Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής
|
|
- Ιππόλυτος Ιωαννίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής
2 Σκοποί ενότητας Κατά τη διάρκεια των καθημερινών μας συναλλαγών σε τράπεζες, υπηρεσίες, διόδια, κλπ «πελάτες» είμαστε εμείς και πόροι του συστήματος είναι συνήθως οι υπάλληλοι που μας εξυπηρετούν. Σε ένα πληροφοριακό σύστημα οι «πελάτες» είναι οι αιτήσεις χρήσης μιας CPU από ένα πρόγραμμα, τα πακέτα δεδομένων σε ένα δίκτυο και αντίστοιχα ως πόροι του συστήματος ο χρόνος της CPU, το κανάλι μετάδοσης των πακέτων κ.λ.π. Προκειμένου να μελετήσουμε ένα σύστημα αναμονής, χρησιμοποιούμε μοντέλα αναμονής (queueing odels), τα οποία είναι μαθηματικά μοντέλα. Η παρούσα ενότητα ασχολείται με την αναλυτική λύση των μοντέλων αναμονής. Τα θεωρητικά εργαλεία που χρησιμοποιούνται για το σκοπό αυτό και τη θεωρία αναμονής (queueing heory). 2
3 Ορισμός συστημάτων αναμονής () Συστήματα αναμονής (Queueing Syses): Συστήματα στα οποία οι αφίξεις «πελατών» δημιουργούν απαιτήσεις εξυπηρέτησης από πόρους πεπερασμένης δυνατότητας εξυπηρέτησης. Σχηματίζονται «ουρές», όταν δημιουργούνται απαιτήσεις σύγχρονης χρησιμοποίησης πόρων. 3
4 Ορισμός συστημάτων αναμονής (2) Οι ουρές επηρεάζονται από τη μέση τιμή και τη στατιστική διακύμανση του ρυθμού αφίξεων. Ανεξέλεγκτες ουρές όταν: μέση τιμή ρυθμού αφίξεων > μέγιστη δυνατότητα εξυπηρέτησης Σχηματισμός ουρών λόγω στατιστικών διακυμάνσεων αφίξεων Θεωρία αναμονής (Queueing Theory): ασχολείται με τη μελέτη συστημάτων, η απόδοση των οποίων επηρεάζεται από φαινόμενα αναμονής. 4
5 Φορτίο εργασίας συστημάτων αναμονής (Μη-εκτελέσιμο) Συνάρτηση Κατανομής Πιθανότητας των χρόνων μεταξύ διαδοχικών αφίξεων (Χ.Α.) A() = Prob[χρόνος μεταξύ διαδοχικών αφίξεων ] Συνάρτηση Κατανομής Πιθανότητας του χρόνου εξυπηρέτησης ενός πελάτη (Χ.Ε.) B(x) = Prob[χρόνος εξυπηρέτησης x] Συνήθως υποθέτουμε ότι οι παραπάνω Στοχαστικές Διαδικασίες (ΣΔ) συγκροτούνται από ανεξάρτητες, όμοια κατανεμημένες Τυχαίες Μεταβλητές (ΤΜ) 5
6 Ένα Σύστημα Αναμονής Εξυπηρετητές Β(x) Αφίξεις Α() Ουρά 2 : 6
7 Άλλα μεγέθη περιγραφής του συστήματος Αριθμός εξυπηρετητών (servers) στο σύστημα. Χωρητικότητα του συστήματος σε πελάτες Κ (defaul: K = ) Πληθυσμός υποψηφίων πελατών Μ (defaul: M = ) Πολιτική εξυπηρέτησης, δηλαδή ο τρόπος επιλογής πελατών από την ουρά για τον (τους) εξυπηρετητές. (defaul: FCFS ή FIFO) Κλάσεις πελατών (defaul: ) Ομάδες προτεραιότητας πελατών (defaul: ) Διαθεσιμότητα εξυπηρετητή (defaul: 00%) 7
8 Μετρικές απόδοσης Χρόνος απόκρισης response ie (συνολικός χρόνος στο σύστημα) για ένα πελάτη. Χρόνος αναμονής για ένα πελάτη. Αριθμός πελατών στο σύστημα. Χρησιμοποίηση (Uilizaion) του συστήματος. 8
9 Συμβολισμός συστημάτων αναμονής Α/Β/ Α, B: Συναρτήσεις κατανομής πιθανότητας Χ.Α και Χ.Ε αντίστοιχα. Εκφράζονται ως Μ ( για την εκθετική κατανομή). D (για τη ντετερμινιστική [σταθερή] κατανομή). Er (για την κατανομή Erlang r-βαθμίδων). G ( για ΟΠΟΙΑΔΗΠΟΤΕ ΚΑΤΑΝΟΜΗ) : αριθμός εξυπηρετητών Α/Β//K/M Κ : η χωρητικότητα του συστήματος Μ : το μέγεθος του πληθυσμού των πελατών όταν αυτά είναι διαφορετικά από Παράδειγμα: D/M/2//200 9
10 Αναπαράσταση συστήματος αναμονής A(), B(x) : αυθαίρετα εξυπηρετητές Αριθμούμε τους πελάτες με το δείκτη n και ορίζουμε C n τον n-οστό πελάτη που εισέρχεται στο σύστημα 0
11 Συμβολισμοί βασικών μεγεθών () Χρόνοι μεταξύ διαδοχικών αφίξεων: τ n χρονική στιγμή άφιξης του πελάτη C n n χρόνος μεταξύ των αφίξεων των C n-, C n = τ n τ n- για n 2 ( = τ ) Prob[ n ] = A(), δηλαδή το Α() είναι ανεξάρτητο του n μέσος χρόνος μεταξύ διαδοχικών αφίξεων Ρυθμός αφίξεων (arrival rae) των πελατών: Χρόνοι εξυπηρέτησης: x n χρόνος εξυπηρέτησης του C n Prob[x n x] = B(x) : μέσος χρόνος εξυπηρέτησης Ρυθμός εξυπηρέτησης (service rae) των πελατών : x
12 Συμβολισμοί βασικών μεγεθών (2) Χρόνος αναμονής ενός πελάτη στην ουρά: w n χρόνος αναμονής (στην ουρά) του C n. μέσος χρόνος αναμονής Συνολικός χρόνος ενός πελάτη στο σύστημα (χρόνος απόκρισης): s n χρόνος συστήματος (ουρά + εξυπηρέτηση) του C n = w n + x n μέσος χρόνος συστήματος ( ) 2
13 Χρονικό Διάγραμμα Συστήματος Αναμονής ( εξυπηρετητής FCFS) s n C n- C n C n+ C n+2 w n x n x n+ x n+2 Εξυπηρετητής C n C n+ C n+2 w n+ (w n+2 =0) Χρόνος Ουρά τ n τ n+ τ n+2 n+ n+2 C n C n+ C n+2 3
14 Νόμος του Lile () Ο μέσος αριθμός πελατών σε ένα σύστημα αναμονής είναι ίσος με το μέσο ρυθμό αφίξεων πελατών στο σύστημα επί το μέσο χρόνο που ξοδεύει ένας πελάτης σ αυτό. N T Για όρια του συστήματος μόνο στην ουρά N q W Για όρια συστήματος μόνο στον(-ους) εξυπηρετητή(-ές) N s x 4
15 Νόμος του Lile (2) Διαισθητική απόδειξη: ένας πελάτης που φθάνει στο σύστημα θα βρει μέσα κατά μέσο όρο τον ίδιο αριθμό πελατών N που θα υπάρχει όταν φύγει. Όμως κατά το διάστημα της παρουσίας του ήρθαν T πελάτες κατά μέσο όρο. Η τελευταία ποσότητα είναι οι πελάτες που αφήνει πίσω φεύγοντας. Ο Νόμος δίνει μια χρήσιμη σχέση μεταξύ ορισμένων βασικών μεγεθών ενός συστήματος αναμονής, αλλά δεν αποτελεί «λύση» στο γενικό μας πρόβλημα: Ουσιαστικά συνδέει ένα γνωστό μέγεθος εισόδου (λ), με δύο άγνωστα μεγέθη ( N, Τ ) τα οποία είναι μετρικές απόδοσης που θέλουμε να βρούμε. 5
16 Συντελεστής απασχόλησης Ο συντελεστής απασχόλησης ή χρησιμοποίηση ρ, ορίζεται ως ο λόγος του ρυθμού με τον οποίο εισέρχεται «δουλειά» στο σύστημα, προς το μέγιστο ρυθμό με τον οποίο το σύστημα μπορεί να εκτελέσει αυτή τη «δουλειά». Δηλαδή για εξυπηρετητή: ρ = (μέσος ρυθμός αφίξεων πελατών) x (μέσος χρόνος εξυπηρέτησης) / = Στην περίπτωση εξυπηρετητών: ρ = {Μέση τιμή του ποσοστού εξυπηρετητών που είναι απασχολημένοι} [Απoδεικνύεται με χρήση Ν. Lile] 6
17 Σταθερό σύστημα αναμονής Σταθερό σύστημα αναμονής, είναι αυτό στο οποίο δεν επιτρέπεται να δημιουργούνται ουρές ανεξέλεγκτου (άπειρου) μήκους. Σε ένα σταθερό σύστημα ισχύει 0 ρ < 7
18 G/G/ Έστω τ ένα αυθαίρετα μεγάλο χρονικό διάστημα. Κατά τη διάρκεια αυτού του διαστήματος περιμένουμε ο αριθμός των αφίξεων Α να είναι πολύ κοντά στην τιμή Επίσης, έστω p 0 η πιθανότητα ο εξυπηρετητής να είναι άεργος σε κάποιο τυχαία εκλεγμένο χρονικό διάστημα. Μπορούμε λοιπόν να πούμε ότι κατά τη διάρκεια του διαστήματος τ, ο εξυπηρετητής είναι απασχολημένος για p 0 sec και άρα ο αριθμός των πελατών που εξυπηρετούνται Β στο χρονικό διάστημα τ, είναι περίπου p 0 p Α = Β: 0 οπότε για τ, έχουμε: λ = - p x x 0 x Οπότε ρ = - p 0 όπου p 0 η πιθανότητα ο εξυπηρετητής να είναι άεργος σε κάποιο τυχαία εκλεγμένο χρονικό διάστημα 8
19 Στοχαστικές διαδικασίες Στοχαστική Διαδικασία (Σ.Δ.): ορίζεται ως μία οικογένεια Τυχαίων Μεταβλητών (Τ.Μ.), Χ(), όπου οι Τ.Μ. έχουν δεικτοδοτηθεί με τη χρονική παράμετρο. Παράγοντες ταξινόμησης στοχαστικών διαδικασιών ο χώρος καταστάσεων (οι τιμές που παίρνουν οι ΤΜ) πεπερασμένες ή αριθμήσιμες τιμές Σ.Δ. διακριτών-καταστάσεων (αλυσίδα). Ο χώρος καταστάσεων {0,, 2, } τιμές από ένα πεπερασμένο ή άπειρο συνεχές διάστημα Σ.Δ. συνεχώνκαταστάσεων η χρονική παράμετρος (επιτρεπτές χρονικές στιγμές αλλαγής κατάστασης) Σ.Δ. Διακριτού-χρόνου [ X n Στοχαστική Ακολουθία] Σ.Δ. Συνεχούς χρόνου [ X() ] η στατιστική σχέση μεταξύ των Τ.Μ. 9
20 Στατιστική σχέση μεταξύ των ΤΜ () Θέλουμε να προσδιορίσουμε την από κοινού PDF στις ΤΜ = [ X( ), X( 2 ),...], δηλαδή την: F x P X x X x ;,, X n n για όλα τα = (x, x 2,..., x n ), = (, 2,..., n ) και n. 20
21 Στατιστική σχέση μεταξύ των ΤΜ (2). Στάσιμες ΣΔ Αμετάβλητες στις ολισθήσεις στο χρόνο. Δηλαδή για οποιοδήποτε σταθερό τ, πρέπει: F x; F X όπου + τ = ( + τ, 2 + τ,..., n + τ). 2. Ανεξάρτητες ΣΔ x ; X Οι πιο απλές. Δεν υπάρχει καμία δομή ή εξάρτηση των Τ.Μ. τους: ;,, ;,, f X x ; f X nxn ; n f x f x x X X X n n n 2
22 Στατιστική σχέση μεταξύ των ΤΜ (3) 3. Διαδικασίες Marov Για μια Αλυσίδα Marov {X()}, η πιθανότητα ότι η επόμενη τιμή X( n+ ) θα είναι ίση με x n+, εξαρτάται μόνο από την παρούσα τιμή X( n ) = x n και όχι από οποιαδήποτε προηγούμενη (ΙΔΙΟΤΗΤΑ ΑΜΝΗΣΙΑΣ). Ιδιότητα Marov (για αλυσίδα Marov):,,..., P X x X x X x X x n n n n n n όπου < 2 <... < n < n+, ενώ τα x i περιέχονται σε κάποιο διακριτό χώρο καταστάσεων. Ο χρόνος παραμονής σε μια κατάσταση ακολουθεί την: Εκθετική Κατανομή (διαδικασία συνεχούς χρόνου), ή την - ισοδύναμη - Γεωμετρική Κατανομή (διαδικασία διακριτού χρόνου). 22
23 Στατιστική σχέση μεταξύ των ΤΜ (4) 4. Διαδικασίες Γεννήσεων - Θανάτων Κλάση των Διαδικασιών Marov: Οι αλλαγές κατάστασης γίνονται μόνο μεταξύ γειτονικών καταστάσεων. Δηλαδή αν Χ( n ) = i, τότε Χ( n+ ) = i - ή Χ( n+ ) = i + μόνο. 5. Διαδικασίες Sei Marov Επιτρέπουμε αυθαίρετη κατανομή του χρόνου που η διαδικασία μπορεί να παραμείνει σε μια κατάσταση. Η διαδικασία συμπεριφέρεται σαν Marov κατά τις χρονικές στιγμές αλλαγής κατάστασης, και στην πραγματικότητα σε αυτές τις στιγμές λέμε ότι έχουμε μια συμπυκνωμένη (ebedded) αλυσίδα Marov. Υπερσύνολο των διαδικασιών Marov. 23
24 Στατιστική σχέση μεταξύ των ΤΜ (5) 6. Τυχαίοι περίπατοι Η επόμενη θέση είναι ίση με την προηγούμενη θέση, συν μια τυχαία μεταβλητή Δηλαδή, μια ακολουθία ΤΜ {Sn} είναι τυχαίος περίπατος αν: S n = Χ +Χ Χ n όπου n =, 2,..., S 0 = 0 και Χ, Χ 2,... είναι ακολουθία ανεξάρτητων ΤΜ με κοινή κατανομή. 7. Διαδικασίες ανανέωσης Ειδική περίπτωση των τυχαίων περιπάτων. S n είναι τώρα η ΤΜ που καθορίζει τη χρονική στιγμή στην οποία γίνεται η n- οστή μεταβολή κατάστασης και {Χ n } είναι ένα σύνολο ανεξάρτητων, όμοια κατανεμημένων ΤΜ, όπου η Χ n αντιπροσωπεύει το χρόνο μεταξύ της (n-)- οστής και n-οστής μεταβολής κατάστασης. Οι μεταβολές γίνονται μόνο μεταξύ γειτονικών καταστάσεων. 24
25 Σχέσεις των κλάσεων Στοχαστικών Διαδικασιών P: Poisson 25
26 Αλυσίδες Marov διακριτού χρόνου Η ΣΔ καταλαμβάνει διακριτές θέσεις και οι αλλαγές μεταξύ αυτών των θέσεων γίνονται μόνο σε διακριτές χρονικές στιγμές Η υπό συνθήκη πιθανότητα να γίνει η μετάβαση της διαδικασίας από την κατάσταση Ε i όπου είναι στο βήμα (n-), στην κατάσταση E j κατά το βήμα n P X j X i X i, X i PX j X i n, 2 2, n n n n n πιθανότητα μετάβασης ενός βήματος 26
27 Ομογενείς αλυσίδες Marov Αν οι πιθανότητες μετάβασης ενός βήματος είναι ανεξάρτητες του n, τότε έχουμε μια ομογενή αλυσίδα Marov. Ορίζουμε: Πιθανότητες μετάβασης -βημάτων p P X j X i ij n n ( p ) P X j X i ij n n Εύκολα βγαίνει: ( ) ij p p ( i Δηλαδή, αν πρόκειται να «ταξιδέψουμε» από την Ε i στην E j μέσα σε βήματα, πρέπει να το κάνουμε «ταξιδεύοντας» πρώτα από την Ε i σε κάποια Ε μέσα σε (-) βήματα και μετά από την Ε στην Ε j στο επόμενο βήμα ) p j 27
28 Ορισμοί για αλυσίδες Μarov () Αμείωτη: κάθε κατάσταση της μπορεί να προσπελασθεί από όλες τις υπόλοιπες καταστάσεις. Δηλαδή, υπάρχει ένας ακέραιος 0 για κάθε ζευγάρι καταστάσεων Ε i, Ε j : Ένα υποσύνολο καταστάσεων Α λέγεται κλειστό αν δεν είναι δυνατή καμία μετάβαση ενός βήματος από οποιαδήποτε κατάσταση του Α σε οποιαδήποτε κατάσταση εκτός του Α. Αν το Α αποτελείται από μια μόνο κατάσταση, έστω Ε i, τότε αυτή καλείται απορροφητική κατάσταση. Μια αναγκαία και ικανή συνθήκη ώστε να είναι η E i απορροφητική, είναι p ii =. Αν μία αλυσίδα περιέχει κλειστά υποσύνολα η αλυσίδα λέγεται μειώσιμη. 28
29 Ορισμοί για αλυσίδες Μarov (2) f j (n) Prob [Η πρώτη επιστροφή στην Ε j γίνεται μετά από n βήματα από την αναχώρηση από την Ε j ] f j = = Prob[ Κάποτε να επιστρέψουμε στην Ε j ] Αν η πιθανότητα να επιστρέψουμε κάποτε στην κατάσταση Ε j, f j, είναι f j =, η κατάσταση Ε j λέγεται επαναληπτική. Αν f j <, λέγεται μεταβατική. 29
30 Ορισμοί για αλυσίδες Μarov (3) Αν τα μόνα δυνατά βήματα κατά τα οποία μπορούμε να επιστρέψουμε στην Ε j είναι γ, 2γ, 3γ,..., (γ ο μεγαλύτερος τέτοιος ακέραιος) τότε η Ε j λέγεται περιοδική με περίοδο γ. Αν γ = τότε η Ε j είναι μη-περιοδική. Για τις καταστάσεις με f j =, ορίζουμε το Μέσο Χρόνο Επανάληψης της (επιστροφής στην) Ε j : M j nf n (n) j Αν ο μέσος χρόνος επιστροφής στην Ε j, Μ j, είναι Μ j =, η Ε j λέγεται μηδενικά επαναληπτική, ενώ αν είναι Μ j <, η Ε j λέγεται βέβαια επαναληπτική. 30
31 Παραδείγματα ΜΕΙΩΣΙΜΗ ΑΛΥΣΙΔΑ P 33 = P 2 P 5 3 ΑΠΟΡΡΟΦΗΤΙ ΚΗ ΚΑΤΑΣΤΑΣΗ P 2 = ΚΛΕΙΣΤΟ ΥΠΟΣΥΝΟΛΟ 3 4 ΠΕΡΙΟΔΙΚΗ ΑΛΥΣΙΔΑ 3
32 Θεώρημα Οι καταστάσεις μιας αμείωτης αλυσίδας Marov είναι είτε όλες μεταβατικές, είτε όλες βέβαια επαναληπτικές ή όλες μηδενικά επαναληπτικές. Αν είναι περιοδικές, τότε όλες οι καταστάσεις έχουν την ίδια περίοδο γ. 32
33 Πιθανότητες μόνιμης κατάστασης ( n) π j P X n j : Πιθανότητα να βρεθεί το σύστημα (η αλυσίδα Marov) στην κατάσταση E j κατά το n-στο βήμα. {π j } : στάσιμη κατανομή πιθανοτήτων που περιγράφει την πιθανότητα να βρεθεί το σύστημα στην κατάσταση E j κάποια χρονική στιγμή στο απώτερο μέλλον. Πιθανότητες Μόνιμης Κατάστασης: π liπ n Στην στάσιμη κατανομή, η επίδραση της κατανομής αρχικής κατάστασης {π j (0) } έχει εξαφανιστεί ( n) j Το να βρούμε τα {π j } είναι το πιο σημαντικό τμήμα της ανάλυσης των αλυσίδων Marov j 33
34 Θεώρημα 2 Σε μια αμείωτη και μη-περιοδική ομογενή αλυσίδα Marov, οι πιθανότητες μόνιμης κατάστασης υπάρχουν πάντα, και είναι ανεξάρτητες από την κατανομή της αρχικής κατάστασης. Επίσης ισχύει:. Είτε όλες οι καταστάσεις είναι μεταβατικές ή όλες είναι μηδενικά επαναληπτικές, οπότε π j = 0 και δεν υπάρχει κατανομή μόνιμης κατάστασης. 2. Είτε όλες οι καταστάσεις είναι βέβαια επαναληπτικές και τότε π j > 0 για όλα τα j, στην οποία περίπτωση το σύνολο {π j } είναι μια κατανομή μόνιμης κατάστασης και j Μ j Στην τελευταία περίπτωση οι ποσότητες π j καθορίζονται κατά μοναδικό τρόπο από τις εξής εξισώσεις: π i π j πi pij i i 34
35 Ορισμοί Marov αλυσίδων (συνέχεια) Μια κατάσταση Ε j λέγεται εργοδική, αν είναι μηπεριοδική και βέβαια επαναληπτική. Δηλαδή αν f j =, Μ j < και γ =. Αν όλες οι καταστάσεις μιας αλυσίδας Marov είναι εργοδικές, τότε η αλυσίδα Marov λέγεται και η ίδια εργοδική. 35
36 Παράδειγμα Διάγραμμα καταστάσεων - - πιθανοτήτων μεταβάσεων 36
37 Υπολογισμός πιθανοτήτων μόνιμης κατάστασης () pij πίνακας μεταβάσεων P διάνυσμα πιθανοτήτων Από το θεώρημα 2: π πp Στο παράδειγμα P = 0 3/ 4 / 4 / 4 0 3/ 4 / 4 / 4 / 2 37
38 Υπολογισμός πιθανοτήτων μόνιμης Λύνουμε τις εξισώσεις π 0 = 0 π 0 + /4π + /4π 2 π = 3/4 π π + /4 π 2 π 2 = /4 π 0 + 3/4 π +/2 π 2 = π 0 + π + π 2 Αποτέλεσμα: π 0 = /5 = 0.20 π = 7/25 = 0.28 π 2 = 3/25 = 0.52 κατάστασης (2) Πιθανότητες Μόνιμης Κατάστασης 38
39 Ανάλυση μεταβατικής συμπεριφοράς συστήματος () Υπολογισμός πιθανοτήτων π j (n) : η πιθανότητα να βρεθούμε στην κατάσταση Ε j τη χρονική στιγμή n. ( n) π ( n) (n) (n) π0,π,π 2,... διάνυσμα πιθανοτήτων στο βήμα n Ισχύει ότι ( n) ( n ) π π P ( n) ( 0) n π π ( P) 39
40 Ανάλυση μεταβατικής συμπεριφοράς συστήματος (2) Στο παράδειγμα των πόλεων, έστω ότι η αρχική κατανομή είναι η, δηλαδή αρχική πόλη είναι η Πάτρα. Στον παρακάτω πίνακα φαίνεται η ακολουθία τιμών των πιθανοτήτων σε κάθε βήμα. Οι ποσότητες συγκλίνουν πολύ γρήγορα προς τις οριακές τιμές της μόνιμης κατάστασης. 40
41 Χρόνος παραμονής σε μια κατάσταση Ρrob [ Το σύστημα να παραμείνει στην Ε i για ακριβώς επιπλέον βήματα, δεδομένου ότι έχει μόλις εισέλθει στην Ε i ] = ( - p ii ) p ii Γεωμετρική κατανομή (Ιδιότητα αμνησίας) 4
42 Αλυσίδες Marov συνεχούς χρόνου () Τα απλούστερα συστήματα: M/M//K Εκθετικά κατανεμημένοι χρόνοι μεταξύ διαδοχικών αφίξεων (Χ.Α.) A( ) e, 0 Εκθετικά κατανεμημένοι χρόνοι εξυπηρέτησης (Χ.Ε.) x B( x) e, x 0 42
43 Αλυσίδες Marov συνεχούς χρόνου (2) Ιδιότητα της αμνησίας: «ο χρόνος ως το επόμενο γεγονός, είναι ανεξάρτητος από το χρόνο που έχει περάσει από το τελευταίο γεγονός». ΑΦΙΞΕΙΣ: Αν έχει περάσει χρόνος 0 από την τελευταία άφιξη (του C n- ) Prob[ ] = Prob[ ] n 0 n 0 n ΑΝΑΧΩΡΗΣΕΙΣ: Αν έχει περάσει χρόνος x 0 εξυπηρέτησης του πελάτη C n x x Prob[ ] = Prob[ ] n x0 xn x 0 x n x 43
44 Αλυσίδες Marov συνεχούς χρόνου (3) P () για 0 K, 0 p li P ( ) = Prob[ πελάτες στο σύστημα τη χρονική στιγμή ] = Prob[ πελάτες στο σύστημα κάποια χρονική στιγμή στο μέλλον] Κατανομή μόνιμης κατάστασης. Υπάρχει, αν το σύστημα είναι σταθερό (0 ρ < ) Nόμος ισορροπίας της ροής πιθανότητας Στη μόνιμη κατάσταση, ο «ρυθμός ροής πιθανότητας» μιας αλυσίδας Marov από κάθε κατάσταση, είναι ίσος με το «ρυθμό ροής πιθανότητας» προς την κατάσταση. 44
45 Αλυσίδες Marov Γεννήσεων Θανάτων () Αν το σύστημα βρίσκεται στην κατάσταση j, τότε στην επόμενη αλλαγή κατάστασης θα βρεθεί σε μια από τις καταστάσεις j ή j+. λ : ρυθμός αφίξεων όταν υπάρχουν πελάτες στο σύστημα μ : ρυθμός εξυπηρέτησης όταν υπάρχουν πελάτες στο σύστημα Διάγραμμα καταστάσεων-ρυθμών μεταβάσεων 45
46 Αλυσίδες Marov Γεννήσεων Θανάτων (2) {Ρυθμός ροής πιθανότητας από την κατάσταση } = p ) ( {Ρυθμός ροής πιθανότητας προς την κατάσταση } = p Με βάση το νόμο ισορροπίας ροής p ) p p ( Για = () p Για = 0 p 0 0 p (2) 46
47 Αλυσίδες Marov Γεννήσεων Θανάτων (3) 0 Ισχύει πάντα ότι (3) Λύνοντας τις εξισώσεις (), (2), (3), παίρνουμε: (4) i p0 p p0 i0 i i i0 i Η παραπάνω λύση υπάρχει (δηλαδή, υπάρχει μόνιμη κατάσταση), αν p 0 > 0, δηλαδή αν ο παρονομαστής της σχέσης (4) είναι μικρότερος από. Για να ισχύει το τελευταίο, θα πρέπει η ακολουθία να συγκλίνει, δηλαδή θα πρέπει να υπάρχει κάποιο 0 τέτοιο ώστε: για όλα τα 0 p 47
48 Αλυσίδες Marov Γεννήσεων ΕΝΑΛΛΑΚΤΙΚΑ Θανάτων (4) Ο Νόμος διατήρησης της ροής εφαρμόζεται και σε κάθε «σύνορο» της αλυσίδας Marov: : p 0 λ 0 = p μ 2: p λ = p 2 μ 2 : Ίδια Αποτελέσματα : p - λ - = p μ 48
49 ΠΑΡΑΔΕΙΓΜΑ Αλυσίδες Marov Γεννήσεων Θανάτων (5) Μας δίνεται μια αλυσίδα Marov γεννήσεων θανάτων, η οποία έχει μόνο τρεις καταστάσεις {0,, 2}, ενώ ισχύει: για 0, και για,2 λ λ 0 2 μ μ Διάγραμμα Καταστάσεων Ρυθμών Μεταβάσεων 49
50 Αλυσίδες Marov Γεννήσεων Για την κατάσταση 0: Για την κατάσταση : Για την κατάσταση 2: Θανάτων (6) p 0 p p ( p p ) 0 2 p 2 p Από τις παραπάνω 3 σχέσεις, μόνο οι 2 είναι ανεξάρτητες. Χρησιμοποιούμε την p με 2 από τις 0 p p2 παραπάνω, και παίρνουμε την τελική λύση: p 0 2 Η αλυσίδα αυτή αντιστοιχεί στο σύστημα Μ/Μ//2. Γιατί; Στο σύστημα αυτό επιτρέπεται λ/μ. Γιατί; 2 p 2 p2 2 50
51 Διαδικασίες Poisson Ειδική περίπτωση Γεννήσεων-Θανάτων (μόνο αφίξεις) μ κ = 0 για όλα τα λ κ = λ για όλα τα Δεν είναι εργοδικό σύστημα. Όλες οι καταστάσεις μεταβατικές. Έστω το σύστημα ξεκινά τη στιγμή = 0, άδειο. Δηλαδή: 0, 0, 0 0 Τη χρονική στιγμή : e για 0, 0! Κατανομή Poisson Μέση Τιμή και Διακύμανση (αριθμού αφίξεων στο [ 0, ] ), ίσα με λ. (αναμενόμενο). Δηλαδή, στο Μ/Μ/, η διαδικασία μόνο των αφίξεων, είναι Poisson 5
52 Poisson αφίξεις Εκθετικοί χρόνοι μεταξύ αφίξεων = ΤΜ για το χρόνο μεταξύ αφίξεων, με PDF A() και pdf α() Poisson Α() = Ρ[ > ] = Ρ 0 () = e -λ, 0 (PDF Εκθετικής) Παράγωγος ως προς : α() = λe -λ, 0 (pdf Εκθετικής) λ λe -λ -e -λ (a) pdf (b) PDF Η εκθετική κατανομή 52
53 53 Ιδιότητα Αμνησίας της Εκθετικής Κατανομής Έστω ότι γίνεται μια άφιξη τη χρονική στιγμή 0. Τώρα, έστω ότι πέρασαν 0 δευτερόλεπτα κατά τη διάρκεια των οποίων δεν έγινε άφιξη. Αν αυτή τη στιγμή 0 ρωτήσουμε «ποια είναι η πιθανότητα η επόμενη άφιξη να γίνει μετά από δευτερόλεπτα από τώρα», η απάντηση θα είναι: ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 0 e e e e ~ ~ 0 0 ~ ~ ~ 0 0
54 Σχέσεις 54
55 Το κλασικό Σύστημα Αναμονής Μ/Μ/ Εκθετική κατανομή της διαδικασίας των χρόνων μεταξύ διαδοχικών αφίξεων Εκθετική κατανομή των χρόνων εξυπηρέτησης Ένας εξυπηρετητής Άπειρο μήκος ουράς Αλυσίδα Marov Γεννήσεων Θανάτων Με τη συνηθισμένη παραδοχή ότι οι ρυθμοί αφίξεων και εξυπηρέτησης δεν εξαρτώνται από την κατάσταση του συστήματος (αριθμός παρόντων πελατών), ισχύει: για για 0,, 2,, 2, 3, 55
56 Το Σύστημα Αναμονής Μ/Μ/ (συνέχεια) Διάγραμμα καταστάσεων - ρυθμών μεταβάσεων για το σύστημα Μ/Μ/ Για τη λύση: p 0 λ = p μ p λ = p 2 μ : και p - λ = p μ : 0 p 56
57 Λύση συστήματος Μ/Μ/ () Χρησιμοποίηση (G/G/): Συνθήκη σταθερότητας: x Από τη γενική λύση των διαδικασιών Γ-Θ (ή την προσέγγιση της προηγούμενης διαφάνειας): p ( για 0,, 2, ) 0 Περιέχεται το: p 0 57
58 Λύση συστήματος Μ/Μ/ (2) Τα p ακολουθούν τη Γεωμετρική Κατανομή Εξαρτώνται από τα λ και μ, μόνο μέσω του λόγου τους ρ p -ρ Τα p στο σύστημα Μ/Μ/
59 Μετρικές απόδοσης στο Μ/Μ/ () Μέσος αριθμός πελατών στο σύστημα N p ( ) ( ) 2 ( ) 0 0 N 0 ρ 59
60 Μετρικές απόδοσης στο Μ/Μ/ (2) Μέσος χρόνος ενός πελάτη στο σύστημα (Response Tie) Με χρήση του Νόμου του Lile: T N Τ /μ ρ 0 60
61 6 Μετρικές απόδοσης στο Μ/Μ/ (3) Μέσος χρόνος αναμονής ενός πελάτη στην ουρά Μέσος αριθμός πελατών στην ουρά Πιθανότητα να υπάρχουν τουλάχιστον n πελάτες στο σύστημα Prob[ n ή περισσότεροι πελάτες στο σύστημα] ) ( T x T W 2 N N q n n n n n n p P ) ( ) ( ) ( 0 ) ( P (n)
62 Το σύστημα αναμονής Μ/Μ/ () ίδιοι εξυπηρετητές Ο καθένας με ρυθμό εξυπηρέτησης μ Τα υπόλοιπα χαρακτηριστικά, ίδια με του M/M/ για για για 0,, 2, 62
63 63 Το σύστημα αναμονής Μ/Μ/ (2) Χρησιμοποίηση Συνθήκη Σταθερότητας Λύση μόνιμης κατάστασης x 0 p p p για! για! ) ( ! ) (! ) ( p
64 64 Μετρικές απόδοσης στο Μ/Μ/ () Πιθανότητα να χρειαστεί να περιμένει στην ουρά ένας πελάτης: Π = Prob[ ή περισσότεροι πελάτες στο σύστημα] Π = Μέσος αριθμός πελατών στο σύστημα )!( ) (!!! p p p p p 0 Π p N
65 65 Μετρικές απόδοσης στο Μ/Μ/ (2) Μέσος χρόνος ενός πελάτη στο σύστημα (response ie) (Ν. Lile) Μέσος χρόνος αναμονής ενός πελάτη στην ουρά Μέσος αριθμός πελατών στην ουρά ) ( Π N T ) ( Π T x T W Π N N q
66 Το σύστημα αναμονής Μ/Μ//Κ () Ίδια χαρακτηριστικά με το M/M/, αλλά περιορισμένη χωρητικότητα σε πελάτες. Στο σύστημα μπορούν να βρίσκονται το πολύ Κ πελάτες (στην ουρά και στον εξυπηρετητή). Πελάτες που φθάνουν και βρίσκουν γεμάτο το σύστημα, χάνονται. Οι ρυθμοί αφίξεων και εξυπηρέτησης του Μ/Μ//Κ: 0 για για 0 K K 0 για για K K 66
67 Το σύστημα αναμονής Μ/Μ//Κ (2) Λύση συστήματος p K ( ) 0 για 0 K αλλιώς 67
68 68 Το σύστημα αναμονής Μ/Μ//Κ (3) ΜΕΤΡΙΚΕΣ Μέσος αριθμός πελατών στο σύστημα Μέσος αριθμός πελατών στην ουρά 0 ) ( ) )( ( K K K K p N 2 ) ( ) ( ) ( ) ( K K K q K p N
69 Το σύστημα αναμονής Μ/Μ//Κ (4) Παράδειγμα: Το μοντέλο μιας τηλεφωνικής συσκευής χωρίς κράτηση κλήσεων (παλιό αναλογικό σύστημα): Μ/Μ// p λ μ 0 για 0 για αλλιώς p 0 : Πιθανότητα να μιλήσει, κάποιος που καλεί p : Πιθανότητα να βρει κατειλημμένη τη συσκευή, κάποιος που καλεί λ : Μέσος ρυθμός με τον οποίο γίνονται κλήσεις στη συσκευή x : Μέση χρονική διάρκεια μιας συνομιλίας 69
70 Τέλος Ενότητας
71 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 7
72 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση.0. 72
73 Σημείωμα Αναφοράς Copyrigh Πανεπιστήμιο Πατρών, Ιωάννης Γαροφαλάκης, 205. «Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων». Έκδοση:.0. Πάτρα 205. Διαθέσιμο από τη δικτυακή διεύθυνση: hps://eclass.uparas.gr/courses/ceid093/. 73
74 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creaive Coons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [] hp://creaivecoons.org/licenses/by-nc-sa/4.0/ Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 74
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 4: Δίκτυα Συστημάτων Αναμονής
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 4: Δίκτυα Συστημάτων Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Γιατί δίκτυα συστημάτων αναμονής; Τα απλά συστήματα
Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής
Α Α Π Σ Δ 11: Ε Σ Α M/G/1 Καθ Γιάννης Γαροφαλάκης ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Το σύστημα αναμονής M/G/1 I Θεωρούμε ένα σύστημα στο οποίο οι πελάτες φθάνουν
Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 7: Ουρά Μ/Μ/1 Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 10: Ουρά Μ/Μ/s Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Διατύπωση του προβλήματος
Συστήματα Αναμονής. Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 6: Θεωρία Ουρών Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Συστήματα Αναμονής. Ενότητα 3: Στοχαστικές Ανελίξεις. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 3: Στοχαστικές Ανελίξεις Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαδικασίες Markov Υπενθύμιση
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Διαδικασίες Markov Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής
Κεφάλαιο 3: Μοντέλα Θεωρίας Αναμονής
Κεφάλαιο 3: Μοντέλα Θεωίας Αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Γιάννης Γαοφαλάκης Αν. Καθηγητής Οισμός συστημάτων αναμονής Συστήματα αναμονής (Queueing Syses): Συστήματα στα οποία οι αφίξεις
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Εισαγωγή Συλλογή
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
ίκτυα Επικοινωνίας Υπολογιστών
ίκτυα Επικοινωνίας Υπολογιστών Ενότητα: Ασκήσεις για την ενότητα 5 (Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα
Επεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η Έννοια της τυχαίας Διαδικασίας Η έννοια της τυχαίας διαδικασίας βασίζεται στην επέκταση
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 8: Αναδρομικός τύπος Kaufman Roberts
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 8: Αναδρομικός τύπος aufma Roberts Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις : Παπασωτηρίου
1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 6: Όριο και συνέχεια συναρτήσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Συστήματα Αναμονής. Ενότητα 5: Ανέλιξη Poisson. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 5: Ανέλιξη Poisson Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra
Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Εισαγωγή. Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Εισαγωγή Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Ορισμός πληροφοριακού συστήματος Κύρια κριτήρια
Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:
ΕΤΥ: Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Χειμερινό Εξάμηνο 2014-15 Τελική Εξέταση 28/02/15 Διάρκεια Εξέτασης: 3 Ώρες Ονοματεπώνυμο: Αριθμός Μητρώου: Υπογραφή: Ερώτημα: 1 2 3 4 5 6 Σύνολο Μονάδες:
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 2: Θερμοδυναμικές συναρτήσεις Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή νέων θερμοδυναμικών συναρτήσεων
Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ
Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 10 Βάσεις Groebner ενός ιδεώδους 10.1 Τρίτο μέρος Επαναλαμβάνουμε
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων
Θεωρία Τηλεπικοινωνιακής Κίνησης
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 3 4 (Μαρκοβιανά συστήματα απωλειών Εφαρμογή των τύπων Erlng και Enget) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας
Απλα Συστήματα Αναμονής Υπενθύμιση
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Απλα Συστήματα Αναμονής Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό
Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Ενότητα 1: Εισαγωγή Βασικές Έννοιες Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΛΙΕΡΗΣ Εισαγωγή 2 Περιεχόμενα 1. Εισαγωγή 2. Αριθμητική παραγώγιση
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 10: Προσέγγιση μειωμένου φορτίου
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 0: Προσέγγιση μειωμένου φορτίου Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις : Παπασωτηρίου
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 4: Εκθετικές και λογαριθμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων
Συστήματα Αναμονής. Ενότητα 2: Τυχαίες Μεταβλητές. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 2: Τυχαίες Μεταβλητές Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Μεθοδολογία εφαρμογής προγράμματος Ολικής Ποιότητας
Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Ψωμάς Ευάγγελος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Υποενότητα
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 10: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (2o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος)
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος) Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων
Θεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 2: Θεωρία Απόφασης του Bayes Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Θεωρία
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 2: Εισαγωγή στον βέλτιστο έλεγχο Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος)
Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος) 1 Περιεχόμενα 1 η Άσκηση Λειτουργίες του βιβλίου διευθύνσεων σε ένα πρόγραμμα ηλεκτρονικού ταχυδρομείου... 4 2 η Άσκηση Λειτουργίες
Κβαντική Φυσική Ι. Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια πρώτη επαφή με την έννοια των τετραγωνικών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 9: Ολοκληρώματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Κβαντική Φυσική Ι. Ενότητα 12: Ασκήσεις. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 12: Ασκήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Άσκηση 12.1 Να υπολογιστεί η μέση ενέργεια σωματιδίου που περιγράφεται από την κυματοσυνάρτηση ψ x = 1 3 ψ 1
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Ορισμός κανονικής τ.μ.
Πιθανότητες και Στατιστική Ενότητα 4: Τυχαίες τυχαίες μεταβλητές Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Ορισμός κανονικής τ.μ. Ορισμός κανονικής τ.μ. Μια συνεχής τ.μ.
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος)
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Συστήματα Αναμονής. Ενότητα 1: Εισαγωγή. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 1: Εισαγωγή Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών Β. Μάγκλαρης, Σ. Παπαβασιλείου 10-7-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα χρήσης ουρών Μ/Μ/c/K και αξιολόγησης συστημάτων αναμονής Β. Μάγκλαρης, Σ. Παπαβασιλείου 5-6-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 5: Ακολουθίες, όρια, σειρές (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 9: Ολοκληρώματα (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Διαχείριση Έργων. Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας)
Διαχείριση Έργων Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Συστήματα Αναμονής. Ενότητα 4: Αλυσίδες Markov. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 4: Αλυσίδες Markov Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ασκήσεις κυκλωμάτων συνεχούς ρεύματος. Κανόνες Kirchhoff. Γ. Βούλγαρης 2 Ο Νόμος των Ρευμάτων
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 10: Συστήματα γραμμικών εξισώσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Εισαγωγή στα Πληροφοριακά Συστήματα
Εισαγωγή στα Πληροφοριακά Συστήματα Ενότητα 8: Μοντελοποίηση με Διαγράμματα Μετάβασης Καταστάσεων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Ευφυής Προγραμματισμός
Ευφυής Προγραμματισμός Ενότητα 10: Δημιουργία Βάσεων Κανόνων Από Δεδομένα-Προετοιμασία συνόλου δεδομένων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 5: Διαχείριση Έργων υπό συνθήκες αβεβαιότητας
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 5: Διαχείριση Έργων υπό συνθήκες αβεβαιότητας Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 10: ΡΑΝΤΕΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creatve Commos εκτός και αν αναφέρεται διαφορετικά Το έργο υλοποιείται
Εφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 2: Συναρτήσεις Χώροι - Μεταβλητές Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
1/8 Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.05: Ολοκλήρωση Ρητών Συναρτήσεων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 4: ΠΡΟΕΞΟΦΛΗΣΗ ΜΕ ΑΠΛΟ ΤΟΚΟ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creave Coons εκτός και αν αναφέρεται διαφορετικά
Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 6: Το γραμμικό τετραγωνικό πρόβλημα βέλτιστης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 11 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 4: Εισαγωγή στο Γραμμικό Προγραμματισμό (4 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών - Παραδείγματα Β. Μάγκλαρης, Σ. Παπαβασιλείου 17-7-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Θεωρία Τηλεπικοινωνιακής Κίνησης
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 7 8 (Πολυδιάστατη Κίνηση Αναδρομικός τύπος Kaufman- Roberts) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov
Γ. Κορίλη, Αλυσίδες Markov 3- http://www.seas.upe.edu/~tcom5/lectures/lecture3.pdf Αλυσίδες Markov Αλυσίδες Markov ιακριτού Χρόνου Υπολογισµός Στάσιµης Κατανοµής Εξισώσεις Ολικού Ισοζυγίου Εξισώσεις Λεπτοµερούς
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 1: Εισαγωγή Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ)
Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ) Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο
6 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
6 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 4 4 η Άσκηση... 4 5 η Άσκηση... 5 6 η Άσκηση... 5 7 η Άσκηση... 5 8 η Άσκηση... 6 Χρηματοδότηση... 7
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 8: Το γραμμικό τετραγωνικό πρόβλημα ρύθμισης (LQ) για συστήματα διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και
Ενδεικτικές λύσεις ασκήσεων
Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση ΠΣ Υπολογισμού Μισθοδοσίας... 4 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης... 14 2 Πίνακας εικόνων Εικόνα 1: Διάγραμμα Επιπέδου
Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών
Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων καταστάσεων
Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων καταστάσεων 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 6 3 η Άσκηση... 8 4 η Άσκηση... 10 5 η Άσκηση... 12 Χρηματοδότηση... 13 Σημείωμα Αναφοράς... 14 Σημείωμα
Ειδικά θέματα στην επίλυση
Ενότητα 5: Εισαγωγή Βασικές Έννοιες Ειδικά Θέματα Αριθμητικής Παραγώγισης Επίλυση Γραμμικών Συστημάτων Αλγεβρικών Εξισώσεων Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ειδικά θέματα