Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο"

Transcript

1 Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την περιγραφή, ο ημιαθροιςτήσ ζχει δφο ειςόδουσ, ζςτω και, που δζχονται τα δφο bits που προςτίθενται και δφο εξόδουσ, μία για το άθροιςμα (sum) και μία για το κρατοφμενο C (carr). HA C Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο C Άκροιςμα (= 0 10 ) ή (= 1 10 ) (= 2 10 ) ο πίνακασ αλήθειασ του ημιαθροιςτή είναι ο ακόλουθοσ: C Οι λογικζσ ςυναρτήςεισ των εξόδων του κυκλϊματοσ που προκφπτουν από τον πίνακα αλήθειασ είναι οι ακόλουθεσ: C = = + = Στα ακόλουθα λογικά κυκλϊματα φαίνονται δφο υλοποιήςεισ του ημιαθροιςτή, η πρϊτη με βαςικζσ πφλεσ AN, OR και NOT και η δεφτερη με τη χρήςη τησ παράγωγησ πφλησ XOR.

2 ' ' C C Πλήρης αθροιστής (Full Adder) Ο πλήρησ αθροιςτήσ είναι ζνα κφκλωμα που προςθζτει δφο δυαδικά ψηφία, καθϊσ και κρατοφμενο ειςόδου που ζχει προκφψει από προηγοφμενη άθροιςη και δίνει ωσ αποτζλεςμα το άθροιςμα και το κρατοφμενο εξόδου. Με βάςη αυτή την περιγραφή, ο πλήρησ αθροιςτήσ ζχει τρεισ ειςόδουσ, ζςτω, και, που δζχονται τα δφο bits που προςτίθενται και το κρατοφμενο ειςόδου και δφο εξόδουσ, μία για το άθροιςμα και μία για το κρατοφμενο εξόδου C out. FA C out Λαμβάνοντασ υπόψη ότι: Κρατοφμενο Άθροιςμα C (= 0 10 ) ή (= 1 10 ) (= 2 10 ) (= 3 10 ) ο πίνακασ αλήθειασ του πλήρουσ αθροιςτή είναι ο ακόλουθοσ: C out C out = Σ(m 3, m 5, m 6, m 7 ) = = C in = Σ(m 1, m 2, m 4, m 7 ) = = C in + C in

3 Απλοποίηςη λογικϊν ςυναρτήςεων εξόδων: C out = + + = C in + C in + + Όπωσ βλζπουμε, η λογική ςυνάρτηςη του αθροίςματοσ δεν απλοποιείται ςε επίπεδο βαςικϊν πυλϊν. Χρηςιμοποιϊντασ όμωσ παράγωγεσ πφλεσ, η ςυνάρτηςη για το άθροιςμα μπορεί να εκφραςτεί ωσ εξήσ: = C in + C in + + = C in ( + ) + ( + ) = = C in ( ) + ( ) = C in F + F όπου F =. Επομζνωσ, = F = ( ) = Το λογικό κφκλωμα του πλήρουσ αθροιςτή είναι το ακόλουθο: C out Παράδειγμα 5. Να υλοποιθκεί ζνασ πλιρθσ ακροιςτισ με δφο θμιακροιςτζσ και μία πφλθ OR. Η λογικι ςυνάρτθςθ του ακροίςματοσ του πλιρουσ ακροιςτι μπορεί να εκφραςτεί ωσ ακολοφκωσ: = = ( ) = 1 όπου: 1 = ( )

4 Η λογικι ςυνάρτθςθ του κρατοφμενου εξόδου του πλιρουσ ακροιςτι μπορεί να εκφραςτεί ωσ ακολοφκωσ: C out = C in = (C in + ) + ( + ) = + ( ) = = C 1 + ( ) = C = C 1 + C 2 όπου: C 1 = και C 2 = 1 Επομζνωσ το λογικό κφκλωμα του πλιρουσ ακροιςτι μπορεί να υλοποιθκεί ωσ ακολοφκωσ: HA 1 1 = C 1 = HA 2 = 1 C2 = 1 = C out = C 1 + C 2 = = + 1 = = + ( ) Παράδειγμα 6. Να υλοποιθκεί ζνασ παράλλθλοσ δυαδικόσ ακροιςτισ των 4 bits με τζςςερισ πλιρεισ ακροιςτζσ (4 bit ripple carr adder). Όπωσ ζχουμε ιδθ εξετάςει, θ πρόςκεςθ δφο δυαδικϊν αρικμϊν X και Y, των 4 bits ο κακζνασ, ακολουκεί τον κλαςικό αλγόρικμο: c 3 c 2 c 1 c 0 X = Y = Άθροιςμα = s 4 =c 3 s 3 s 2 s 1 s 0 Επιμζρουσ Κρατοφμενα c 3 c 2 c 1 c 0 Όπωσ βλζπουμε, για κάκε τάξθ ν προςτίκενται ςτουσ ςυντελεςτζσ ν και ν τθσ τάξθσ το κρατοφμενο εξόδου c ν-1 τθσ προθγοφμενθσ τάξθσ και παράγονται το άκροιςμα s ν και το κρατοφμενο εξόδου c ν τθσ τάξθσ. Να ςθμειωκεί ότι θ είςοδοσ του κρατοφμενου ειςόδου τθσ τάξθσ των μονάδων (FA 0), πρζπει να πάρει τιμι λογικό 0. Σφμφωνα με τα παραπάνω, το ηθτοφμενο λογικό κφκλωμα είναι το ακόλουκο:

5 c 2 c 1 c 0 c in FA 3 FA 2 FA 1 FA 0 c 2 c 1 c 0 s 4 = c 3 s 3 s 2 s 1 s 0 Ημιαφαιρέτης (Half ubstractor) Ο ημιαφαιρζτησ είναι ζνα κφκλωμα που αφαιρεί δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα τη διαφορά τουσ και το δανεικό ψηφίο, το οποίο ιςοφται με μονάδα αν απαιτείται δανειςμόσ ψηφίου για να γίνει η αφαίρεςη μεταξφ των δφο bits. Με βάςη αυτή την περιγραφή, ο ημιαφαιρζτησ ζχει δφο ειςόδουσ που δζχονται τα δφο bits που αφαιροφνται, δηλαδή μία για τον μειωτζο και μία για τον αφαιρετζο, ζςτω και αντίςτοιχα, και δφο εξόδουσ, μία για τη διαφορά (difference) και μία για το δανεικό (borrow). H Λαμβάνοντασ υπόψη ότι κατά την αφαίρεςη δφο δυαδικϊν ψηφίων ιςχφει: Δανεικό Διαφορά ο πίνακασ αλήθειασ του ημιαφαιρζτη είναι ο ακόλουθοσ: Οι λογικζσ ςυναρτήςεισ των εξόδων του κυκλϊματοσ που προκφπτουν από τον πίνακα αλήθειασ είναι οι ακόλουθεσ:

6 = = + = Παρατηροφμε ότι η λογική ςυνάρτηςη για τη διαφορά είναι η ίδια με τη λογική ςυνάρτηςη για το άθροιςμα του ημιαθροιςτή. Στα ακόλουθα λογικά κυκλϊματα φαίνονται δφο υλοποιήςεισ του ημιαφαιρζτη, η πρϊτη με βαςικζσ πφλεσ AN, OR και NOT και η δεφτερη με τη χρήςη τησ παράγωγησ πφλησ XOR. ' ' Πλήρης αφαιρέτης (Full ubstractor) Ο πλήρησ αφαιρζτησ είναι ζνα κφκλωμα που αφαιρεί δφο δυαδικά ψηφία λαμβάνοντασ υπόψη ότι μπορεί ςτην αμζςωσ προηγοφμενη αφαίρεςη να είχε γίνει δανειςμόσ μιασ μονάδασ. Αυτό ςημαίνει ότι ο πλήρησ αφαιρζτησ ζχει τρεισ ειςόδουσ, ζςτω για τον μειωτζο, για τον αφαιρετζο και z για τυχόν δανεικό από προηγοφμενη αφαίρεςη, καθϊσ και δφο εξόδουσ, ζςτω για τη διαφορά και για το τυχόν νζο δανεικό που θα προκφψει. z F Για να κάνουμε την αφαίρεςη, προςθζτουμε ςτον αφαιρετζο () το κρατοφμενο από προηγοφμενη αφαίρεςη (z) και το άθροιςμά τουσ το αφαιροφμε από τον μειωτζο (), δηλαδή: ( + z) Λαμβάνοντασ υπόψη ότι: Δανεικό Διαφορά

7 ο πίνακασ αλήθειασ του πλήρουσ αφαιρζτη είναι ο ακόλουθοσ: z = Σ(m 1, m 2, m 3, m 7 ) = = z + z + z + z = Σ(m 1, m 2, m 4, m 7 ) = = z + z + z + z Απλοποίηςη λογικϊν ςυναρτήςεων εξόδων: z z = + z + z = z + z + z + z Όπωσ βλζπουμε, η λογική ςυνάρτηςη τησ διαφοράσ δεν απλοποιείται ςε επίπεδο βαςικϊν πυλϊν. Χρηςιμοποιϊντασ όμωσ παράγωγεσ πφλεσ, η ςυνάρτηςη για τη διαφορά μπορεί να εκφραςτεί ωσ εξήσ: = z + z + z + z = ( z + z ) + ( z + z) = = ( z) + ( z) = [ κζτοντασ ( z) = F ] = F + F = F = = ( z) = z Το λογικό κφκλωμα του πλήρουσ αφαιρζτη είναι το ακόλουθο: z

8 Παράδειγμα 7. Να δείξετε πϊσ μποροφμε να μετατρζψουμε ζναν πλιρθ ακροιςτι ςε πλιρθ ακροιςτιαφαιρζτθ. Η αφαίρεςθ δφο δυαδικϊν αρικμϊν μπορεί να γίνει με πρόςκεςθ ςτο μειωτζο, του ςυμπλθρϊματοσ ωσ προσ 2 του αφαιρετζου. Το ςυμπλιρωμα ωσ προσ 2 ενόσ δυαδικοφ αρικμοφ ιςοφται με το ςυμπλιρωμά του ωσ προσ 1, ςυν 1 (Σ (Β) = 1 + Σ (Β-1) ). Το ςυμπλιρωμα ωσ προσ 1 ενόσ δυαδικοφ αρικμοφ προκφπτει με τθν απλι αντικατάςταςθ των 1 με 0 και των 0 με 1. Επομζνωσ θ αφαίρεςθ X Y μπορεί να γίνει ωσ εξισ: X Y = X + Σ (Β) (Y) + 1 = X + Y + 1 Ο Πίνακασ αλικειασ τθσ λογικισ πράξθσ XOR είναι ο ακόλουκοσ: X Y Z = X Y Βλζπουμε ότι όταν X = 0, Z = Y και όταν X = 1, Z = X. Επομζνωσ ζνασ πλιρθσ ακροιςτισ μπορεί να μετατραπεί ςε πλιρθ ακροιςτι - αφαιρζτθ που υλοποιεί είτε τθν πρόςκεςθ X + Y, είτε τθν αφαίρεςθ X Y, ωσ ακολοφκωσ: X Y Full Adder C out Στο κφκλωμα αυτό όταν = 0 θ ζξοδοσ τθσ πφλθσ XOR είναι Y, ενϊ όταν =1 θ ζξοδοσ τθσ πφλθσ XOR είναι Y. Άρα θ ζξοδοσ του κυκλϊματοσ, ανάλογα με τθν τιμι που δίνουμε ςτο, είναι: για = 0, = X + Y + 0 = X + Y για = 1, = X + Y + 1 = X Y

9 Παράδειγμα 8. Να υλοποιθκεί ζνασ παράλλθλοσ ακροιςτισ αφαιρζτθσ των 4 bits με τζςςερισ πλιρεισ ακροιςτζσ. Έχουμε ιδθ εξετάςει ςτο Παράδειγμα 6 πϊσ μποροφμε να υλοποιιςουμε ζναν παράλλθλο ακροιςτι των 4 bits με τζςςερισ πλιρεισ ακροιςτζσ. Επίςθσ εξετάςαμε ςτο Παράδειγμα 7 πϊσ μποροφμε να μετατρζψουμε ζναν πλιρθ ακροιςτι ςε πλιρθ ακροιςτι - αφαιρζτθ με τθν προςκικθ μιασ πφλθσ XOR. Επομζνωσ μποροφμε να υλοποιιςουμε ζναν παράλλθλο ακροιςτι αφαιρζτθ των 4 bits με τζςςερισ πλιρεισ ακροιςτζσ χρθςιμοποιϊντασ τζςςερισ πφλεσ XOR, μία για κάκε πλιρθ ακροιςτι. Η ζξοδοσ κάκε μίασ από αυτζσ κα οδθγεί τθν είςοδο i,για κάκε ζναν ακροιςτι αντίςτοιχα και κα δζχεται ωσ ειςόδουσ το κρατοφμενο ειςόδου και το αντίςτοιχο για κάκε τάξθ ψθφίο i c in c 2 c 1 c 0 FA 3 FA 2 FA 1 FA 0 c 2 c 1 c 0 s 4 = c 3 s 3 s 2 s 1 s 0 Όταν το κρατοφμενο ειςόδου ζχει τιμι μθδζν ( = 0), κάκε μία πφλθ XOR κα δίνει ζξοδο i, ενϊ όταν ζχει τιμι ζνα ( = 1), κάκε πφλθσ XOR δίνει ζξοδο το ςυμπλιρωμα ωσ προσ 2 του i. Εάν κζςουμε = 0, το κφκλωμα λειτουργεί ωσ παράλλθλοσ ακροιςτι των 4 bits και εκτελεί τθν πρόςκεςθ = s 4 s 3 s 2 s 1 s 0. Εάν κζςουμε = 1, το κφκλωμα εκτελεί τθν πράξθ: Σ (1) ( ) + 1 = (s 4 )s 3 s 2 s 1 s 0, όπου (s 4 ) είναι ψθφίο υπερχείλιςθσ και μπορεί να παραλειφκεί. Άρα, για = 1, το κφκλωμα λειτουργεί ωσ παράλλθλοσ αφαιρζτθσ των 4 bits και εκτελεί τθν αφαίρεςθ = s 3 s 2 s 1 s 0 με τθ χριςθ των ςυμπλθρωμάτων. Παράδειγμα 9. Να ςχεδιαςτεί λογικό κφκλωμα που ςυγκρίνει δφο διψιφιουσ δυαδικοφσ αρικμοφσ Χ = 1 0 και Υ = 1 0 και αναγνωρίηει τθ ςυνκικθ Χ = Υ.

10 Από τθν περιγραφι του κυκλϊματοσ προκφπτει ότι πρζπει να ζχει τζςςερισ ειςόδουσ, μία για κάκε ψθφίο των αρικμϊν X και Y, δθλαδι 1, 0 και 1, 0 και μία ζξοδο, ζςτω F, θ οποία κα παίρνει τιμι 1 όταν ικανοποιείται θ ςυνκικθ X = Y και τιμι 0 ςε όλεσ τισ άλλεσ περιπτϊςεισ. Για να ικανοποιείται θ ςυνκικθ X = Y, κα πρζπει να ιςχφει ταυτόχρονα 1 = 1 και 0 = 0. Πίνακασ αλικειασ: Λογικι ςυνάρτθςθ εξόδου: Χ 1 Χ 0 Υ 1 Υ 0 F Y 1 Y 0 X 1 X F = Σ(m 0, m 5, m 10, m 15 ) = = = = = = ( ) ( ) = ( 1 1 ) ( 0 0 ) Λογικό κφκλωμα: 1 1 F 0 0 Σθμείωςθ: Χρθςιμοποιϊντασ τθν ιδιότθτα τθσ λογικισ πράξθσ XNOR να δίνει ζξοδο 1 μόνο όταν οι δφο είςοδοί τθσ είναι ίςεσ, μποροφμε να προςδιορίςουμε απ ευκείασ τθ λογικι ςυνάρτθςθ F, χωρίσ να ακολουκιςουμε τθν κλαςικι μζκοδο ςχεδίαςθσ. Με βάςθ αυτι τθν ιδιότθτα τθσ λογικισ πράξθσ XNOR και το γεγονόσ ότι για να ικανοποιείται θ ςυνκικθ X = Y, κα πρζπει να ιςχφει ταυτόχρονα 1 = 1 ΚΑΙ 0 = 0, θ λογικι ςυνάρτθςθ τθσ εξόδου κα είναι: F = ( 1 1 ) AN ( 0 0 ).

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1 Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Αντικείμενο της άσκησης: Λογική και μεθοδολογία σχεδίασης αριθμητικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB.. Αθροιστές. Σχεδίαση

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

Αθροιστές. Ημιαθροιστής

Αθροιστές. Ημιαθροιστής Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Μετατροπεσ Παραςταςεων

Μετατροπεσ Παραςταςεων Δρ. Χρήστος Ηλιούδης Μεηαηποπή 346 10 ζε δςαδικο 346 10 1) 346/2 = 173 με ςπόλοιπο 0 2) 173/2 = 86 με ςπόλοιπο 1 3) 86/2 = 43 με ςπόλοιπο 0 4) 43/2 = 21 με ςπόλοιπο 1 5) 21/2 = 10 με ςπόλοιπο 1 6) 10/2

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων

Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων Πίνακεσ Διζγερςησ των FF Όπωσ είδαμε κατά τθ μελζτθ των FF, οι χαρακτθριςτικοί πίνακεσ δίνουν τθν τιμι τθσ επόμενθσ κατάςταςθσ κάκε FF ωσ ςυνάρτθςθ τθσ παροφςασ

Διαβάστε περισσότερα

Παραπάνω παρουςιάηεται ο πιο ςυνικθσ χωροκζτθςθ αρικμθτικϊν, λογικϊν κυκλωμάτων. Η μονάδα επεξεργαςίασ είναι θ λζξθ (λ.χ. 32-bit ςε επεξεργαςτζσ,

Παραπάνω παρουςιάηεται ο πιο ςυνικθσ χωροκζτθςθ αρικμθτικϊν, λογικϊν κυκλωμάτων. Η μονάδα επεξεργαςίασ είναι θ λζξθ (λ.χ. 32-bit ςε επεξεργαςτζσ, 1 2 3 4 Παραπάνω παρουςιάηεται ο πιο ςυνικθσ χωροκζτθςθ αρικμθτικϊν, λογικϊν κυκλωμάτων. Η μονάδα επεξεργαςίασ είναι θ λζξθ (λ.χ. 32-bit ςε επεξεργαςτζσ, 8-bit ςε DSP) και αυτι κακορίηει και τθν δομι τθσ

Διαβάστε περισσότερα

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3 ΑΣΚΗΣΗ 5 ΑΘΡΟΙΣΤΕΣ - ΑΦΑΙΡΕΤΕΣ 5.1. ΣΚΟΠΟΣ Η πραγματοποίηση της αριθμητικής πρόσθεσης και αφαίρεσης με λογικά κυκλώματα. 5.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ: Κάθε σύστημα αρίθμησης χαρακτηρίζεται

Διαβάστε περισσότερα

HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων.

HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων. HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων Διδάςκων: Χ. Σωτηρίου, Βοηθοί: Ε. Κουναλάκησ, Π. Ματτθαιάκησ http://www.csd.uoc.gr/~hy220 1 ΗΥ220 - Διάλεξθ 7θ - Αρικμθτικά Κυκλϊματα Κυκλϊματα Πρόςκεςθσ Half-adder

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

HY437 Αλγόριθμοι CAD

HY437 Αλγόριθμοι CAD HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 ΗΥ437 - Πολυεπίπεδθ Λογικι Απλοποίθςθ με Περιεχόμενα Είδθ Αδιάφορων Τιμϊν ςε Πολφ-επίπεδα Δυαδικά Δίκτυα Αδιάφορεσ

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 1 : Ειςαγωγι. Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 1 : Ειςαγωγι. Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 1 : Ειςαγωγι Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα Τμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 1: Ειςαγωγι Φϊτιοσ

Διαβάστε περισσότερα

Ακολουκιακά Λογικά Κυκλώματα

Ακολουκιακά Λογικά Κυκλώματα Ακολουκιακά Λογικά Κυκλώματα Τα ψθφιακά λογικά κυκλϊματα που μελετιςαμε μζχρι τϊρα ιταν ςυνδυαςτικά κυκλϊματα. Στα ςυνδυαςτικά κυκλϊματα οι ζξοδοι ςε κάκε χρονικι ςτιγμι εξαρτϊνται αποκλειςτικά και μόνο

Διαβάστε περισσότερα

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο κεφάλαιο 8 τριγωνομετρία Α βαςικζσ ζννοιεσ τθν τριγωνομετρία χρθςιμοποιοφμε τουσ τριγωνομετρικοφσ αρικμοφσ, οι οποίοι ορίηονται ωσ εξισ: θμω = απζναντι κάκετθ πλευρά υποτείνουςα Γ ςυνω = εφω = προςκείμενθ

Διαβάστε περισσότερα

4.1 Θεωρητική εισαγωγή

4.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ Αριθμητικά Συςτήματα Ζνασ αριθμόσ m-ψηφίων και βάςησ b, γράφεται ωσ μια ακολουθία m-ψηφίων. x = xm-1xm-2 x1x0 Όπου τα ψηφία xi ανήκουν ςτο διάςτημα 0 xi b-1 Ζτςι, η τιμή

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά

Διαβάστε περισσότερα

Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων

Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων Ιςοηυγιςμζνα δζντρα και Β- δζντρα Δομζσ Δεδομζνων Περιεχόμενα Ιςοηυγιςμζνα δζντρα Μζκοδοι ιςοηφγιςθσ δζντρων Μονι Περιςτροφι Διπλι Περιςτροφι Β - δζντρα Ιςοηυγιςμζνα δζντρα Η μορφι ενόσ δυαδικοφ δζντρου

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 10 : Καταχωρθτζσ Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 10 : Καταχωρθτζσ Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 10 : Καταχωρθτζσ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 10: Καταχωρθτζσ Φϊτιοσ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Άθροιση + + + + a +b 2c+s + Κρατούµενο προηγούµενης βαθµίδας κρατούµενο άθροισµα Μεταφέρεται στην επόµενη βαθµίδα σηµαντικότητας

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΗΜΥ 00 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Δυαδική λογική Πύλες AND, OR, NOT, NAND,

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ

ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ Λογικι πρόταςθ: Με τον όρο λογικι πρόταςθ (ι απλά πρόταςθ) ςτα μακθματικά, εννοοφμε μια ζκφραςθ με πλιρεσ νόθμα που δζχεται τον χαρακτθριςμό ι μόνο αλθκισ ι μόνο ψευδισ. Παραδείγματα:

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία) ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.

Διαβάστε περισσότερα

= = 124

= = 124 Λζξεισ Κάκε μακθτισ μζςα ςτθν ομάδα κα πρζπει να ζχει μια αρικμομθχανι. Ζνασ μακθτισ κα διαβάηει φωναχτά τουσ αρικμοφσ. Οι υπόλοιποι μακθτζσ κα τουσ γράφουν ςτθν αρικμομθχανι πατϊντασ κάκε φορά το πλικτρο

Διαβάστε περισσότερα

ΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ

ΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ ΜΑ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο -, Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, Μαρτίου, Διάρκεια: ώρεσ ΟΝΟΜΑ: Αρ. Πολ. Σαυτ. Πρόβλημα. Θεωροφμε τα διανφςματα u =,,,, v =,,,4, w =,,,, (α) Υπολογίςτε

Διαβάστε περισσότερα

ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών

ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.3 : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών Στόχοι Μαθήματος: Να γνωρίσετε τις βασικές αρχές αριθμητικής των Η/Υ. Ποια είναι τα κυκλώματα

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση

Διαβάστε περισσότερα

Μετατροπεσ Παραςταςεων

Μετατροπεσ Παραςταςεων Δρ. Χρήζηος Ηλιούδης Μεηαηποπή 346 10 ζε δςαδικο 346 10 1) 346/2 = 173 με ςπόλοιπο 0 2) 173/2 = 86 με ςπόλοιπο 1 3) 86/2 = 43 με ςπόλοιπο 0 4) 43/2 = 21 με ςπόλοιπο 1 5) 21/2 = 10 με ςπόλοιπο 1 6) 10/2

Διαβάστε περισσότερα

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη

Διαβάστε περισσότερα

Ενδεικτικζσ Λφςεισ Θεμάτων

Ενδεικτικζσ Λφςεισ Θεμάτων c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα

Διαβάστε περισσότερα

Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 4

Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 4 Τμήμα Μησανικών Πληποφοπικήρ, Τ.Ε.Ι. Ηπείπος Ακαδημαϊκό Έτορ 2016-2017, 6 ο Εξάμηνο Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 4 Διδάςκων Τςιακμάκθσ Κυριάκοσ, Phd MSc in Electronic Physics (Radioelectrology)

Διαβάστε περισσότερα

Ψθφιακά Ηλεκτρονικά. Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ

Ψθφιακά Ηλεκτρονικά. Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Τμιμα

Διαβάστε περισσότερα

Ψηφιακή Λογική και Σχεδίαση

Ψηφιακή Λογική και Σχεδίαση Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ

Διαβάστε περισσότερα

ΣΕΙ ΕΡΡΩΝ ΜΑΙΟ 2013 ΠΣΤΧΙΑΚΗ ΕΡΓΑΙΑ ΣΙΜΕΝΙΔΗ ΣΕΦΑΝΟ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΣΗ : ΜΑΔΕΜΛΗ ΙΩΑΝΝΗ

ΣΕΙ ΕΡΡΩΝ ΜΑΙΟ 2013 ΠΣΤΧΙΑΚΗ ΕΡΓΑΙΑ ΣΙΜΕΝΙΔΗ ΣΕΦΑΝΟ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΣΗ : ΜΑΔΕΜΛΗ ΙΩΑΝΝΗ ΣΕΙ ΕΡΡΩΝ ΜΑΙΟ 2013 ΠΣΤΧΙΑΚΗ ΕΡΓΑΙΑ ΠΟΤΔΑΣΕ: ΛΑΔΑ ΧΡΙΣΙΝΑ ΣΙΜΕΝΙΔΗ ΣΕΦΑΝΟ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΣΗ : ΜΑΔΕΜΛΗ ΙΩΑΝΝΗ ΘΕΜΑ: ΧΕΔΙΑΗ ΚΑΙ ΤΛΟΠOΙΗΗ ΕΚΠΑΙΔΕΤΣΙΚΩΝ ΑΝΑΠΣΤΓΜΑΣΩΝ ΜΕΛΕΣΗ ΨΗΦΙΑΚΩΝ ΚΤΚΛΩΜΑΣΩΝ ΚΑΙ ΤΓΓΡΑΦΗ

Διαβάστε περισσότερα

Λογικά Ψθφιακά Κυκλϊματα

Λογικά Ψθφιακά Κυκλϊματα Λογικά Ψθφιακά Κυκλϊματα Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ Βαςικεσ λογικεσ ςυναρτηςεισ Βαςικεσ πυλεσ Συνθετεσ πυλεσ ςυνδυαςτικά κυκλώματα 2 λογικά ψθφιακά κυκλϊματα Ονομάηουμε λογικά ψθφιακά κυκλϊματα,

Διαβάστε περισσότερα

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.

Διαβάστε περισσότερα

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ Πρόλογοσ το άρκρο αυτό κα δοφμε πωσ διαμορφϊνονται κάποιεσ ζννοιεσ όπωσ το εςωτερικό γινόμενο διανυςμάτων, οι ςυνκικεσ κακετότθτασ και παραλλθλίασ διανυςμάτων και ευκειϊν, ο ςυντελεςτισ διευκφνςεωσ διανφςματοσ

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

Ψηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων

Ψηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων Ψηφιακά Συστήματα 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd

Διαβάστε περισσότερα

ΑΝΩΣΑΣΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΠΕΙΡΑΙΑ ΣΕΧΝΟΛΟΓΙΚΟΤ ΣΟΜΕΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΤΣΟΜΑΣΙΜΟΤ Σ.Ε.

ΑΝΩΣΑΣΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΠΕΙΡΑΙΑ ΣΕΧΝΟΛΟΓΙΚΟΤ ΣΟΜΕΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΤΣΟΜΑΣΙΜΟΤ Σ.Ε. ΑΝΩΣΑΣΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΠΕΙΡΑΙΑ ΣΕΧΝΟΛΟΓΙΚΟΤ ΣΟΜΕΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΤΣΟΜΑΣΙΜΟΤ Σ.Ε. ΤΣΗΜΑΣΑ ΑΤΣΟΜΑΣΟΤ ΕΛΕΓΧΟΤ Ι ΑΚΗΕΙ ΠΡΑΞΗ Καθηγητήσ: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΤΛΟ Καθ. Εφαρμ:. ΒΑΙΛΕΙΑΔΟΤ

Διαβάστε περισσότερα

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα, Ενδεικτική Οργάνωςη Ενοτήτων Α Σάξη Α/ Μαθηματικό περιεχόμενο Δείκτεσ Επιτυχίασ Ώρεσ Α Διδ. 1 ΕΝΟΣΗΣΑ 1 Αλ1.1 υγκρίνουν και ταξινομοφν αντικείμενα ςφμφωνα με κάποιο χαρακτθριςτικό/κριτιριο/ιδιότθτά Ομαδοποίθςθ,

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ

3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 1 2 3 4 5 6 7 Παραπάνω φαίνεται θ χαρακτθριςτικι καμπφλθ μετάβαςθσ δυναμικοφ (voltage transfer characteristic) για ζναν αντιςτροφζα,

Διαβάστε περισσότερα

Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου

Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου Ψηφιακή Σχεδίαση Εργαστηριο 1 Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΕΡΓΑΛΕΙΑ ΕΡΓΑΣΤΗΡΙΟ Το εργαλείο που θα χρησιμοποιηθεί

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

"My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch

My Binary Logic Ένας προσομοιωτής λογικών πυλών στο Scratch "My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch Καραγιάννη Ελένη 1, Καραγιαννάκη Μαρία-Ελένη 2, Βασιλειάδης Αθανάσιος 3, Κωστουλίδης Αναστάσιος-Συμεών 4, Μουτεβελίδης Ιωάννης-Παναγιώτης 5,

Διαβάστε περισσότερα

Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Γενικές Γραμμές Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί Ημιαθροιστής - Ημιαφαιρέτης Πλήρης Αθροιστής - Πλήρης Αφαιρέτης Αθροιστής Διάδοσης Κρατούμενου Επαναληπτικές

Διαβάστε περισσότερα

lim x και lim f(β) f(β). (β > 0)

lim x και lim f(β) f(β). (β > 0) . Δίνεται θ παραγωγίςιμθ ςτο * α, β + ( 0 < α < β ) ςυνάρτθςθ f για τθν οποία ιςχφουν: f(α) lim (-) a και lim ( f(β)) = Να δείξετε ότι: α. f(α) < α και f(β) > β β. Αν g() = τότε θ C f και C g ζχουν ζνα

Διαβάστε περισσότερα

7. ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ

7. ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ 7. ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΗΜΙΑΘΡΟΙΣΤΗΣ ΠΛΗΡΗΣ ΑΘΡΟΙΣΤΗΣ ΗΜΙΑΦΑΙΡΕΤΗΣ ΠΛΗΡΗΣ ΑΦΑΙΡΕΤΗΣ ΠΑΡΑΛΛΗΛΟΣ

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1 ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4. Να γίνει πρόγραμμα το οποίο να επιλφει το Διαγώνιο Σφςτθμα: A ι το ςφςτθμα : ι ςε μορφι εξιςώςεων το ςφςτθμα : Αλγόρικμοσ m(). Διαβάηουμε τθν τιμι του ( θ διάςταςθ του Πίνακα Α )..

Διαβάστε περισσότερα

Διάδοση θερμότητας σε μία διάσταση

Διάδοση θερμότητας σε μία διάσταση Διάδοση θερμότητας σε μία διάσταση Η θεωρητική μελζτη που ακολουθεί πραγματοποιήθηκε με αφορμή την εργαςτηριακή άςκηςη μζτρηςησ του ςυντελεςτή θερμικήσ αγωγιμότητασ του αλουμινίου, ςτην οποία διαγωνίςτηκαν

Διαβάστε περισσότερα

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f. .. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται

Διαβάστε περισσότερα

HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων. 9/28/ ΗΥ220 - Διάλεξθ 3θ, Επανάλθψθ

HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων.  9/28/ ΗΥ220 - Διάλεξθ 3θ, Επανάλθψθ HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων Διδάςκων: Χ. Σωτηρίου, Βοηθοί: Ε. Κουναλάκησ, Π. Ματτθαιάκησ http://www.csd.uoc.gr/~hy220 1 Περιεχόμενα Συςτιματα Αρικμϊν και Δυαδικοί Αρικμοί Ψθφιακι Λογικι Ηλεκτρικά

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

Δϋ Δθμοτικοφ 12 θ Κυπριακι Μακθματικι Ολυμπιάδα Απρίλιοσ 2011

Δϋ Δθμοτικοφ 12 θ Κυπριακι Μακθματικι Ολυμπιάδα Απρίλιοσ 2011 1. Αν τϊρα είναι Απρίλθσ, ποιοσ μινασ κα είναι μετά από 100 μινεσ; Α. Απρίλθσ Β. Αφγουςτοσ. Σεπτζμβρθσ Δ. Μάρτθσ Ε. Ιοφλθσ 2. Ποιο είναι το αποτζλεςμα των πιο κάτω πράξεων; ; Α. 135 Β. 27. 63 Δ. 21 Ε.

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ VLSI. Ασκήσεις Ι. Γ. Τσιατούχας. Πανεπιςτιμιο Ιωαννίνων. Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18

ΚΥΚΛΩΜΑΤΑ VLSI. Ασκήσεις Ι. Γ. Τσιατούχας. Πανεπιςτιμιο Ιωαννίνων. Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18 ΚΥΚΛΩΜΑΤΑ LSI Πανεπιςτιμιο Ιωαννίνων Ασκήσεις Ι Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18 Γ. Τσιατούχας Άσκηση 1 1) Σχεδιάςτε τισ ςφνκετεσ COS λογικζσ πφλεσ (ςε επίπεδο τρανηίςτορ) που υλοποιοφν τισ

Διαβάστε περισσότερα

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/

Διαβάστε περισσότερα

ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ

ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ Οριςμόσ: Με τον όρο αδράνεια ςτθ Φυςικι ονομάηεται θ χαρακτθριςτικι ιδιότθτα των ςωμάτων να αντιςτζκονται

Διαβάστε περισσότερα

9 ο Μαθητικό Συνέδριο Πληροφορικής Κεντρικής Μακεδονίας. "My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch

9 ο Μαθητικό Συνέδριο Πληροφορικής Κεντρικής Μακεδονίας. My Binary Logic Ένας προσομοιωτής λογικών πυλών στο Scratch 9 ο Μαθητικό Συνέδριο Πληροφορικής Κεντρικής Μακεδονίας Θεσσαλονίκη, 25-28 Απριλίου 2017, ΝΟΗΣΙΣ "My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch Κωνσταντίνος Παρασκευόπουλος Καθηγητής Πληροφορικής

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση υαδική Πρόσθεση

Διαβάστε περισσότερα

Η γλώςςα προγραμματιςμού C

Η γλώςςα προγραμματιςμού C Η γλώςςα προγραμματιςμού C Οι εντολζσ επανάλθψθσ (while, do-while, for) Γενικά για τισ εντολζσ επανάλθψθσ Συχνά ςτο προγραμματιςμό είναι επικυμθτι θ πολλαπλι εκτζλεςθ μιασ ενότθτασ εντολϊν, είτε για ζνα

Διαβάστε περισσότερα

Η κανονική μορφή της συνάρτησης που υλοποιείται με τον προηγούμενο πίνακα αληθείας σε μορφή ελαχιστόρων είναι η Q = [A].

Η κανονική μορφή της συνάρτησης που υλοποιείται με τον προηγούμενο πίνακα αληθείας σε μορφή ελαχιστόρων είναι η Q = [A]. Κανονική μορφή συνάρτησης λογικής 5. Η κανονική μορφή μιας λογικής συνάρτησης (ΛΣ) ως άθροισμα ελαχιστόρων, από τον πίνακα αληθείας προκύπτει ως εξής: ) Παράγουμε ένα [A] όρων από την κάθε σειρά για την

Διαβάστε περισσότερα

Δυαδικοσ πολλαπλαςιαςμοσ και διαιρεςη ακεραιων

Δυαδικοσ πολλαπλαςιαςμοσ και διαιρεςη ακεραιων Δυαδικοσ πολλαπλαςιαςμοσ και διαιρεςη ακεραιων Δρ. Χρήστος Ηλιούδης Πολλαπλαςιαςμόσ μη προςημαςμζνων ακεραίων βρίςκουμε ζνα άκροιςμα το οποίο αποτελείται από μετατοπιςμζνα γινόμενα, τα οποία προζκυψαν

Διαβάστε περισσότερα

HY430 Εργαστήριο Ψηφιακών Κυκλωμάτων.

HY430 Εργαστήριο Ψηφιακών Κυκλωμάτων. HY430 Εργαστήριο Ψηφιακών Κυκλωμάτων Διδάσκων: Χ. Σωτηρίου, Βοηθός: (θα ανακοινωθεί) http://inf-server.inf.uth.gr/courses/ce430/ 1 Περιεχόμενα Κυκλώματα Πρόσθεσης Half-adder Full-Adder Σειριακό Κρατούμενο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ

Διαβάστε περισσότερα

2

2 1 2 3 Η βαςικι λειτουργία του τρανηίςτορ είναι να διακόπτει ι να επιτρζπει τθν παροχι ρεφματοσ μεταξφ των δυο του άκρων, βάςθ του δυναμικοφ ςτθν πφλθ του, είναι δθλαδι ζνασ θλεκτρικόσ διακόπτθσ ελεγχόμενοσ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 5. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Β 2 Επαναληπτική

Διαβάστε περισσότερα

Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης

Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης Γ2.1 Στοιχεία Αρχιτεκτονικής Γ Λυκείου Κατεύθυνσης Ορισμός άλγεβρας Boole Η άλγεβρα Boole ορίζεται, ως μία αλγεβρική δομή A, όπου: (α) Το Α είναι ένα σύνολο στοιχείων που περιέχει δύο τουλάχιστον στοιχεία

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΔΥΑΣΤΙΚΗ ΛΟΓΙΚΗ 2017, Δρ. Ηρακλής Σπηλιώτης Συνδυαστικά και ακολουθιακά κυκλώματα Τα λογικά κυκλώματα χωρίζονται σε συνδυαστικά (combinatorial) και ακολουθιακά (sequential).

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 9: Διαδικαςία φνκεςθσ Φϊτιοσ

Διαβάστε περισσότερα

ΣΟΙΧΕΙΟΜΕΣΡΙΚΟΙ ΤΠΟΛΟΓΙΜΟΙ

ΣΟΙΧΕΙΟΜΕΣΡΙΚΟΙ ΤΠΟΛΟΓΙΜΟΙ ΣΟΙΧΕΙΟΜΕΣΡΙΚΟΙ ΤΠΟΛΟΓΙΜΟΙ Σε κάκε χθμικι αντίδραςθ οι ποςότθτεσ των ουςιϊν που αντιδροφν και παράγονται ζχουν οριςμζνθ ςχζςθ μεταξφ τουσ, θ οποία κακορίηεται από τουσ ςυντελεςτζσ των ουςιϊν ςτθ χθμικι

Διαβάστε περισσότερα

HY437 Αλγόριθμοι CAD

HY437 Αλγόριθμοι CAD HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 Περιεχόμενα Κυβικι Κωδικοποίθςθ κατά Θζςθ και Πράξεισ Σομι, Τπερ-κφβοσ, Απόςταςθ, Κάλυψθ, υν-παράγοντασ Ευριςτικόσ

Διαβάστε περισσότερα

Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ

Διαχείριςθ του φακζλου public_html ςτο ΠΣΔ Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ Οι παρακάτω οδθγίεσ αφοροφν το χριςτθ webdipe. Για διαφορετικό λογαριαςμό χρθςιμοποιιςτε κάκε φορά το αντίςτοιχο όνομα χριςτθ. = πατάμε αριςτερό κλικ ςτο Επιςκεφκείτε

Διαβάστε περισσότερα

HY121 Ηλεκτρικϊ Κυκλώματα

HY121 Ηλεκτρικϊ Κυκλώματα HY121 Ηλεκτρικϊ Κυκλώματα Διδϊςκων: Χ. ωτηρύου, Βοηθού: Ε. Βαςιλϊκησ, Δ. Πούλιοσ http://www.csd.uoc.gr/~hy121 1 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας. Ηλεκτρονικά ΙΙ

ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας. Ηλεκτρονικά ΙΙ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας Ηλεκτρονικά ΙΙ Πέμπτη 3/3/2011 Διδάζκων: Γιώργος Χαηζηιωάννοσ Τηλέθωνο: 99653828 Ε-mail: georghios.h@cytanet.com.cy Ώρες

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο

Διαβάστε περισσότερα

Θ διαδικαςία κοςτολόγθςθσ εφρεςθσ του κόςτουσ παραγωγισ των προϊόντων χωρίηεται ςε διαφορετικζσ τεχνικζσ μεκόδουσ: Α) Την απορροφητική ή πλήρη κοςτολόγηςη Β) Την οριακή ή άμεςη κοςτολόγηςη Απορροφητική

Διαβάστε περισσότερα

Ραραπάνω παρουςιάηεται ο πυρινασ των εντολϊν του επεξεργαςτι MIPS, με τισ οποίεσ, και τθν υλοποίθςθ τουσ ςε υλικό κα αςχολθκοφμε.

Ραραπάνω παρουςιάηεται ο πυρινασ των εντολϊν του επεξεργαςτι MIPS, με τισ οποίεσ, και τθν υλοποίθςθ τουσ ςε υλικό κα αςχολθκοφμε. 1 2 3 Ραραπάνω παρουςιάηεται ο πυρινασ των εντολϊν του επεξεργαςτι MIPS, με τισ οποίεσ, και τθν υλοποίθςθ τουσ ςε υλικό κα αςχολθκοφμε. 4 5 Ραραπάνω φαίνονται τα απαιτοφμενα βιματα για τθν εκτζλεςθ κάθε

Διαβάστε περισσότερα

ΣΕΙ ΔΤΣ. ΜΑRΚΕΔΟΝΙΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΙΑ ΜΑΘΗΜΑ: ΗΛΕΚΣΡΟΣΕΧΝΙΑ Ι

ΣΕΙ ΔΤΣ. ΜΑRΚΕΔΟΝΙΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΙΑ ΜΑΘΗΜΑ: ΗΛΕΚΣΡΟΣΕΧΝΙΑ Ι ΣΕΙ ΔΤΣ. ΜΑRΚΕΔΟΝΙΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΙΑ ΜΑΘΗΜΑ: ΗΛΕΚΣΡΟΣΕΧΝΙΑ Ι Λφσεις Θεμάτων Εξετάσεων Χειμερινοφ Εξαμήνου Περιόδου 200-20 4 Φεβρουαρίου 20 (Ν. Πουλάκθσ, e-mail: Poulakis@kozani.teikoz.gr

Διαβάστε περισσότερα

Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία).

Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία). Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία). Από τθν τράπεηα κεμάτων Α_ΧΘΜ_0_20651 Διακζτουμε υδατικό διάλυμα (Δ1) KOH 0,1 Μ. α)να υπολογίςετε τθν % w/v περιεκτικότθτα του

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

Μονάδες 6. Μονάδες ΓΑΨΕ Δεν υπάρχει ρίηα 2. ΑΝ Α>0 ΤΟΤΕ 3. ΤΕΛΟΣ_ΑΝ 4. ΑΛΛΙΩΣ 5. ίηα Τ_(Α)

Μονάδες 6. Μονάδες ΓΑΨΕ Δεν υπάρχει ρίηα 2. ΑΝ Α>0 ΤΟΤΕ 3. ΤΕΛΟΣ_ΑΝ 4. ΑΛΛΙΩΣ 5. ίηα Τ_(Α) 50 Χρόνια ΦΡΟΝΣΙΣΗΡΙΑ ΜΕΗ ΕΚΠΑΙΔΕΤΗ ΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΣΙ : Φιλολάου & Εκφαντίδου 26 : Σηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΑΝΑΡΤΥΞΗ ΕΦΑΜΟΓΩΝ ΣΕ ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ Γϋ ΛΥΚΕΙΟΥ 2011 ΘΕΜΑ Α I. Η ςειριακι

Διαβάστε περισσότερα

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox 03 05 ΙΛΤΔΑ ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε. αρμά Ιηαμπζλλα Βαρλάμθσ Νίκοσ Ειςαγωγι... 1 Σι είναι το Databox...... 1 Πότε ανανεϊνεται...... 1 Μπορεί να εφαρμοςτεί

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Slide 1. Εισαγωγή στη ψυχρομετρία

Slide 1. Εισαγωγή στη ψυχρομετρία Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν

Διαβάστε περισσότερα

HY437 Αλγόριθμοι CAD

HY437 Αλγόριθμοι CAD HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 Περιεχόμενα Κανονικζσ Μορφζσ Οριςμόσ των Δυαδικών Διαγραμμάτων Αποφάςεων (Binary Decision Diagrams BDDs) Αναπαράςταςθ

Διαβάστε περισσότερα

HY437 Αλγόριθμοι CAD

HY437 Αλγόριθμοι CAD HY437 Αλγόριθμοι CAD Διδϊςκων: Χ. Σωτηρύου http://inf-server.inf.uth.gr/courses/ce437/ 1 Περιεχόμενα Στόχοι τθσ Τεχνολογικισ Απεικόνιςθσ Περιγραφι σ ωσ Βαςικοί Γράφοι Μεταςχθματιςμόσ Δυαδικοφ Κυκλϊματοσ

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 4 η : Όρια και Συνζχεια Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί

Διαβάστε περισσότερα