ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal
|
|
- Ἱππολύτη Βασιλικός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal
2 Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων
3 Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά ςτο δίςκο ειςάγονται από το πλθκτρολόγιο ι μια ςυςκευι ειςόδου (π.χ. ςαρωτισ) Κακζνα δεδομζνο πρζπει να είναι ενόσ οριςμζνου τφπου Τφποσ δεδομζνων (Data type) Μια κατηγορία δεδομζνων με οριςμζνθ απεικόνιςη και ζνα ςφνολο λειτουργιών που μποροφν να εφαρμοςτοφν ςτο ςφνολο των τιμϊν τουσ
4 Προςδιορίηουν: τον τρόπο παράςταςθσ των δεδομζνων εςωτερικά ςτον υπολογιςτι κακϊσ και το είδοσ τθσ επεξεργαςίασ τουσ από τον υπολογιςτι Είδθ: Προςδιοριςμζνοι απ τθν γλϊςςα (build-in) Κακοριςμζνοι από το χριςτθ (user-defined) Χρθςιμοποιοφνται για τθ διλωςθ των μεταβλθτϊν ι των ςυναρτιςεων που ορίηει ο χριςτθσ Μια μεταβλθτι είναι πάντοτε ενόσ και μόνο ςυγκεκριμζνου τφπου
5 Κατθγορίεσ: απλοί τφποι ι ςτοιχειϊδεισ ςφνκετοι τφποι Οι προςδιοριςμζνοι από τθν Pascal απλοί τφποι είναι: Ο ακζραιοσ τφποσ (Integer) Ο πραγματικόσ τφποσ (Real) Ο λογικόσ τφποσ (Boolean) Ο χαρακτιρασ (Char) φνκετοι τφποι είναι αυτοί που ορίηονται από απλοφσ τφπουσ ι από άλλουσ ςφνκετουσ που ορίςτθκαν παραπάνω. Παράδειγμα ςφνκετου τφπου είναι ο αλφαρικμθτικόσ τφποσ (String)
6 Ακέραιοσ (Integer) Μπορεί να είναι κετικοί ι αρνθτικοί αρικμοί Σο πλικοσ των ψθφίων περιορίηεται από τον τφπο του υπολογιςτι Η μεταβλθτι MaxInt προςδιορίηει το εφροσ του διαςτιματοσ των ακεραίων το οποίο είναι από -MaxInt 1 ζωσ MaxInt δθλαδι ςτο διάςτθμα [-32768, 32767]
7 Ακέραιοσ (Integer) Η γλϊςςα Pascal υποςτθρίηει διάφορουσ τφπουσ ακεραίων ανάλογα με: το πεδίο τιμϊν τουσ τθν φπαρξθ ι μθ πρόςθμου το πλικοσ των bytes που καταλαμβάνουν ςτθν κεντρικι μνιμθ Τφποσ Διάςτθμα τιμϊν Πρόςθμο Bytes ShortInt NAI 1 Integer NAI 2 LongInt NAI 4 Byte OXI 1 Word OXI 2
8 Ακέραιοσ (Integer) Οι επιτρεπτζσ πράξεισ μεταξφ ακεραίων είναι: Πρόςκεςθ + Αφαίρεςθ - Πολλαπλαςιαςμόσ * Ακζραια διαίρεςθ (πθλίκο) div Τπόλοιπο διαίρεςθσ mod Παραδείγματα: 27 div 6 = 4, 27 mod 6 = 3 16 div 17 = 0, 16 mod 17 = div 6 = 6, 36 mod 6 = 0
9 Πραγματικόσ (Real) Χρθςιμοποιείται όταν: Οι αρικμθτικζσ τιμζσ δεν είναι ακζραιεσ (δεκαδικοί αρικμοί) Οι αναμενόμενεσ τιμζσ είναι εκτόσ ορίων του ακεραίου τφπου Θζλουμε να εκφράςουμε πολφ μεγάλουσ ι πολφ μικροφσ αρικμοφσ Οι πραγματικοί τφποι που διακζτει θ Pascal είναι οι: Real (11-12 ψθφία) Single (7-8 ψθφία) Double (15-16 ψθφία) Extended (19-20 ψθφία) Comp (19-20 ψθφία)
10 Πραγματικόσ (Real) Οι επιτρεπτζσ πράξεισ πραγματικϊν αρικμϊν είναι: Πρόςκεςθ + Αφαίρεςθ - Πολλαπλαςιαςμόσ * Διαίρεςθ / θμείωςθ: Πράξεισ που περιλαμβάνουν πραγματικοφσ αρικμοφσ απαιτοφν περιςςότερο χρόνο για να εκτελεςτοφν από αυτζσ που περιλαμβάνουν μόνον ακζραιουσ.
11 Αριθμητικέσ εκφράςεισ Είναι απεικονίςεισ αρικμθτικϊν παραςτάςεων που μπορεί να περιζχουν ςταθερέσ, μεταβλητέσ, ςυναρτήςεισ, αριθμητικά ςφμβολα και παρενθέςεισ Προτεραιότητα αριθμητικών τελεςτών Χαμθλότερθ προτεραιότθτα + (πρόςκεςθ) - (αφαίρεςθ) Υψθλότερθ προτεραιότθτα * (πολλαπλαςιαςμόσ) / (διαίρεςθ) div (ακζραια διαίρεςθ) mod (υπόλοιπο ακεραίασ διαίρεςθσ)
12 Προτεραιότητα αριθμητικών τελεςτών Προτεραιότθτα ςθμαίνει ότι κάκε πράξθ με ςφμβολα *, /, div, mod εκτελείται πρϊτθ εκτόσ αν υπάρχει παρζνκεςθ, οπότε εκτελείται πρϊτα θ πράξθ τθσ παρζνκεςθσ π.χ. 6 * = 23 6 * (3 + 5) = 48 Όταν οι τελεςτζσ είναι τθσ ίδιασ προτεραιότθτασ οι πράξεισ εκτελοφνται από τα αριςτερά προσ τα δεξιά π.χ. 20 div 3 * 4 = 24 (Η ακζραια διαίρεςθ και ο πολλαπλαςιαςμόσ ζχουν τθν ίδια προτεραιότθτα) 20 mod 3 * 4 = 8 (Σο υπόλοιπο τθσ διαίρεςθσ και ο πολλαπλαςιαςμόσ ζχουν τθν ίδια προτεραιότθτα) / (2 * 3) = 8 (Η παρζνκεςθ ζχει τθ μεγαλφτερθ προτεραιότθτα και ακολουκεί θ διαίρεςθ) 15 / 3 * 2 = 10 (Η διαίρεςθ και ο πολλαπλαςιαςμόσ ζχουν τθν ίδια προτεραιότθτα)
13 Λογικόσ (Boolean) κοπόσ μιασ μεταβλθτισ λογικοφ τφπου είναι θ καταγραφι του αποτελζςματοσ ενόσ ελζγχου. Για να εξετάςουμε το αποτζλεςμά του, αρκεί να εξετάςουμε τθν τιμι τθσ λογικισ μεταβλθτισ. Ο λογικόσ τφποσ (Boolean) μπορεί να ζχει μία από τισ τιμζσ: True (Αλθκισ) False (Ψευδισ)
14 Λογικέσ εκφράςεισ Είναι απεικονίςεισ παραςτάςεων που μπορεί να περιζχουν ςτακερζσ, μεταβλθτζσ, ςυναρτιςεισ, αρικμθτικά ςφμβολα και παρενκζςεισ Μποροφν να πάρουν μία από τισ δφο λογικζσ τιμζσ (True, False) Παράγονται από δφο μεταβλθτζσ, ςτακερζσ ι ςυναρτιςεισ μζςω των ςχεςιακϊν τελεςτϊν Παραδείγματα: (Χ > 1) (Χ + 1 > 0)
15 Σχεςιακοί τελεςτέσ Περιγραφι Μακθματικά Pascal Κςο = = Μεγαλφτερο από > > Μικρότερο από < > Μεγαλφτερο ι ίςο >= Μικρότερο ι ίςο <= Διάφορο <> Ανικει in
16 Λογικέσ πράξεισ Οι πράξεισ που μποροφν να γίνουν με μεταβλθτζσ ι εκφράςεισ λογικοφ τφπου είναι: Η ςφηευξθ (and) Η διάηευξθ (or) Η άρνθςθ (not) Η αποκλειςτικι διάηευξθ (xor) Παραδείγματα: (Χ > 1) and (X < 10) ((Χ > 0) and (Y > 0)) or (Z <> 1)
17 Πίνακεσ αλήθειασ Πίνακεσ αλικειασ των τεςςάρων λογικϊν πράξεων μεταξφ δφο λογικϊν μεταβλθτϊν P και Q P Q P and Q P or Q not P P xor Q True True True True False False True False False True False True False True False True True True False False False False True False θμείωςθ: υχνά αναφερόμαςτε ςτισ τζςςερισ λογικζσ πράξεισ and, or, xor και not με το όνομα λογικοί τελεςτζσ
18 Λογικοί τελεςτέσ Ο τελεςτισ and είναι True μόνο όταν και οι δφο λογικζσ εκφράςεισ ζχουν τιμι True Σελεςτισ λογικοφ πολλαπλαςιαςμοφ Ο τελεςτισ or είναι True όταν τουλάχιςτον μία από τισ λογικζσ εκφράςεισ ζχει τιμι True Σελεςτισ λογικισ πρόςκεςθσ Ο τελεςτισ and ζχει μεγαλφτερθ προτεραιότθτα από τον τελεςτι or ((x >= 0) and (x <= 10)) or (x = 20) (x >= 0) and (x <= 10) or (x = 20)
19 Λογικοί τελεςτέσ (ςυνέχεια) Ο τελεςτισ xor είναι True όταν μόνο μία από τισ δφο λογικζσ εκφράςεισ ζχει τιμι True Ζχει τθν ίδια προτεραιότθτα με τον τελεςτι or Ο τελεςτισ not δζχεται μία λογικι ζκφραςθ και τθσ αντιςτρζφει τθν τιμι
20 Ευρετήριο τοπικών όρων Αρικμθτικζσ εκφράςεισ Αρικμθτικοί τελεςτζσ Λογικζσ εκφράςεισ χεςιακοί ι ςυγκριτικοί τελεςτζσ Λογικοί τελεςτζσ Προτεραιότθτα τελεςτϊν Αρικμθτικοί > χεςιακοί Λογικοί > χεςιακοί Αρικμθτικοί? Λογικοί
21 Χαρακτήρασ (Char) Περιγράφει δεδομζνα ενόσ χαρακτιρα ςτο ςφνολο των χαρακτιρων που δφναται να αναπαραςτακοφν ςε ζναν υπολογιςτι Διατεταγμζνοσ τφποσ Γ < Δ < Ε και 0 < 1 < 2 Η διάταξθ διαφζρει από υπολογιςτι ςε υπολογιςτι
22 Αλφαριθμητικόσ τφποσ (string) Δεν ςυναντάται ςτθν Standard Pascal Μια ςειρά από 0 ζωσ το πολφ 255 χαρακτιρεσ Δφναται να δθλωκεί το μικοσ του αλφαρικμθτικοφ π.χ. Η διλωςθ FName: string[80] δθλϊνει μια μεταβλθτι που μπορεί να δεχκεί το πολφ 80 χαρακτιρεσ Ζνα string πρζπει να γράφεται ςτθν ίδια γραμμι Vathmos <> Vathmos 2468 <> 2468 Κενό string Λειτουργίεσ ςυνζνωςθσ, απομάκρυνςθσ και ςφγκριςθσ
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος 2012-13 Κων/νος Φλώρος Απλοί τύποι δεδομένων Οι τύποι δεδομένων προσδιορίζουν τον τρόπο παράστασης των
ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ
Η ΓΛΩΣΣΑ PASCAL ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ Απλοί ή στοιχειώδης Τ.Δ. Ακέραιος τύπος Πραγματικός τύπος Λογικός τύπος Χαρακτήρας Σύνθετοι Τ.Δ. Αλφαριθμητικός 1. Ακέραιος (integer) Εύρος: -32768 έως 32767 Δήλωση
ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL
8.1. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PACAL Πως προέκυψε η γλώσσα προγραμματισμού Pascal και ποια είναι τα γενικά της χαρακτηριστικά; Σχεδιάστηκε από τον Ελβετό επιστήμονα της Πληροφορικής Nicklaus Wirth to
Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8
Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.
Εργαςτιριο Πικανοτιτων Σθμειϊςεισ προγραμματιςμοφ: βαςικζσ γνϊςεισ ανάπτυξθσ εφαρμογϊν. Κϊςτασ Αρβανιτάκθσ
Εργαςτιριο Πικανοτιτων Σθμειϊςεισ προγραμματιςμοφ: βαςικζσ γνϊςεισ ανάπτυξθσ εφαρμογϊν Κϊςτασ Αρβανιτάκθσ Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου)
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου) 1. Εισαγωγή Χαρακτηριστικά της γλώσσας Τύποι δεδοµένων Γλώσσα προγραµµατισµού
Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα
Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε
ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ
ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ Λογικι πρόταςθ: Με τον όρο λογικι πρόταςθ (ι απλά πρόταςθ) ςτα μακθματικά, εννοοφμε μια ζκφραςθ με πλιρεσ νόθμα που δζχεται τον χαρακτθριςμό ι μόνο αλθκισ ι μόνο ψευδισ. Παραδείγματα:
Παράςταςη ςυμπλήρωμα ωσ προσ 1
Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'
Δομθμζνοσ Προγραμματιςμόσ. Βαγγζλθσ Οικονόμου Εργαςτιριο 9
Δομθμζνοσ Προγραμματιςμόσ Βαγγζλθσ Οικονόμου Εργαςτιριο 9 Συναρτιςεισ Αφαιρετικότθτα ςτισ διεργαςίεσ Συνάρτθςεισ Διλωςθ, Κλιςθ και Οριςμόσ Εμβζλεια Μεταβλθτών Μεταβίβαςθ παραμζτρων ςε ςυναρτιςεισ Συναρτιςεισ
ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ
ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο
ΑΝΑΠΣΤΞΘ ΕΦΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 3 ο ΓΕΝΙΚΟ ΛΤΚΕΙΟ Ν. ΜΤΡΝΘ- ΕΠΙΜΕΛΕΙΑ: ΠΤΡΙΔΑΚΘ Λ.
Ερωτήςεισ Προβλήματα Α. Σημειώςτε δεξιά από κάθε πρόταςη το γράμμα Σ αν η πρόταςη είναι ςωςτή και το γράμμα Λ αν είναι λάθοσ. 1. Θ περατότθτα ενόσ αλγορίκμου αναφζρεται ςτο γεγονόσ ότι καταλιγει ςτθ λφςθ
x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.
Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα
ΥΡΟΝΣΙΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣΗ» ΔΙΑΓΩΝΙΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΥΕΒΡΟΤΑΡΙΟ 2018 ΑΕΠΠ
ΥΡΟΝΣΙΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣΗ» ΔΙΑΓΩΝΙΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΥΕΒΡΟΤΑΡΙΟ 2018 ΘΕΜΑ Α ΑΕΠΠ Α1. Για κακεμία από τισ παρακάτω προτάςεισ να χαρακτθρίςετε με ΣΩΣΤΟ ι ΛΑΘΟΣ 1. Η ζκφραςθ
5 ΜΕΘΟΔΟΙ - ΠΑΡΑΜΕΤΡΟΙ
5 ΜΕΘΟΔΟΙ - ΠΑΡΑΜΕΤΡΟΙ Να γραφεί πρόγραμμα, το οποίο κα δίνει τισ τιμζσ 5 και 6 ςε δφο μεταβλθτζσ a και b και κα υπολογίηει και κα εμφανίηει το άκροιςμά τουσ sum. ΛΟΓΙΚΟ ΔΙΑΓΡΑΜΜΑ a 5 b 6 sum a+b sum ΑΛΓΟΡΙΘΜΟ
ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι
Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ
1 ΕΙΣΑΓΩΓΗ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ
1 ΕΙΣΑΓΩΓΗ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ Αλγόρικμοσ Μια ςειρά από ςαφι και κακοριςμζνα βιματα, τα οποία οδθγοφν ςτθ λφςθ ενόσ προβλιματοσ, περιγραφι του κάκε βιματοσ με λόγια και λζξεισ-κλειδιά, π.χ. διάβαςε, υπολόγιςε,
Εργαςτιριο Βάςεων Δεδομζνων
Εργαςτιριο Βάςεων Δεδομζνων 2010-2011 Μάθημα 1 ο 1 Ε. Σςαμούρα Σμήμα Πληροφορικήσ ΑΠΘ Σκοπόσ του 1 ου εργαςτθριακοφ μακιματοσ Σκοπόσ του πρϊτου εργαςτθριακοφ μακιματοσ είναι να μελετιςουμε ερωτιματα επιλογισ
Θεςιακά ςυςτιματα αρίκμθςθσ
Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ
ΥΡΟΝΣΙ ΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣ Η» ΔΙΑΓΩΝΙ ΜΑ ΑΕΠΠ
ΥΡΟΝΣΙ ΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣ Η» ΔΙΑΓΩΝΙ ΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΑΠΡΙΛΙΟ 2018 ΚΑΘΗΓΗΤΗΣ: Γιώργος Πασσαλίδης ΑΕΠΠ ΟΝΟΜΑΣΕΠΩΝΤΜΟ: ΒΑΘΜΟ : ΘΕΜΑ Α Α1. Για κακεμία από τισ παρακάτω προτάςεισ
Η γλώςςα προγραμματιςμού C
Η γλώςςα προγραμματιςμού C Οι εντολζσ επανάλθψθσ (while, do-while, for) Γενικά για τισ εντολζσ επανάλθψθσ Συχνά ςτο προγραμματιςμό είναι επικυμθτι θ πολλαπλι εκτζλεςθ μιασ ενότθτασ εντολϊν, είτε για ζνα
Ραραμετροποίθςθ ειςαγωγισ δεδομζνων περιόδων
Παραμετροποίηςη ειςαγωγήσ δεδομζνων περιόδων 1 1 Περίληψη Το παρόν εγχειρίδιο παρουςιάηει αναλυτικά τθν παραμετροποίθςθ τθσ ειςαγωγισ αποτελεςμάτων μιςκοδοτικϊν περιόδων. 2 2 Περιεχόμενα 1 Ρερίλθψθ...2
Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3)
Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Το όνομα ενόσ πίνακα, όπωσ και κάκε άλλου αντικειμζνου, μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Το όνομα ενόσ πεδίου μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Κάκε
Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο
Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την
Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε:
ΔΟΜΗ ΑΠΟΦΑΗ Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε: Όταν το if που χρθςιμοποιοφμε παρζχει μόνο μία εναλλακτικι διαδρομι εκτζλεςθ, ο τφποσ δομισ
ΗΥ101: Ειςαγωγι ςτθν Πλθροφορικι
Παράςταςη κινητήσ υποδιαςτολήσ Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ Παράςταςη ςταθεροφ ςημείου Παράςταςη αριθμών κινητοφ ςημείου 2 Παράςταςη ςταθεροφ ςημείου Στθν παράςταςθ αρικμϊν ςτακεροφ ςθμείου (Fixed
Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1
Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ
Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον
Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον Ο ν ο μ α τ ε π ώ ν υ μ ο : _ Θ Ε Μ Α 1 ο Α. Ν α χ α ρ α κ τ θ ρ ι ς τ ο φ ν ο ι α κ ό λ ο υ κ ε σ π ρ ο τ ά ς ε ι σ μ ε τ ο
Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) (PASCAL ) Μεταβλητές- Τύποι- Τελεστές
Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) (PASCAL ) Μεταβλητές- Τύποι- Τελεστές Μεταβλητές 2 Δήλωση μεταβλητών Η δήλωση (declaration) πληροφορεί το μεταγλωττιστή για το όνομα και
Εργαςτθριακζσ Αςκιςεισ Αρικμθτικισ Ανάλυςθσ
Α.Σ.Ε.Ι. Θεςςαλονίκθσ Σμιμα Μθχανικϊν Πλθροφορικισ Σ.Ε. Εργαςτθριακζσ Αςκιςεισ Αρικμθτικισ Ανάλυςθσ ςτθ Γλϊςςα Προγραμματιςμοφ C Γουλιάνασ Κϊςτασ Επίκουροσ Κακθγθτισ Α.Σ.Ε.Ι.Θ Θεςςαλονίκη 2016 Email: gouliana@it.teithe.gr
- Αναπαράσταση ακέραιας τιµής : - Εύρος ακεραίων : - Ακέραιοι τύποι: - Πράξεις µε ακεραίους (DIV - MOD)
Η Γλώσσα Pascal Χαρακτηριστικά Τύποι Δεδοµένων Δοµή προγράµµατος 1. Βασικές έννοιες Χαρακτηριστικά της γλώσσας Pascal Γλώσσα προγραµµατισµού Συντακτικό Σηµασιολογία Αλφάβητο της γλώσσας Pascal (Σύνολο
Ειδικά Θζματα Βάςεων Δεδομζνων
Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 11: Αντικειμενοςτραφήσ και αντικείμενοςχεςιακζσ βάςεισ Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,
Ενδεικτική Οργάνωςη Ενοτήτων Α Σάξη Α/ Μαθηματικό περιεχόμενο Δείκτεσ Επιτυχίασ Ώρεσ Α Διδ. 1 ΕΝΟΣΗΣΑ 1 Αλ1.1 υγκρίνουν και ταξινομοφν αντικείμενα ςφμφωνα με κάποιο χαρακτθριςτικό/κριτιριο/ιδιότθτά Ομαδοποίθςθ,
8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο
κεφάλαιο 8 τριγωνομετρία Α βαςικζσ ζννοιεσ τθν τριγωνομετρία χρθςιμοποιοφμε τουσ τριγωνομετρικοφσ αρικμοφσ, οι οποίοι ορίηονται ωσ εξισ: θμω = απζναντι κάκετθ πλευρά υποτείνουςα Γ ςυνω = εφω = προςκείμενθ
ΜΑΘΗΜΑΣΙΚΑ Γ ΓΕΝΙΚΗ ( ΑΠΟ ΘΕΜΑΣΑ ΛΤΚΕΙΩΝ ) ΕΡΩΣΗΕΙ ΩΣΟΤ ΛΑΘΟΤ ΑΝΑΛΤΗ
ΜΑΘΗΜΑΣΙΚΑ Γ ΓΕΝΙΚΗ ( ΑΠΟ ΘΕΜΑΣΑ ΛΤΚΕΙΩΝ ) ΕΡΩΣΗΕΙ ΩΣΟΤ ΛΑΘΟΤ ΑΝΑΛΤΗ 1. Αν οι ςυναρτιςεισ f και g ζχουν όρια ςτο x πραγματικοφσ αρικμοφσ, δθλαδι lim f( x) l 1 και lim g( x) l 2 με l 1, l 2 IR, τότε lim
ΘΕΜΑ Α / Αν μια μεταβλθτι ζχει τθν τιμι 47.0 τότε ο τφποσ τθσ μεταβλθτισ είναι ακζραιοσ.
Μϊθημα: Ανάπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβάλλον Τϊξη Γ Λυκείου, Πληροφορική Οικονομικών Καθηγητόσ : Σιαφάκασ Γιώργοσ Ημερομηνύα : 08/11/2015 Διϊρκεια: 3 ώρεσ ΘΕΜΑ Α /40 (Α1) Να γράψετε ςτο τετράδιό
ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ
ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ ελιδοποίθςθ (1/10) Σόςο θ κατάτμθςθ διαμεριςμάτων ςτακεροφ μεγζκουσ όςο και θ κατάτμθςθ διαμεριςμάτων μεταβλθτοφ και άνιςου μεγζκουσ δεν κάνουν
Διαχείριςη Αριθμοδεικτών (v.1.0.7)
Διαχείριςη Αριθμοδεικτών (v.1.0.7) Περιεχόμενα 1. Μενοφ... 5 1.1 Αρικμοδείκτεσ.... 5 1.1.1 Δθμιουργία Αρικμοδείκτθ... 6 1.1.2 Αντιγραφι Αρικμοδείκτθ... 11 2. Παράμετροι... 12 2.1.1 Κατθγορίεσ Αρικμοδεικτϊν...
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη
= = 124
Λζξεισ Κάκε μακθτισ μζςα ςτθν ομάδα κα πρζπει να ζχει μια αρικμομθχανι. Ζνασ μακθτισ κα διαβάηει φωναχτά τουσ αρικμοφσ. Οι υπόλοιποι μακθτζσ κα τουσ γράφουν ςτθν αρικμομθχανι πατϊντασ κάκε φορά το πλικτρο
2 ΕΝΤΟΛΕΣ ΕΛΕΓΧΟΥ. Η πιο απλι μορφι ςφγκριςθσ εντολισ ελζγχου ζχει τθ μορφι : if (<ζπλζήθε>) εληνιή; if(<ζπλζήθε>){ block εληνιώλ; }
2 ΕΝΤΟΛΕΣ ΕΛΕΓΧΟΥ τα πιο πολλά προγράμματα απαιτοφνται να γίνονται κάποιοι ζλεγχοι γαι το αν μπορεί να γίνει μια πράξθ ( π.χ. αν ο διαιρζτθσ δεν είναι μθδζν ), αν ζνασ αρικμόσ ι όνομα υπάρχει ςε μια λίςτα,
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
Βάρειπ Δεδξμέμωμ. Επγαστήπιο ΙΙ. Τμήμα Πλεπουοπικήρ ΑΠΘ
Βάρειπ Δεδξμέμωμ Επγαστήπιο ΙΙ Τμήμα Πλεπουοπικήρ ΑΠΘ 2016-2017 2 Σκξπόπ ςξσ 2 ξσ εογαρςηοίξσ Σκοπόρ αςτού τος επγαστεπίος είναι: Η μελέτε επωτεμάτων σε μία μόνο σσέσε. Εξετάδοςμε τοςρ τελεστέρ επιλογήρ
Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10
Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό Διάλεξθ 10 Γενικό Σχιμα Μετατροπζασ Αναλογικοφ ςε Ψθφιακό Ψθφιακό Τθλεπικοινωνιακό Κανάλι Μετατροπζασ Ψθφιακοφ ςε Αναλογικό Τα αναλογικά ςιματα μετατρζπονται ςε
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4. Να γίνει πρόγραμμα το οποίο να επιλφει το Διαγώνιο Σφςτθμα: A ι το ςφςτθμα : ι ςε μορφι εξιςώςεων το ςφςτθμα : Αλγόρικμοσ m(). Διαβάηουμε τθν τιμι του ( θ διάςταςθ του Πίνακα Α )..
ΕΤΦΤΗ ΕΛΕΓΧΟ. Κεφάλαιο 3 τοιχεία τησ Αςαφοφσ Λογικήσ
ΕΤΦΤΗ ΕΛΕΓΧΟ Κεφάλαιο 3 τοιχεία τησ Αςαφοφσ Λογικήσ Επιμέλεια: Πέτροσ Π. Γρουμπόσ, Κακθγθτισ Βάια Κ. Γκουντρουμάνη, Υπ. Διδάκτωρ Τμιμα Ηλεκτρολόγων Μθχανικϊν & Τεχνολογίασ Υπολογιςτϊν Άδειεσ Χριςθσ Το
Δζντρα. Δομζσ Δεδομζνων
Δζντρα Δομζσ Δεδομζνων Περιεχόμενα Δζντρα Γενικζσ ζννοιεσ Κόμβοσ ενόσ δζντρου Δυαδικά δζντρα αναηιτθςθσ Αναηιτθςθ Κόμβου Ειςαγωγι ι δθμιουργία κόμβου Δζντρα Γενικζσ ζννοιεσ Οι προθγοφμενεσ δομζσ που εξετάςτθκαν
Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL)
Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) (PASCAL )Βασικά στοιχεία Αναγνωριστικά (Identifiers) Τα αναγνωριστικά είναι ονόματα με τα οποία μπορούμε να αναφερόμαστε σε αποθηκευμένες
17. Πολυδιάςτατοι πίνακεσ
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 17. Πολυδιάςτατοι πίνακεσ Ιωάννθσ Κατάκθσ Πολυδιάςτατοι πίνακεσ o Μζχρι τϊρα μιλοφςαμε για μονοδιάςτατουσ πίνακεσ ι int age[5]= 31,28,31,30,31; o Για παράλλθλουσ
ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:
Δομζσ Δεδομζνων Πίνακεσ
Δομζσ Δεδομζνων Πίνακεσ Διάλεξθ 2 Περιεχόμενα Πίνακεσ: Οριςμοί, Γενικζσ ζννοιεσ Αποκικευςθ πινάκων Ειδικζσ μορφζσ πινάκων Αλγόρικμοι Αναηιτθςθσ Σειριακι Αναηιτθςθ Δυαδικι Αναηιτθςθ Οριςμοί, Γενικζσ ζννοιεσ
Μετατροπεσ Παραςταςεων
Δρ. Χρήστος Ηλιούδης Μεηαηποπή 346 10 ζε δςαδικο 346 10 1) 346/2 = 173 με ςπόλοιπο 0 2) 173/2 = 86 με ςπόλοιπο 1 3) 86/2 = 43 με ςπόλοιπο 0 4) 43/2 = 21 με ςπόλοιπο 1 5) 21/2 = 10 με ςπόλοιπο 1 6) 10/2
ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης
ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ
Ειςαγωγι ςτθν Αςαφι Λογικι
Ειςαγωγι ςτθν Αςαφι Λογικι Matlab fuzzy logic toolbox Ειςαγωγικά Η αςαφισ λογικι μπορεί να κεωρθκεί ωσ μια επζκταςθ τθσ μακθματικισ λογικισ, όπου οι λογικζσ προτάςεισ δεν ζχουν απόλυτεσ τιμζσ αλικειασ
ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO
ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO Το Micro Worlds Pro είναι ζνα ολοκλθρωμζνο περιβάλλον προγραμματιςμοφ. Χρθςιμοποιεί τθ γλϊςςα προγραμματιςμοφ Logo (εξελλθνιςμζνθ) Το Micro Worlds Pro περιλαμβάνει
Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:
Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2018-2019 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Σρίτθ 11-13 Ενότθτεσ 1-24 ΕΠΑΝΑΛΗΨΗ
ΕΝΟΤΗΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Αρχεία - Φάκελοι
ΕΝΟΤΗΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΗ Αρχείο (File) Φάκελοσ (Folder) Διαχειριςτισ Αρχείων (File Manager) Τφποι Αρχείων Σε τι εξυπθρετεί θ οργάνωςθ των εργαςιϊν μασ ςτουσ υπολογιςτζσ; Πϊσ κα οργανϊςουμε
ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν
ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν Παράλλθλεσ Διεργαςίεσ (1/5) Δφο διεργαςίεσ λζγονται «παράλλθλεσ» (concurrent) όταν υπάρχει ταυτοχρονιςμόσ, δθλαδι οι εκτελζςεισ τουσ επικαλφπτονται
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. Διαφάνειεσ: Βαςικζσ Αρχζσ Προγραμματιςμοφ Α.Π.Θ. Δθμιτρθσ Βράκασ
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 21. Δομζς Ιωάννθσ Κατάκθσ Διαφάνειεσ: Βαςικζσ Αρχζσ Προγραμματιςμοφ Α.Π.Θ. Δθμιτρθσ Βράκασ Τφποι Δεδομζνων Οριηόμενοι από το Χριςτθ o Πζρα από τουσ απλοφσ τφπουσ
1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό.
ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΝΑ ΒΡΙΚΟΤΜΕ ΣΟ ΠΕΔΙΟ ΟΡΙΜΟΤ ΤΝΑΡΣΗΗ Για να οριςκεί μια ςυνάρτθςθ πρζπει να δοκοφν δφο ςτοιχεία : Σο πεδίο οριςμοφ τθσ Α και Η τιμι τθσ f() για κάκε Α. Οριςμζνεσ φορζσ μασ δίνουν μόνο τον
ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ. 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν
ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν Τι είναι θ Γραμμι Εντολϊν (1/6) Στουσ πρϊτουσ υπολογιςτζσ, και κυρίωσ από τθ δεκαετία του 60 και μετά, θ αλλθλεπίδραςθ του χριςτθ με τουσ
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ Αυτζσ οι οδθγίεσ ζχουν ςτόχο να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο τθσ Αρικμογραμμισ.
Τεχνολογία και Προγραμματισμός Υπολογιστών. Η γλώσσα προγραμματισμού C
Τεχνολογία και Προγραμματισμός Υπολογιστών Η γλώσσα προγραμματισμού C Σειρά Μαθημάτων 1. Βαςικζσ Ζννοιεσ 2. Σφποι δεδομζνων, Σελεςτζσ, και Παραςτάςεισ 3. Ροι Ελζγχου και Εντολζσ Επανάλθψθσ 4. υναρτιςεισ
Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ
Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ Οι παρακάτω οδθγίεσ αφοροφν το χριςτθ webdipe. Για διαφορετικό λογαριαςμό χρθςιμοποιιςτε κάκε φορά το αντίςτοιχο όνομα χριςτθ. = πατάμε αριςτερό κλικ ςτο Επιςκεφκείτε
Αςφάλεια και Προςταςία Δεδομζνων
Αςφάλεια και Προςταςία Δεδομζνων Κρυπτογράφθςθ υμμετρικι και Αςφμμετρθ Κρυπτογραφία Αλγόρικμοι El Gamal Diffie - Hellman Σςιρόπουλοσ Γεώργιοσ ΣΙΡΟΠΟΤΛΟ ΓΕΩΡΓΙΟ 1 υμμετρικι Κρυπτογραφία υμμετρικι (Κλαςικι)
A2. Να γράψετε για κάθε περίπτωση τον αριθμό της πρότασης και δίπλα το γράμμα που δίνει τη σωστή επιλογή.
ΜΑΘΗΜΑ / ΤΑΞΗ : ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ/Γ' ΕΠΑ.Λ. ΗΜΕΡΟΜΗΝΙΑ: 17-1-2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι.ΜΙΧΑΛΕΑΚΟΣ-Χ.ΠΑΠΠΑ-Α.ΚΑΤΡΑΚΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα
Τύποι Δεδομένων. Κατηγορίες Τύπων Δεδομένων ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός Κων/νος Φλώρος
Τύποι Δεδομένων Κατηγορίες Τύπων Δεδομένων ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός Κων/νος Φλώρος Κατηγορίες Τύπων Δεδομένων(α) Τύπος Δεδομένων Ο τύπος των δεδομένων είναι μια περιγραφή των
Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)
1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ
1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ
1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιςτικι είναι ο κλάδοσ των μακθματικϊν που αςχολείται με τθ ςυλλογι, τθν οργάνωςθ, τθν παρουςίαςθ και τθν ανάλυςθ αρικμθτικϊν
ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι
ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι Λογιςμικό (Software), Πρόγραμμα (Programme ι Program), Προγραμματιςτισ (Programmer), Λειτουργικό Σφςτθμα (Operating
HY437 Αλγόριθμοι CAD
HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 ΗΥ437 - Πολυεπίπεδθ Λογικι Απλοποίθςθ με Περιεχόμενα Είδθ Αδιάφορων Τιμϊν ςε Πολφ-επίπεδα Δυαδικά Δίκτυα Αδιάφορεσ
ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι
ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι Τλικό υπολογιςτι (Hardware), Προςωπικόσ Τπολογιςτισ (ΡC), υςκευι ειςόδου, υςκευι εξόδου, Οκόνθ (Screen), Εκτυπωτισ (Printer), αρωτισ
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 20. Αρχεία. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 20. Αρχεία Ιωάννθσ Κατάκθσ Aποκικευςθ Για να αποκθκεφςουμε δεδομζνα από ζνα πρόγραμμα, πρζπει να χρθςιμοποιιςουμε τθ δευτερεφουςα μνιμθ Aποκικευςθ Η πιο ςυνθκιςμζνθ
3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while )
3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) Στα πιο πολλά προγράμματα απαιτείται κάποια ι κάποιεσ εντολζσ να εκτελοφνται πολλζσ φορζσ για όςο ιςχφει κάποια ςυνκικθ. Ο αρικμόσ των επαναλιψεων μπορεί να είναι
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Παραςκευι 11-13
Ονοματεπϊνυμο.. ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ
Ονοματεπϊνυμο.. ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ ΘΕΜΑ 1 Ο Α) Ερωτισεις τφπου ωστοφ-λάκους 1. Κάκε βρόχος Για μπορεί να μετατραπεί σε Όσο 2. Κάκε βρόχος που υλοποιείται με τθν εντολι Όσο...επανάλαβε μπορεί να γραφεί και
Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 4
Τμήμα Μησανικών Πληποφοπικήρ, Τ.Ε.Ι. Ηπείπος Ακαδημαϊκό Έτορ 2016-2017, 6 ο Εξάμηνο Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 4 Διδάςκων Τςιακμάκθσ Κυριάκοσ, Phd MSc in Electronic Physics (Radioelectrology)
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Επανάληψη Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό
Pascal Βασικοί τύποι δεδοµένων
Pasal Βασικοί τύποι δεδοµένων «ΜΗ ΕΝ ΠΟΛΛΟΙΣ ΟΛΙΓΑ ΛΕΓΕ, ΑΛΛ ΕΝ ΟΛΙΓΟΙΣ ΠΟΛΛΑ» Σηµαίνει: "Μη λες πολλά χωρίς ουσία, αλλά λίγα που να αξίζουν πολλά" (Πυθαγόρας) Κουλλάς Χρίστος www.oullas.om oullas 2 Στόχοι
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Παραςκευι 11-13
Μετατροπεσ Παραςταςεων
Δρ. Χρήζηος Ηλιούδης Μεηαηποπή 346 10 ζε δςαδικο 346 10 1) 346/2 = 173 με ςπόλοιπο 0 2) 173/2 = 86 με ςπόλοιπο 1 3) 86/2 = 43 με ςπόλοιπο 0 4) 43/2 = 21 με ςπόλοιπο 1 5) 21/2 = 10 με ςπόλοιπο 1 6) 10/2
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Είσοδος και Έξοδος δεδομένων Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Ρρογραμματιςμό Τμιμα Μακθματικϊν Ρανεπιςτιμιο
Θ διαδικαςία κοςτολόγθςθσ εφρεςθσ του κόςτουσ παραγωγισ των προϊόντων χωρίηεται ςε διαφορετικζσ τεχνικζσ μεκόδουσ: Α) Την απορροφητική ή πλήρη κοςτολόγηςη Β) Την οριακή ή άμεςη κοςτολόγηςη Απορροφητική
Βάςεισ Δεδομζνων Ι. Ενότητα 7: Ειςαγωγή ςτην γλώςςα_sql. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικϊν Πλθροφορικισ ΣΕ
Βάςεισ Δεδομζνων Ι Ενότητα 7: Ειςαγωγή ςτην γλώςςα_sql Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ εικόνεσ,
Ιδιότθτεσ πεδίων Γενικζσ.
Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)
Pascal, απλοί τύποι, τελεστές και εκφράσεις
Pascal, απλοί τύποι, τελεστές και εκφράσεις 15 Νοεμβρίου 2011 1 Γενικά Στην standard Pascal ορίζονται τέσσερις βασικοί τύποι μεταβλητών: integer: Παριστάνει ακέραιους αριθμούς από το -32768 μέχρι και το
Αλγορικμικι & Ρρογραμματιςμόσ με Java
Αλεξάνδρειο ΤΕΙ Θεςςαλονίκθσ Τμιμα Μθχανικϊν Ρλθροφορικισ Τ.Ε. Αλγορικμικι & Ρρογραμματιςμόσ με Java Διδακτικζσ θμειϊςεισ για το Μάκθμα Αλγορικμικι και Προγραμματιςμόσ Γουλιάνασ Κϊςτασ Επίκουροσ Κακθγθτισ
343 Ειςαγωγι ςτον Ρρογραμματιςμό
343 Ειςαγωγι ςτον Ρρογραμματιςμό Τμιμα Μακθματικϊν Ρανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2017-2018 Χάρθσ Ραπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Ρζμπτθ 11-13 Σελίδα Μακιματοσ:
ΑΝΑΠΣΤΞΗ ΕΥΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΤΚΕΙΟΤ ΣΕΦΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ
ΑΝΑΠΣΤΞΗ ΕΥΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΤΚΕΙΟΤ ΣΕΦΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ 1) Να γράψετε το τμιμα αλγορίκμου που αντιςτοιχεί ςτο παρακάτω διάγραμμα ροισ. 2) Να γράψετε το τμιμα αλγορίκμου που αντιςτοιχεί
Ζρευνα ικανοποίθςθσ τουριςτϊν
Ζρευνα ικανοποίθςθσ τουριςτϊν Ammon Ovis_Ζρευνα ικανοποίθςθσ τουριςτϊν_ Ραδιοςτακμόσ Flash 96 1 ΣΤΟΙΧΕΙΑ ΔΕΙΓΜΑΤΟΣ Σο δείγμα περιλαμβάνει 332 τουρίςτεσ από 5 διαφορετικζσ θπείρουσ. Οι περιςςότεροι εξ αυτϊν
Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων
Ιςοηυγιςμζνα δζντρα και Β- δζντρα Δομζσ Δεδομζνων Περιεχόμενα Ιςοηυγιςμζνα δζντρα Μζκοδοι ιςοηφγιςθσ δζντρων Μονι Περιςτροφι Διπλι Περιςτροφι Β - δζντρα Ιςοηυγιςμζνα δζντρα Η μορφι ενόσ δυαδικοφ δζντρου
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Αριθμητικοί και λογικοί τελεστές Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο
1 ο Διαγώνιςμα για το Α.Ε.Π.Π.
1 ο Διαγώνιςμα για το Α.Ε.Π.Π. Θ Ε Μ Α Α Α 1. Ν α γ ρ ά ψ ε τ ε ς τ ο τ ε τ ρ ά δ ι ό ς α σ τ ο ν α ρ ι κ μ ό κ α κ ε μ ι ά σ α π ό τ ι σ π α ρ α κ ά τ ω π ρ ο τ ά ς ε ι σ 1-8 κ α ι δ ί π λ α τ θ λ ζ ξ
Βάςεισ Δεδομζνων Λ. Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ
Βάςεισ Δεδομζνων Λ Ενότθτα 8: SQL Γλώςςα χειριςμοφ δεδομζνων Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 15. Πίνακεσ ΙI. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 15. Πίνακεσ ΙI Ιωάννθσ Κατάκθσ Σιμερα o Ειςαγωγι o Διλωςθ o Αρχικοποίθςθ o Πρόςβαςθ o Παραδείγματα Πίνακεσ - Επανάλθψθ o Στθν προθγοφμενθ διάλεξθ κάναμε μια
Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων
Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Περιεχόμενα Τι είναι οι Βάςεισ Δεδομζνων (DataBases) Τι είναι Σφςτθμα Διαχείριςθσ Βάςεων Δεδομζνων (DBMS) Οι Στόχοι
Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ
Βάςεισ Δεδομζνων Ι Ενότητα 12: Κανονικοποίηςη Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό