθυνση: 46 / 48

47 Σηµείωµα Ιστορικού Εκδόσεων Εργου Το παρόν υλικό διατίθεται µε τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εµπορική Χρήση, Οχι Παράγωγα Εργα 4.0 [1] ή µεταγενέστερη, ιεθνής Εκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. ϕωτογραφίες, διαγράµµατα κ.λ.π., τα οποία εµπεριέχονται σε αυτό. [1] Ως Μη Εµπορική ορίζεται η χρήση: που δεν περιλαµβάνει άµεσο ή έµµεσο οικονοµικό όφελος από την χρήση του έργου, για το διανοµέα του έργου και αδειοδόχο που δεν περιλαµβάνει οικονοµική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανοµέα του έργου και αδειοδόχο έµµεσο οικονοµικό όφελος (π.χ. διαφηµίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος µπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιµοποιεί το έργο για εµπορική χρήση, εφόσον αυτό του Ϲητηθεί. 47 / 48

48 ιατήρηση Σηµειωµάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού ϑα πρέπει να συµπεριλαµβάνει : το Σηµείωµα Αναφοράς το Σηµείωµα Αδειοδότησης τη δήλωση ιατήρησης Σηµειωµάτων το Σηµείωµα Χρήσης Εργων Τρίτων (εφόσον υπάρχει) µαζί µε τους συνοδευόµενους υπερσυνδέσµους 48 / 48

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 7 1 / 42 Ενότητα 7 - Συντοµότερες ιαδροµές ΙΙ Αλγόριθµοι

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 6 1 / 41 Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Προηγµένα Θέµατα Τεχνολογιών Υλοποίησης Αλγορίθµων

Προηγµένα Θέµατα Τεχνολογιών Υλοποίησης Αλγορίθµων Προηγµένα Θέµατα Τεχνολογιών Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 6 1 / 35 Ενότητα 6 - Συντοµότερες

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Γρηγόρης Πράσινος Υποψήφιος ιδάκτωρ Τµήµα Μηχ/κων Η/Υ &

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 10η

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Εισαγωγή στους Αλγορίθμους Ενότητα 10η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 10

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 10 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 10 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 6

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 6 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 6 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 11η Άσκηση - Σταθμισμένος Χρονοπρογραμματισμός Διαστημάτων

Εισαγωγή στους Αλγορίθμους Ενότητα 11η Άσκηση - Σταθμισμένος Χρονοπρογραμματισμός Διαστημάτων Εισαγωγή στους Αλγορίθμους Ενότητα η Άσκηση - Σταθμισμένος Χρονοπρογραμματισμός Διαστημάτων Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Dijkstra Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Dijkstra

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

Εισαγωγή στους Αλγορίθμους Ενότητα 7η Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Πληροφορική ΙΙ Θεματική Ενότητα 5

Πληροφορική ΙΙ Θεματική Ενότητα 5 Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Θεματική Ενότητα 5 Λογικοί Τελεστές Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6: 1η εργαστηριακή άσκηση και προσομοίωση με το SPICE Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Bellman Ford Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Bellman

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 8 1 / 44 Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Εισαγωγή στους Αλγορίθμους Ενότητα 9η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 3 1 / 32 Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Διοίκηση Επιχειρήσεων

Διοίκηση Επιχειρήσεων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η λήψη των αποφάσεων Ευγενία Πετρίδου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνων

Ψηφιακή Επεξεργασία Εικόνων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Συναρτήσεις 60 Ροή ελέγχου Είναι η σειρά µε την οποία εκτελούνται οι εντολές. Μέχρι τώρα, «σειριακή»,

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 8 Μέγιστη Ροή & Αριθµητική Ορθότητα Αλγορίθµων 1

Διαβάστε περισσότερα

Βάσεις Περιβαλλοντικών Δεδομένων

Βάσεις Περιβαλλοντικών Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 1

Δομές Δεδομένων Ενότητα 1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Θέματα Εφαρμοσμένης. Ενότητα 14.2: Η ψήφος στα πρόσωπα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θέματα Εφαρμοσμένης. Ενότητα 14.2: Η ψήφος στα πρόσωπα. Θεόδωρος Χατζηπαντελής Τμήμα Πολιτικών Επιστημών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Εφαρμοσμένης Πολιτικής Ανάλυσης Ενότητα 14.2: Η ψήφος στα πρόσωπα. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ενότητα : Διαχείριση Εφοδιαστικής Αλυσίδας: Προβλήματα Δρομολόγησης Στόλου Οχημάτων- Μέρος ΙΙ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 7: C++ TEMPLATES, ΥΠΕΡΦΟΡΤΩΣΗ ΤΕΛΕΣΤΩΝ, ΕΞΑΙΡΕΣΕΙΣ Templates ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 3

Δομές Δεδομένων Ενότητα 3 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Στοίβα Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 4: Στρατηγικοί προσανατολισμοί Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 2: Η ΓΛΩΣΣΑ JAVA Σύγκριση JAVA-C ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής ΣΥΓΚΡΙΣΗ JAVA - C ΤΥΠΟΙ

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μάρκετινγκ Αγροτικών Προϊόντων

Μάρκετινγκ Αγροτικών Προϊόντων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάρκετινγκ Αγροτικών Προϊόντων Ενότητα 4 η : Οι Παραγωγοί Αγροτικών Προϊόντων Χρίστος Καμενίδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 6: Διαπεριφερειακές διαφορές Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ενότητα. Εισαγωγή στις βάσεις δεδομένων

Ενότητα. Εισαγωγή στις βάσεις δεδομένων Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής

Διδακτική της Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Διδακτικές Προσεγγίσεις για τον Προγραμματισμό Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα

Διαβάστε περισσότερα

Ιστορία της μετάφρασης

Ιστορία της μετάφρασης ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6: Ανάδραση Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 3: Ενισχυτές στις χαμηλές συχνότητες Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες

Διαβάστε περισσότερα

Εισαγωγή στη Δικτύωση Υπολογιστών

Εισαγωγή στη Δικτύωση Υπολογιστών Εισαγωγή στη Δικτύωση Υπολογιστών Ενότητα 4: Το Επίπεδο Δικτύου Δημήτριος Τσώλης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Στόχοι Μαθήματος

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα

Διαβάστε περισσότερα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εργαστήριο Χημείας Ενώσεων Συναρμογής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 6: Προσδιορισμός δ0 σε οκτάεδρα σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 3: Τομές Ι Όνομα Καθηγητή: Γιώργος Ανδρεάδης Τμήμα: Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #5: Δομές επιλογής Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Δομές επιλογής MATLAB Programming Α. Καλαμπούνιας Η δομή επιλογής if Η δομή if στο

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 10: Πρότυπα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού

Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού Ενότητα 4: Εφαρμογές λογιστικών φύλλων στη Στατική: Γεωμετρικά μεγέθη πολυγωνικά

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 2: Η ΓΛΩΣΣΑ JAVA Βιβλιοθήκες ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής ΒΙΒΛΙΟΘΗΚΗ JAVA ΒΑΣΙΚΗ ΒΙΒΛΙΟΘΗΚΗ

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός

Δομημένος Προγραμματισμός Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 9: Μνήμη Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 8: C++ ΒΙΒΛΙΟΗΚΗ STL, ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δομές Δεδομένων ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δομές

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Ενότητα 4: Εντολές Επιλογής

Προγραμματισμός Η/Υ. Ενότητα 4: Εντολές Επιλογής Προγραμματισμός Η/Υ Ενότητα 4: Νίκος Καρακαπιλίδης, Καθηγητής Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Έλεγχος της ροής ενός προγράμματος

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 9: Άσκηση εμπορικής πολιτικής Παράδειγμα άσκησης εμπορικής πολιτικής Γρηγόριος Ζαρωτιάδης

Διαβάστε περισσότερα