ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 1: Εκτιμώντας τις πιθανότητες αθέτησης από τις τιμές της αγοράς

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 1: Εκτιμώντας τις πιθανότητες αθέτησης από τις τιμές της αγοράς"

Transcript

1 ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πιστωτικός Κίνδυνος Διάλεξη 1: Εκτιμώντας τις πιθανότητες αθέτησης από τις τιμές της αγοράς Μιχάλης Ανθρωπέλος Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 1 / 15

2 Υπολογίζοντας απλές αποδόσεις με πιστωτικό κίνδυνο Ξεκινάμε με την περίπτωση ενός απλού δανεισμού σε έναν δανειολήπτη i, που του έχει δοθεί ένα δάνειο με επιτόκιο r i για ένα χρόνο. Μπορούμε να εξάγουμε την πιθανότητα αθέτησης που βλέπει ο δανειστής για τον δανειολήπτη i; Πρώτα κάνουμε τον εξής απλό διαχωρισμό: r i = r 0 + cp i r i : Το επιτόκιο δανεισμού για τον δανειολήπτη i. r 0 : Το βασικό επιτόκιο δανεισμού (διάρκεια, κλάδος, είδος, νόμισμα κτλ). cp i : Το credit risk premium για τον δανειολήπτη i. Αναμενόμενη απόδοση δανεισμού Ορίζουμε την τυχαία μεταβλητή R i ως την απόδοση που θα λάβει ο δανειστής για κάθε ένα ευρώ δανεισμού στον δανειολήπτη i. 1 + E[R i ] = (1 p i )(1 + r i ) + p i g i, όπου p i είναι η πιθανότητα αθέτησης υποχρεώσεων του δανειολήπτη i και g i το (εκτιμώμενο) ποσοστό ανάκτησης (recovery rate). Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 2 / 15

3 Εκμαιεύοντας την πιθανότητα αθέτησης Το ύψος του επιτοκίου r i είναι στοιχείο της αγοράς (market data). Σε περίπτωση που ο δανεισμός προέρχεται από ομολογία, τότε το επιτόκιο r i είναι η απόδοση στην λήξη (yield to maturity) του εκδότη i για την αντίστοιχη διάρκεια. Χρησιμοποιώντας αυτά τα επιτόκια, μπορούμε να εκμαιεύσουμε την πιθανότητα αθέτησης που «βλέπει» η αγορά για τον δανειολήπτη i (implied probability of default). Ένας απλός τρόπος για να γίνει αυτός ο υπολογισμός είναι η υιοθέτηση της ουδετερότητας στον κίνδυνο (risk neutrality): Υποθέτουμε ότι ο δανειστής είναι αδιάφορος ανάμεσα σε επενδύσεων με την ίδια αναμενόμενη απόδοση. Εξίσωση αδιαφορίας (indifference equation) 1 + E[R i ] = 1 + r f (1 p i )(1 + r i ) + p i g i = 1 + r f όπου r f είναι το επιτόκιο επένδυσης με μηδενικό κίνδυνο για την ίδια διάρκεια με τον δανεισμό στον δανειολήπτη i. Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 3 / 15

4 Εκμαιεύοντας την πιθανότητα αθέτησης (δύο περίοδοι) Η ίδια ιδέα μπορεί να εφαρμοστεί και σε περισσότερες από μία περιόδους, όπου το ζητούμενο είναι ο υπολογισμός μέσα από τα στοιχεία της αγοράς των πιθανοτήτων αθέτησης, σε κάθε ένα έτος ξεχωριστά. Θέλουμε δηλαδή να υπολογίσουμε τις περιθώριες (δεσμευμένες) πιθανότητες αθέτησης πληρωμών (marginal probabilities of default) με βάση τα υπάρχοντα επιτόκια δανεισμού: P i (D 1 ), P i (D 2 D c 1), P i (D 3 D c 2) κοκ. Την πρώτη πιθανότητα την έχουμε ήδη υπολογίσει, αφού p i P i (D 1 ). Για την πιθανότητα P i (D 2 D c 1 ), θα εργαστούμε αναλόγως, θα πρέπει ωστόσο να απομονώσουμε πρώτα τις αποδόσεις από το πρώτο στο δεύτερο έτος. Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 4 / 15

5 Εκμαιεύοντας την πιθανότητα αθέτησης (δύο περίοδοι) Έστω r i (1) το επιτόκιο δανεισμού του δανειολήπτη i για δανεισμό ενός έτους και r i (2) το (σε ετήσια βάση) επιτόκιο δανεισμού του δανειολήπτη i για δανεισμό δύο ετών (με ετήσιο ανατοκισμό). H εξίσωση [1 + r i (1)](1 + f i ) = [1 + r i (2)] 2 θα δώσει το επιτόκιο για την περίοδο ανάμεσα στο πρώτο και στο δεύτερο έτος. Το επιτόκιο f i ονομάζεται προθεσμιακό επιτόκιο (forward promised rate) για ένα έτος. Αντίστοιχα υπολογίζουμε το προθεσμιακό επιτόκιο μηδενικού κινδύνου για ένα έτος, δηλαδή: [1 + r f (1)](1 + f f ) = [1 + r f (2)] 2, όπου τα επιτόκια r f (1), r f (2) και f f αναφέρονται στον δανεισμό μηδενικού κινδύνου. Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 5 / 15

6 Εκμαιεύοντας την πιθανότητα αθέτησης (δύο περίοδοι) Δεδομένου ότι δεν έχει γίνει αθέτηση στο πρώτο έτος, και διατηρώντας το ποσοστό ανάκτησης ίσο με g i και στο δεύτερο έτος, η εξίσωση αδιαφορίας γίνεται: Επομένως έχουμε (1 + f f ) = [1 P i (D 2 D c 1)](1 + f i ) + P i (D 2 D c 1)g i. P i (D 1 ) = Υπενθυμίζουμε ότι r i r f 1 + r i g i και P i (D 2 D c 1) = f i f f 1 + f i g i. P i (D 2 ) = P i (D 1 ) + P i (D 2 D c 1) = P i (D 1 ) + P i (D 2 D c 1)P i (D c 1). Με τον ίδιο τρόπο εργαζόμαστε για τις πιθανότητες αθέτησης περισσότερων από δύο περιόδων. Πώς θα άλλαζε ο τύπος για την πιθανότητα P i (D 3 D c 2 ); Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 6 / 15

7 Εκμαιεύοντας την πιθανότητα αθέτησης: σχόλια Υποθέσεις/Παραδοχές 1 Ο μοναδικός κίνδυνος που περιέχεται στο credit premium είναι ο πιστωτικός κίνδυνος. Δεν λογίζονται δηλαδή άλλοι κίνδυνοι που υπάρχουν σε έναν δανεισμό, όπως για παράδειγμα ο κίνδυνος ρευστότητας, πρόωρης αποπληρωμής, αλλαγής φορολογίας κλπ. 2 Τίθενται παραδοχές σχετικά με τον ακριβή χρόνο που θα συμβεί (αν συμβεί) η αθέτηση σε κάθε έτος. 3 Η αγορά είναι ουδέτερη στον κίνδυνο. Επεκτάσεις H κεντρική ιδέα της μεθόδου που περιγράψαμε μπορεί να προσαρμοστεί όταν αντί για δανεισμό αναφερόμαστε στην αγορά ομολογίας. Σε αυτή την περίπτωση συγκρίνουμε (αντί για τα επιτόκια) τη διαφορά που έχουν η απόδοση στην λήξη (yield to maturity) του ομολόγου με την αντίστοιχη απόδοση στην λήξη που έχει η ομολογία μηδενικού κινδύνου ίδιας διάρκειας και ίδιου νομίσματος (δηλαδή το bond spread). Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 7 / 15

8 Ιστορικές εκτιμήσεις για την πιθανότητα αθέτησης Ιστορικές πιθανότητες με βάση τη βαθμολογία αξιοπιστίας (πηγή: Moody s) Οι παραπάνω πιθανότητες βασίζονται στην παρατήρηση ιστορικών δεδομένων όπου τα ομόλογα διαχωρίζονται σύμφωνα με την πιστοληπτική τους ικανότητα, όπως η τελευταία καθορίζεται από τον οίκο αξιολόγησης. Για παράδειγμα, 11,296% είναι η εκτίμηση της πιθανότητας P B (D 2 ). Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 8 / 15

9 Ιστορικές εκτιμήσεις για την πιθανότητα αθέτησης Για την κατηγορία Β έχουμε P B (D 1 ) = 5, 236% P B (D 2 D c 1 ) = 6, 06% P B (D 3 D c 3 ) = 17, 043% 11, 296% = 5, 774% κοκ. Παρατηρούμε ότι για τις κατηγορίες με καλύτερη βαθμολόγηση (investment grades), οι πιθανότητες σε κάθε έτος αυξάνονται, ενώ στις χαμηλότερες βαθμολογίες φαίνεται να μικραίνουν. Για τις «καλές» κατηγορίες τα όποια προβλήματα θα εμφανιστούν μετά τα πρώτα έτη, ενώ για τις «κακές» τα πρώτα έτη είναι πολύ κρίσιμα και αν αποφευχθεί η αθέτηση, τότε οι πιθανότητες για ευκολότερη χρηματοδότηση αυξάνουν. Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 9 / 15

10 Default intensities Οι ιστορικές πιθανότητες που είδαμε είναι μη δεσμευτικές πιθανότητες αθέτησης. Ωστόσο, στην χρονική εξέλιξη των πιθανοτήτων αθέτησης ενδιαφέρουν περισσότερο οι δεσμευμένες πιθανότητες, όπως για παράδειγμα για την κατηγορία κατηγορία Caa-C ενδιαφέρουν οι πιθανότητες: P Caa-C (D 3 D c 2) = P Caa-C(D 3 D c 2 ) 1 P Caa-C (D 2 ) = 39, 717% 30, 494% 1 30, 494% = 13, 27%. Οι δεσμευμένες πιθανότητες αθέτησης ονομάζονται (και) εντάσεις αθέτησης (default intensities or hazard rates). Δηλαδή, η ένταση αθέτησης της κατηγορίας Caa-C στο χρόνο 3 είναι 13,27%. Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 10 / 15

11 Σύγκριση ιστορικών και εκτιμώμενων από τα επιτόκια πιθανοτήτων i. Η διαφορά των δεσμευμένων πιθανοτήτων αντανακλά το γεγονός ότι πέρα από τον πιστωτικό κίνδυνο, υπάρχουν και άλλοι κίνδυνοι, όπως πχ ο κίνδυνος ρευστότητας που είναι πιο έντονος στις χαμηλότερες κατηγορίες πιστοληπτικής ικανότητας. ii. Επίσης, ακόμα και αν δεν υπήρχαν άλλοι κίνδυνοι, η υπόθεση της ουδετερότητας κινδύνου συνεπάγεται πιθανότητες αθέτησης πιο υψηλές (γιατί;). iii. Οι επενδυτές δεν είναι ουδέτεροι στον κίνδυνο (είναι risk averse και όχι risk neutral). Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 11 / 15

12 Default intensities Ο τρόπος που υπολογίζουμε τις δεσμευμένες πιθανότητες μπορεί να εφαρμοστεί και όταν η χρονική περίοδος είναι μικρότερη από ένα έτος: t. Η ένταση πιθανότητας αθέτησης στον χρόνο t συμβολίζεται με λ(t) και ορίζεται έτσι ώστε η ποσότητα λ(t) t να είναι ίση με την πιθανότητα αθέτησης στο χρονικό διάστημα (t, t + t], δοθέντος ότι δεν έχει γίνει αθέτηση μέχρι τον χρόνο t, δηλαδή λ(t) t = P(D t+ t D c t ) = P(D t+ t D c t ) P(D c t ). Αν συμβολίσουμε P(t) = P(D c t ), δηλαδή η αθροιστική πιθανότητα μη αθέτησης (cumulative surviving probability) μέχρι την στιγμή t, τότε λ(t) t = P(t) P(t + t). P(t) Όταν πάρουμε το όριο όπου t dt έχουμε λ(t)p(t) = dp(t) dt P(t) = e t 0 λ(s)ds P(D t ) = Q(t) = 1 e t 0 λ(s)ds, ή ισοδύναμα όπου Q(t) είναι ο συμβολισμός για την πιθανότητα αθέτησης μέχρι τον χρόνο t. Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 12 / 15

13 Modeling of default intensities Υποθέτοντας σταθερή ένταση λ(t) μέχρι το χρόνο t, έχουμε Q(t) = 1 e λ(t)t. Για παράδειγμα, στην κατηγορία Α, Q(7) = 0, 759%, επομένως λ(7) = 0, 109%. Υποδείγματα για την ένταση αθέτησης Η πιθανότητα αθέτησης μέχρι την χρόνο t, μπορεί να ληφθεί ως η πιθανότητα μια counting stochastic process να κάνει το πρώτο της άλμα: Q(t) = P(τ t), όπου τ είναι ο χρόνος αναμονής μέχρι το πρώτο άλμα (χρόνος αναμονής μέχρι την αθέτηση). Αν ο χρόνος αναμονής είναι εκθετικός με σταθερή παράμετρο λ τότε: Q(t) = 1 e λt δηλαδή, η πιθανότητα το πρώτο βήμα μιας διαδικασίας Poisson να γίνει πριν τον χρόνο t. Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 13 / 15

14 Modeling of default intensities Για παράδειγμα, εάν επιλέξουμε σταθερές εντάσεις με τιμές για το λ 0,005 ή 0,01 ή 0,02, στην ουσία υποθέτουμε ότι οι πιθανότητες αθέτησης εξελίσσονται στον χρόνο όπως στο παρακάτω σχήμα. Κατ' αντιστοιχία, για τις ιστορικές πιθανότητας της κατηγορίας Α έχουμε

15 Μια απλή άσκηση Δίνονται τα παρακάτω επιτόκια δανεισμού (ετήσιος ανατοκισμός): Με βάση την εξίσωση αδιαφορίας, υπολογίστε την πιθανότητα αθέτησης σε ένα, σε δύο, σε τρία και σε πέντε έτη του εν λόγω δανειστή. Υιοθετείστε σταθερό ποσοστό ανάκτησης 40%. Μιχάλης Ανθρωπέλος Πιθανότητες Αθέτησης Credit Risk 15 / 15

Credit Risk Διάλεξη 1

Credit Risk Διάλεξη 1 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Credit Risk Διάλεξη 1 Εκτιμώντας πιθανότητες αθέτησης από τις τιμές αγοράς Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 2: Pricing Defaultable Assets. Μιχάλης Ανθρωπέλος

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 2: Pricing Defaultable Assets. Μιχάλης Ανθρωπέλος ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πιστωτικός Κίνδυνος Διάλεξη 2: Pricing Defaultable Assets Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos Μιχάλης

Διαβάστε περισσότερα

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 5: Αντιστάθμιση πιστωτικού κινδύνου. Credit Default Swaps

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 5: Αντιστάθμιση πιστωτικού κινδύνου. Credit Default Swaps ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πιστωτικός Κίνδυνος Διάλεξη 5: Αντιστάθμιση πιστωτικού κινδύνου Credit Default Swaps Μιχάλης Ανθρωπέλος anthropel@unipigr http://webxrhunipigr/faculty/anthropelos

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Credit Risk Estimating Default Probabilities

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Credit Risk Estimating Default Probabilities ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Credit Risk Estimating Default Probabilities Credit Risk Πιστωτικός Κίνδυνος Ο πιστωτικός κίνδυνος απορρέει από την πιθανότητα να πτωχεύσουν οι δανειζόμενοι, οι εκδότες

Διαβάστε περισσότερα

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 4: Υποδείγματα πιστωτικού κινδύνου. The Merton's Structural Model

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 4: Υποδείγματα πιστωτικού κινδύνου. The Merton's Structural Model ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πιστωτικός Κίνδυνος Διάλεξη 4: Υποδείγματα πιστωτικού κινδύνου The Merton's Structural Model Μιχάλης Ανθρωπέλος anthropel@unipigr http://webxrhunipigr/faculty/anthropelos

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Credit Value at Risk

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Credit Value at Risk ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Credit Value at Risk Credit Value at Risk: Εισαγωγή To Credit Value at Risk είναι μία βασική μέτρηση για τον καθορισμό των εποπτικών κεφαλαίων και των κεφαλαίων που η

Διαβάστε περισσότερα

Credit Risk Διάλεξη 4

Credit Risk Διάλεξη 4 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Credt Rsk Διάλεξη 4 Αντιστάθμιση πιστωτικού κινδύνου Μιχάλης Ανθρωπέλος anthropel@unp.gr http://web.xrh.unp.gr/faculty/anthropelos

Διαβάστε περισσότερα

Διάφορες αποδόσεις και Αποτίμηση Ομολόγων

Διάφορες αποδόσεις και Αποτίμηση Ομολόγων Διάφορες αποδόσεις και Αποτίμηση Ομολόγων Α. Διάφοροι ορισμοί απόδοσης ή επιτοκίων Spot rate Spot rate: ορίζεται ως η απόδοση του ομολόγου του ομολόγου χωρίς τοκομερίδιο. Αποτελεί συγχρόνως και την απόδοση

Διαβάστε περισσότερα

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 3: Υποδείγματα πιστωτικού κινδύνου,

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 3: Υποδείγματα πιστωτικού κινδύνου, ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πιστωτικός Κίνδυνος Διάλεξη 3: Υποδείγματα πιστωτικού κινδύνου, Credit score models and structural models Μιχάλης Ανθρωπέλος anthropel@unipigr http://webxrhunipigr/faculty/anthropelos

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 6

Asset & Liability Management Διάλεξη 6 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη 6 A case study Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

ΔΙΑΚΡΙΣΗ ΟΜΟΛΟΓΙΩΝ ΑΝΑΛΟΓΑ ΜΕ ΤΗ ΣΤΑΘΕΡΟΤΗΤΑ ΤΩΝ ΕΣΟΔΩΝ

ΔΙΑΚΡΙΣΗ ΟΜΟΛΟΓΙΩΝ ΑΝΑΛΟΓΑ ΜΕ ΤΗ ΣΤΑΘΕΡΟΤΗΤΑ ΤΩΝ ΕΣΟΔΩΝ 1 3. ΟΜΟΛΟΓΑ ΔΙΑΚΡΙΣΗ ΟΜΟΛΟΓΙΩΝ ΑΝΑΛΟΓΑ ΜΕ ΤΗ ΣΤΑΘΕΡΟΤΗΤΑ ΤΩΝ ΕΣΟΔΩΝ Ομολογίες σταθερής προσόδου: το επιτόκιο αυτών των χρεογράφων καθορίζονται κατά την έκδοσή τους και παραμένει σταθερό για όλη τη διάρκεια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 14 ΜΕΤΡΗΣΗ ΠΙΣΤΩΤΙΚΟΥ ΚΙΝΔΥΝΟΥ. Υποδείγματα Κινδύνου Πτώχευσης (Default Risk Models)

ΚΕΦΑΛΑΙΟ 14 ΜΕΤΡΗΣΗ ΠΙΣΤΩΤΙΚΟΥ ΚΙΝΔΥΝΟΥ. Υποδείγματα Κινδύνου Πτώχευσης (Default Risk Models) ΚΕΦΑΛΑΙΟ 14 ΜΕΤΡΗΣΗ ΠΙΣΤΩΤΙΚΟΥ ΚΙΝΔΥΝΟΥ Υποδείγματα Κινδύνου Πτώχευσης (Default Risk Models) Ποιοτικά υποδείγματα (Qualitative Models) ή expert systems Υποδείγματα μέτρησης πιστοληπτικής ικανότητας (Credit

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 5

Asset & Liability Management Διάλεξη 5 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη 5 Συναλλαγματικός Κίνδυνος Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 1

Asset & Liability Management Διάλεξη 1 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη Η μέτρηση και η αντιμετώπιση του επιτοκιακού κινδύνου Μιχάλης Ανθρωπέλος anthopel@unipi.g

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 2

Asset & Liability Management Διάλεξη 2 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asse & Liabiliy Managemen Διάλεξη 2 Η μέτρηση και η αντιμετώπιση του επιτοκιακού κινδύνου (συνέχεια) Μιχάλης Ανθρωπέλος anhropel@unipi.gr

Διαβάστε περισσότερα

Συναλλαγματικές ισοτιμίες και επιτόκια

Συναλλαγματικές ισοτιμίες και επιτόκια Κεφάλαιο 2 Συναλλαγματικές ισοτιμίες και επιτόκια 2.1 Σύνοψη Στο δεύτερο κεφάλαιο του συγγράμματος περιγράφεται αρχικά η συνθήκη της καλυμμένης ισοδυναμίας επιτοκίων και ο τρόπος με τον οποίο μπορεί ένας

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 3

Asset & Liability Management Διάλεξη 3 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη 3 Cash-flow matching Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

ΧΡΗΣΙΜΟΙ ΟΡΟΙ ΟΜΟΛΟΓΩΝ

ΧΡΗΣΙΜΟΙ ΟΡΟΙ ΟΜΟΛΟΓΩΝ A Δεδουλευμένος τόκος Τοκοχρεωλυτικό ομόλογο Accrued interest Amortized or amortizing bond Ο οφειλόμενος από τον εκδότη αλλά μη απαιτητός ακόμα από τον επενδυτή (κάτοχο του ομολόγου) τόκος που έχει σωρευτεί

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ FW.PR09 Όνομα: Επίθετο: Ημερομηνία: 4//07 Πρωί: x Απόγευμα: Θεματική ενότητα: Αρχές Οικονομίας και Χρηματοοικονομικά Μαθηματικά FW.PR09 / FW.PR09. Δίνεται ένταση ανατοκισμού t = την ράντα s 0.0t για 0

Διαβάστε περισσότερα

Περιεχόμενα 9. Περιεχόμενα

Περιεχόμενα 9. Περιεχόμενα Περιεχόμενα 9 Περιεχόμενα Εισαγωγή... 15 1. Οικονομικές και Χρηματοπιστωτικές Κρίσεις... 21 2. Χρηματοπιστωτικό Σύστημα... 31 2.1. Ο Ρόλος και οι λειτουργίες των κεντρικών τραπεζών... 31 2.2. Το Ελληνικό

Διαβάστε περισσότερα

Η διαδικασία κατά την οποία ο επενδυτής εξασφαλίζει σίγουρο κέρδος ονομάζεται κερδοφόρο arbitrage επιτοκίων. Πρόκειται για μια συγκεκριμένη διαδικασία η οποία βασίζεται στην ισοτιμία δηλαδή στη σχέση μεταξύ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 2013

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 013 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (1 π.μ.

Διαβάστε περισσότερα

11.1.1 Χρονική αξία του χρήματος

11.1.1 Χρονική αξία του χρήματος Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 01 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 01 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (1 π.μ. π.μ.)

Διαβάστε περισσότερα

Μελετήστε προσεκτικά και δώστε τη δική σας λύση. Όλες οι εργασίες ελέγχονται για αντιγραφή

Μελετήστε προσεκτικά και δώστε τη δική σας λύση. Όλες οι εργασίες ελέγχονται για αντιγραφή ΔΕΟ41 Λύση 4 η ς εργασίας 2013-14 Μελετήστε προσεκτικά και δώστε τη δική σας λύση. Όλες οι εργασίες ελέγχονται για αντιγραφή ΕΡΩΤΗΣΗ 1 α) Γνωρίζουμε ότι το ονομαστικό επιτόκιο είναι i = 9,31% και ο προσδοκώμενος

Διαβάστε περισσότερα

MANAGEMENT OF FINANCIAL INSTITUTIONS

MANAGEMENT OF FINANCIAL INSTITUTIONS MAAGEMET OF FIACIAL ISTITUTIOS ΔΙΑΛΕΞΗ: «ΚΙΝΔΥΝΟΣ ΑΓΟΡΑΣ» (MARKET RISK) Πανεπιστήμιο Πειραιώς Τμήμα Χρηματοοικονομικής Καθηγητής Γκίκας Χαρδούβελης ΠΕΡΙΕΧΟΜΕΝΑ Κίνδυνος Αγοράς και Επενδυτικό Χαρτοφυλάκιο

Διαβάστε περισσότερα

+ = 7,58 + 7, ,10 = 186,76

+ = 7,58 + 7, ,10 = 186,76 Θέμα ο () Ένα ομόλογο εκδόθηκε στις 0..08, με επιτόκιο έκδοσης %, ονομαστική αξία 00, διάρκεια έτη, με καταβολή ίσων ετήσιων τοκομεριδίων και ισχύον προεξοφλητικό επιτόκιο κατά την έκδοση 7%. Να υπολογισθεί

Διαβάστε περισσότερα

Η μελλοντική των 20 ευρώ σε 3 χρόνια με μηνιαίο ανατοκισμό θα βρεθεί από 12 )3 12

Η μελλοντική των 20 ευρώ σε 3 χρόνια με μηνιαίο ανατοκισμό θα βρεθεί από 12 )3 12 ΠΔΕ35 Λύση ης γραπτής εργασίας 05-6. Λύση: Το ουσιαστικό επιτόκιο θα βρεθεί από er = ( + r m m όπου m= o αριθμός των ανατοκισμών στο έτος. Συνεπώς το ουσιαστικό επιτόκιο είναι er = ( + 0.09 = 0.093807

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ Δημήτριος Βασιλείου Καθηγητής Ελληνικού Ανοικτού Πανεπιστημίου Νικόλαος Ηρειώτης Αναπληρωτής Καθηγητής Εθνικού & Καποδιστριακού Πανεπιστημίου Αθηνών 1 Χρηματοοικονομική Διοίκηση Θεωρία και Πρακτική Δημήτριος

Διαβάστε περισσότερα

Ομόλογο καλείται η μορφή επένδυσης μεταξύ δύο αντισυμβαλλομένων μελών όπου ο ένας «δανείζεται» χρήματα και καλείται εκδότης (πχ. κράτος ή εταιρίες) και ο άλλος «δανείζει» χρήματα και καλείται κάτοχος (πχ.

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2008

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 8 ΙΑΝΟΥΑΡΙΟΥ 008 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ.

Διαβάστε περισσότερα

Θέμα 1 Α. Ποιά τα οφέλη από τη χρήση χρήματος σε σχέση με μια ανταλλακτική οικονομία και ποιές είναι οι λειτουργίες του χρήματος;

Θέμα 1 Α. Ποιά τα οφέλη από τη χρήση χρήματος σε σχέση με μια ανταλλακτική οικονομία και ποιές είναι οι λειτουργίες του χρήματος; Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ 31 Χρηματοοικονομική Διοίκηση Ακαδημαϊκό Έτος: 2010-11 Τελικές Εξετάσεις (11/06/2011 και ώρα, 13:30-16:00) Να απαντηθούν και

Διαβάστε περισσότερα

Strasbourg & ISC Paris Εξέλιξη επιτοκίων (term structure)

Strasbourg & ISC Paris Εξέλιξη επιτοκίων (term structure) Domestic and International Markets University of Macedonia 2011-2012 Η Εξέλιξη των Επιτοκίων και ο Κανόνας του Taylor Σημειώσεις για το 2 ο μέρος του Lecture 4 που δεν συμπεριλαμβάνονται στις διαφάνειες

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ Απλός Τόκος Εφαρμόζεται στις βραχυπρόθεσμες οικονομικές πράξεις, συνήθως μέχρι τριών μηνών ή το πολύ μέχρι ενός έτους.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Αποτίμηση αξιογράφων σταθερού εισοδήματος

ΚΕΦΑΛΑΙΟ 4. Αποτίμηση αξιογράφων σταθερού εισοδήματος ΚΕΦΑΛΑΙΟ 4 Αποτίμηση αξιογράφων σταθερού εισοδήματος Στο προηγούμενο κεφάλαιο μάθατε τα βασικά χαρακτηριστικά των αξιο γράφων σταθερού εισοδήματος. Οι έννοιες αυτές είναι απαραίτητες για την αποτίμηση

Διαβάστε περισσότερα

ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Κόστος κεφαλαίου κόστος ευκαιρίας των κεφαλαίων Υποθέσεις υπολογισμού Στάδια υπολογισμού Πηγές χρηματοδότησης (κεφαλαίου)

ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Κόστος κεφαλαίου κόστος ευκαιρίας των κεφαλαίων Υποθέσεις υπολογισμού Στάδια υπολογισμού Πηγές χρηματοδότησης (κεφαλαίου) ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Κόστος κεφαλαίου Ορισμός: είναι το κόστος ευκαιρίας των κεφαλαίων που έχουν όλοι οι επενδυτές της εταιρείας (μέτοχοι και δανειστές) Κόστος ευκαιρίας: είναι η απόδοση της καλύτερης εναλλακτικής

Διαβάστε περισσότερα

Έννοια της Παρούσας Αξίας και Εφαρμογές: Τιμές των Ομολόγων και Επενδυτικές Αποφάσεις των Επιχειρήσεων 1. Η Έννοια της Παρούσας Αξίας

Έννοια της Παρούσας Αξίας και Εφαρμογές: Τιμές των Ομολόγων και Επενδυτικές Αποφάσεις των Επιχειρήσεων 1. Η Έννοια της Παρούσας Αξίας Έννοια της Παρούσας Αξίας και Εφαρμογές: Τιμές των Ομολόγων και Επενδυτικές Αποφάσεις των Επιχειρήσεων 1. Η Έννοια της Παρούσας Αξίας - Η Παρούσα Αξία (PV) ενός ποσού R που θα εισπραχθεί μετά από μια περίοδο

Διαβάστε περισσότερα

Τι ενδιαφέρει τον ιδιώτη

Τι ενδιαφέρει τον ιδιώτη ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΠΜΣ «Επιστήµη και Τεχνολογία Υδατικών Πόρων» Οικονοµικά του Περιβάλλοντος και των Υδατικών Πόρων Αξιολόγηση επενδύσεων Τι ενδιαφέρει τον ιδιώτη Πόσα χρήµατα θα επενδύσω; Πότε

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ

ΔΙΟΙΚΗΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ- ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ (ΔΔΕ) ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ (MASTER) ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΩΝ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΩΝ» ΔΙΟΙΚΗΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Αντικατάσταση Μηχανημάτων

Διαβάστε περισσότερα

Ε Π Ι Τ Υ Χ Ι Α!!!!!!!

Ε Π Ι Τ Υ Χ Ι Α!!!!!!! Όνομα: Επίθετο: Ημερομηνία:12Φεβρουαρίου 2018 Πρωί: Χ Απόγευμα: Θεματική ενότητα: Αρχές Οικονομίας & Χρηματοοικονομικά Μαθηματικά Αα Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!!! 1/10 Ερώτηση 1. Αν η προεξοφλημένη αξία

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2004

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2004 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 8 ΙΑΝΟΥΑΡΙΟΥ 004 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9 π.μ.) . Αν δ t,

Διαβάστε περισσότερα

ϋ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ «Η ΚΑΜΠΥΛΗ ΑΠΟΔΟΣΗΣ ΤΩΝ ΕΠΙΤΟΚΙΩΝ: ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ»

ϋ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ «Η ΚΑΜΠΥΛΗ ΑΠΟΔΟΣΗΣ ΤΩΝ ΕΠΙΤΟΚΙΩΝ: ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ» ϋ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ «Η ΚΑΜΠΥΛΗ ΑΠΟΔΟΣΗΣ ΤΩΝ ΕΠΙΤΟΚΙΩΝ: ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ» ("THE TERM STRUCTURE OF INTEREST RATE: THEORY AND

Διαβάστε περισσότερα

Τυχαία μεταβλητή είναι μία συνάρτηση ή ένας κανόνας που αντιστοιχίζει ένα αριθμό σε κάθε αποτέλεσμα ενός πειράματος.

Τυχαία μεταβλητή είναι μία συνάρτηση ή ένας κανόνας που αντιστοιχίζει ένα αριθμό σε κάθε αποτέλεσμα ενός πειράματος. ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση ή ένας κανόνας που αντιστοιχίζει ένα αριθμό σε κάθε αποτέλεσμα ενός πειράματος. Εναλλακτικά η τιμή της τυχαίας μεταβλητής είναι ένα αριθμητικό γεγονός.

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 1: Κεφαλαιοποίηση Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 6 η. Ανάλυση Κινδύνου και Κοινωνικό Προεξοφλητικό Επιτόκιο

Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 6 η. Ανάλυση Κινδύνου και Κοινωνικό Προεξοφλητικό Επιτόκιο Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 6 η Ανάλυση Κινδύνου και Κοινωνικό Προεξοφλητικό Επιτόκιο Ζητήματα που θα εξεταστούν: Πως ορίζεται η έννοια της αβεβαιότητας και του κινδύνου. Ποια είναι

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ FW.PR09 Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: x Θεματική ενότητα: Αρχές Οικονομίας και Χρηματοοικονομικά Μαθηματικά FW.PR09 /6 FW.PR09 Θέμα ο α) Η παρούσα αξία μιας διηνεκούς ράντας που πληρώνει

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuig Systems Επισκόπηση Γνώσεων Πιθανοτήτων Βασίλης Μάγκλαρης maglaris@etmode.tua.gr 7/3/2018 1 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ POISSON Η τυχαία εμφάνιση παλμών περιγράφεται σαν

Διαβάστε περισσότερα

ΚΤΡ. - 2.900 1.250 1.900 1.585 1.280 Π.ΚΤΡ. - 2.900 1.147 1.599 1.224 907 Κ.Π.Α. 1.977

ΚΤΡ. - 2.900 1.250 1.900 1.585 1.280 Π.ΚΤΡ. - 2.900 1.147 1.599 1.224 907 Κ.Π.Α. 1.977 1.Έχετε να επιλέξτε για την κατάθεση ενός ποσού 150 Euro, στην τράπεζα Αλφα µε σταθερό επιτόκιο 10% για 5 έτη και ανατοκισµό στο τέλος κάθε έτους, και την κατάθεση 148 Euro στην τράπεζα Βήτα µε το ίδιο

Διαβάστε περισσότερα

Κάνοντας click στους αριθμούς μέσα σε κόκκινα ορθογώνια, μεταϕέρεστε απευθείας στη λύση ή την εκϕώνηση αντίστοιχα. Άσκηση 1

Κάνοντας click στους αριθμούς μέσα σε κόκκινα ορθογώνια, μεταϕέρεστε απευθείας στη λύση ή την εκϕώνηση αντίστοιχα. Άσκηση 1 ΑΣΚΗΣΕΙΣ ΟΜΟΛΟΓΩΝ Κάνοντας click στους αριθμούς μέσα σε κόκκινα ορθογώνια, μεταϕέρεστε απευθείας στη λύση ή την εκϕώνηση αντίστοιχα. Άσκηση Θεωρείστε ένα αξιόγραϕο το οποίο υπόσχεται τις κάτωθι χρηματικές

Διαβάστε περισσότερα

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!!

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!! Όνομα: Επίθετο: Ημερομηνία: 6 Φεβρουαρίου 2019 Πρωί: Απόγευμα: x Θεματική ενότητα: Αρχές Οικονομίας & Χρηματοοικονομικά Μαθηματικά Αα Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!! 1/6 Θέμα 1 ο α) (2 Βαθμοί)Ομόλογο με

Διαβάστε περισσότερα

MANAGEMENT OF FINANCIAL INSTITUTIONS

MANAGEMENT OF FINANCIAL INSTITUTIONS MANAGEMENT OF FINANCIAL INSTITUTIONS ΔΙΑΛΕΞΗ: ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΟΥ: Εισαγωγή Πανεπιστήμιο Πειραιώς Καθηγητής Γκ. Χαρδούβελης Τμήμα Χρηματοοικονομικής ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΟΥ: ΠΕΡΙΕΧΟΜΕΝΑ Κατηγορίες κινδύνων των

Διαβάστε περισσότερα

Credit Risk Διάλεξη 5

Credit Risk Διάλεξη 5 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Credit Risk Διάλεξη 5 Μια αναφορά στα τιτλοποιημένα αξιόγραφα Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Liquidity Risk, Swaps, Interest Rate Caps and Stress Testing

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Liquidity Risk, Swaps, Interest Rate Caps and Stress Testing ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Liquidity Risk, Swaps, Interest Rate Caps and Stress Testing Κίνδυνος Ρευστότητας: Εισαγωγή Κίνδυνοι Ρευστότητας είναι οι κίνδυνοι που προκύπτουν όταν ο επενδυτής χρειάζεται

Διαβάστε περισσότερα

Χρηματοοικονομική Διοίκηση

Χρηματοοικονομική Διοίκηση Χρηματοοικονομική Διοίκηση Ενότητα 8: Απόδοση - Κίνδυνος Επενδύσεων Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Αξιολόγηση Επενδύσεων. Διάλεξη 1 Η Χρονική Αξία του Χρήματος I (Εξισώσεις Αξίας) Δράκος και Καραθανάσης, Κεφ2

Αξιολόγηση Επενδύσεων. Διάλεξη 1 Η Χρονική Αξία του Χρήματος I (Εξισώσεις Αξίας) Δράκος και Καραθανάσης, Κεφ2 Αξιολόγηση Επενδύσεων Διάλεξη 1 Η Χρονική Αξία του Χρήματος I (Εξισώσεις Αξίας) Δράκος και Καραθανάσης, Κεφ2 Περίγραμμα Διάλεξης Το Χρονοδιάγραμμα Οι Τρείς Κανόνες του Χρονοδιαγράμματος Το Χρονοδιάγραμμα

Διαβάστε περισσότερα

Αξιολόγηση Επενδύσεων

Αξιολόγηση Επενδύσεων Αξιολόγηση Επενδύσεων Διάλεξη για το CAPM Δράκος και Καραθανάσης Κεφάλαιο 18 Εαρινό Εξάμηνο 2018 1 Οι Κύριες Υποθέσεις του Υποδείγματος CAPM Το CAPM (Capital Asset Pricing Model-Υπόδειγμα Αποτίμησης Κεφαλαιακών(Περιουσιακών)

Διαβάστε περισσότερα

Αξιολόγηση Επενδύσεων. Διάλεξη 6 Επιτόκια III

Αξιολόγηση Επενδύσεων. Διάλεξη 6 Επιτόκια III Αξιολόγηση Επενδύσεων Διάλεξη 6 Επιτόκια III 1 Περίγραμμα Διάλεξης Πως καθορίζονται τα επιτόκια 2 Η Χρονική Διάρθρωση των Επιτοκίων Οι ομολογίες με τα ίδια χαρακτηριστικά αλλά διαφορετική διάρκεια μέχρι

Διαβάστε περισσότερα

Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΔΟΤΙΚΗ ΔΙΟΙΚΗΣΗ 1

Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΔΟΤΙΚΗ ΔΙΟΙΚΗΣΗ 1 Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΔΟΤΙΚΗ ΔΙΟΙΚΗΣΗ 1 Εξετάσεις Ιουνίου 2017 ΤΜΗΜΑ Μ-Ω Διάρκεια Εξέτασης 2 Ώρες Καλείστε να απαντήσετε στο σύνολο των θεµάτων.

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή:

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή: Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 2017-18 Λύσεις του πέμπτου φυλλαδίου ασκήσεων 1 Σε ένα πρόβλημα πολλαπλής επιλογής προτείνονται n απαντήσεις από τις οποίες μόνο μία είναι σωστή Αν η σωστή απάντηση κερδίζει

Διαβάστε περισσότερα

Διεθνείς Αγορές Χρήματος και Κεφαλαίου. Ομολογίες, Διάρκεια, Προθεσμιακά Επιτόκια, Ανταλλαγές Επιτοκίων

Διεθνείς Αγορές Χρήματος και Κεφαλαίου. Ομολογίες, Διάρκεια, Προθεσμιακά Επιτόκια, Ανταλλαγές Επιτοκίων Διεθνείς Αγορές Χρήματος και Κεφαλαίου Ομολογίες, Διάρκεια, Προθεσμιακά Επιτόκια, Ανταλλαγές Επιτοκίων 1 Η ομολογία είναι ένα εμπορικό έγγραφο, με το οποίο η εκδότρια εταιρεία αναγνωρίζει (ομολογεί) ότι

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 6 η H ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ (ΑΝΑΤΟΚΙΣΜΟΣ, ΠΑΡΟΥΣΑ ΑΞΙΑ, ΣΥΝΤΕΛΕΣΤΗΣ ΠΡΟΕΞΟΦΛΗΣΗΣ)

ΔΙΑΛΕΞΗ 6 η H ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ (ΑΝΑΤΟΚΙΣΜΟΣ, ΠΑΡΟΥΣΑ ΑΞΙΑ, ΣΥΝΤΕΛΕΣΤΗΣ ΠΡΟΕΞΟΦΛΗΣΗΣ) ΔΙΑΛΕΞΗ 6 η H ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ (ΑΝΑΤΟΚΙΣΜΟΣ, ΠΑΡΟΥΣΑ ΑΞΙΑ, ΣΥΝΤΕΛΕΣΤΗΣ ΠΡΟΕΞΟΦΛΗΣΗΣ) Κάποιες βασικές παραδοχές: Στην πραγματική οικονομία, τόσο τα άτομα, όσο και οι επιχειρήσεις λαμβάνουν αποφάσεις

Διαβάστε περισσότερα

Ομοιότητες και διαφορές μεταξύ κινδύνου αγοράς και πιστωτικού κινδύνου

Ομοιότητες και διαφορές μεταξύ κινδύνου αγοράς και πιστωτικού κινδύνου Πιστωτικός κίνδυνος Ομοιότητες και διαφορές μεταξύ κινδύνου αγοράς και πιστωτικού κινδύνου Η κύρια ομοιότητα μεταξύ του κινδύνου αγοράς και του πιστωτικού κινδύνου είναι ότι και οι δύο μειώνουν τη συνολική

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ίκτυα Επικοινωνίας Υπολογιστών

ίκτυα Επικοινωνίας Υπολογιστών ίκτυα Επικοινωνίας Υπολογιστών Ενότητα: Ασκήσεις για την ενότητα 5 (Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα

Διαβάστε περισσότερα

Διαχείριση Κινδύνου Risk Management

Διαχείριση Κινδύνου Risk Management Διαχείριση Κινδύνου Εισαγωγικές Παρατηρήσεις Ο κίνδυνος είναι εμφανής σε όλες τις δραστηριότητες, όλων των οργανισμών ανεξάρτητα από το σκοπό και από την διάρθρωση των λειτουργιών του Οι επιχειρήσεις είναι

Διαβάστε περισσότερα

( p) (1) (2) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. Α.Α.Δράκος

( p) (1) (2) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. Α.Α.Δράκος ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΟΝΤΑ ΣΤΗ ΧΡΗΜΑΤΟΔΟΤΙΚΗ ΔΙΟΙΚΗΣΗ Δράκος 4-5 4.) ΠΛΗΘΩΡΙΣΜΟΣ ΚΑΙ ΚΙΝΔΥΝΟΣ ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ 4.. ΑΞΙΟΛΟΓΗΣΗ

Διαβάστε περισσότερα

Χρηματοοικονομικοί Κίνδυνοι Εισαγωγικά Στοιχεία των Παραγώγων. Χρηματοοικονομικών Προϊόντων Χρήση και Σημασία των Παραγώγων...

Χρηματοοικονομικοί Κίνδυνοι Εισαγωγικά Στοιχεία των Παραγώγων. Χρηματοοικονομικών Προϊόντων Χρήση και Σημασία των Παραγώγων... Πρόλογος Γ Έκδοσης... 19 κεφάλαιο 1 ΠΑΡΑΓΩΓΑ ΚΑΙ ΧΡΗΜΑΤΟΠΙΣΤΩΤΙΚΕΣ ΑΓΟΡΕΣ 1.1 Εξελίξεις στο Χρηματοπιστωτικό Χώρο και Χρηματοοικονομικοί Κίνδυνοι... 27 1.2 Εισαγωγικά Στοιχεία των Παραγώγων Χρηματοοικονομικών

Διαβάστε περισσότερα

Κεφάλαιο Δάνεια Γενικά Δάνεια εξοφλητέα εφάπαξ Αν οι τόκοι καταβάλλονται στο τέλος κάθε περιόδου

Κεφάλαιο Δάνεια Γενικά Δάνεια εξοφλητέα εφάπαξ Αν οι τόκοι καταβάλλονται στο τέλος κάθε περιόδου Κεφάλαιο 6 6. Δάνεια 6.. Γενικά Το σημαντικότερο και σίγουρα το πιο διαδεδομένο κεφάλαιο των οικονομικών μαθηματικών είναι αυτό των δανείων. Κράτη, δημόσιοι οργανισμοί, επιχειρήσεις αλλά και ιδιώτες χρειάζονται

Διαβάστε περισσότερα

Α. Συντελεστής Ανάκτησης Κεφαλαίου ΣΑΚ = Β. Συντελεστής Συσσώρευσης Κεφαλαίου ΣΣΚ =

Α. Συντελεστής Ανάκτησης Κεφαλαίου ΣΑΚ = Β. Συντελεστής Συσσώρευσης Κεφαλαίου ΣΣΚ = Χρήσιμοι συντελεστές Α. Συντελεστής Ανάκτησης Κεφαλαίου *(1 ) ΣΑΚ = (1 ) 1 Β. Συντελεστής Συσσώρευσης Κεφαλαίου ΣΣΚ = ( 1 ) 1 Κόστος εξοπλισμού Στο κόστος αυτό του εξοπλισμού περιλαμβάνεται (α) το κόστος

Διαβάστε περισσότερα

MANAGEMENT OF FINANCIAL INSTITUTIONS

MANAGEMENT OF FINANCIAL INSTITUTIONS MANAGEMENT OF FINANCIAL INSTITUTIONS ΔΙΑΛΕΞΗ: «ΣΥΝΑΛΛΑΓΜΑΤΙΚΟΣ ΚΙΝΔΥΝΟΣ» (Foreign Exchange Risk) Πανεπιστήμιο Πειραιώς Τμήμα Χρηματοοικονομικής Καθηγητής Γκίκας Χαρδούβελης 1 ΠΕΡΙΕΧΟΜΕΝΑ Ορισμός Συναλλαγματικού

Διαβάστε περισσότερα

Ράντες. - Κατανόηση και χρησιμοποίηση μιας σειράς πληρωμών που ονομάζεται ράντα.

Ράντες. - Κατανόηση και χρησιμοποίηση μιας σειράς πληρωμών που ονομάζεται ράντα. Ράντες Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι - Αρχική αξία - Τελική αξία - Δόση ή όρος - Περίοδος - Διάρκεια (συμβολισμός n) - Διηνεκής ράντα - Κλασματική ράντα ΣΤΟΧΟΙ - Κατανόηση και χρησιμοποίηση

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (12

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2009 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 24 ΦΕΒΡΟΥΑΡΙΟΥ 2009

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2009 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 24 ΦΕΒΡΟΥΑΡΙΟΥ 2009 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 009 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΦΕΒΡΟΥΑΡΙΟΥ 009 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ.

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΕΑΕΚ ΙΙ

ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΕΑΕΚ ΙΙ ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΕΑΕΚ ΙΙ «Οικονομικά της Παραγωγής και των Διακλαδικών Σχέσεων» ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΠΙΣΤΩΤΙΚΟΣ

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr Ερώτηση 1 Την 30 η Σεπτεμβρίου 2013, τα επιτόκια ενός έτους του γιεν Ιαπωνίας και της λίρας Αγγλίας είναι αντιστοίχως i = 1% και i = 4%, ενώ η ισοτιμία όψεως είναι 150 ανά λίρα (S 30-9-13 = 150/ ). Οι

Διαβάστε περισσότερα

Πολιτική Οικονομία Ι: Μακροθεωρία και Πολιτική Νίκος Κουτσιαράς. Κυριάκος Φιλίνης

Πολιτική Οικονομία Ι: Μακροθεωρία και Πολιτική Νίκος Κουτσιαράς. Κυριάκος Φιλίνης Πολιτική Οικονομία Ι: Μακροθεωρία και Πολιτική Νίκος Κουτσιαράς Κυριάκος Φιλίνης Οργανισμοί που δέχονται καταθέσεις Εμπορικές τράπεζες ΣυνεταιριστικέςτράπεζεςΣ έ ά ζ Πιστωτικές ενώσεις Οργανισμοί αποταμιεύσεων

Διαβάστε περισσότερα

Ομόλογα (Τίτλοι σταθερού εισοδήματος, δικαιώματα και υποχρεώσεις) 1 δ Για τα ομόλογα μηδενικού τοκομεριδίου (zero coupon bonds) ισχύει ότι:

Ομόλογα (Τίτλοι σταθερού εισοδήματος, δικαιώματα και υποχρεώσεις) 1 δ Για τα ομόλογα μηδενικού τοκομεριδίου (zero coupon bonds) ισχύει ότι: Ομόλογα (Τίτλοι σταθερού εισοδήματος, δικαιώματα και υποχρεώσεις) 1 δ Για τα ομόλογα μηδενικού τοκομεριδίου (zero coupon bonds) ισχύει ότι: α Συναλλάσσονται συνήθως υπέρ το άρτιο. β Καλύπτουν στον επενδυτή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013 Τρίτη Γραπτή Εργασία Γενικές οδηγίες για την εργασία Όλες οι ερωτήσεις

Διαβάστε περισσότερα

Μεικτά Μαρκοβιανά Μοντέλα σε διαδικασίες μετανάστευσης στις βαθμίδες αξιολόγησης πιστοληπτικής ικανότητας

Μεικτά Μαρκοβιανά Μοντέλα σε διαδικασίες μετανάστευσης στις βαθμίδες αξιολόγησης πιστοληπτικής ικανότητας 1 Μεικτά Μαρκοβιανά Μοντέλα σε διαδικασίες μετανάστευσης στις βαθμίδες αξιολόγησης πιστοληπτικής ικανότητας ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ζωή Χ. Σαγρή Επιβλέπων: Π.Χ.Γ. Βασιλείου Καθηγητής Α.Π.Θ Θεσσαλονίκη,

Διαβάστε περισσότερα

Έτος 1 Έτος 2 Έτος 3 Έτος 4 Έτος 5 Εισπράξεις 270.000 300.000 350.000 500.000 580.000

Έτος 1 Έτος 2 Έτος 3 Έτος 4 Έτος 5 Εισπράξεις 270.000 300.000 350.000 500.000 580.000 Θέμα 1 0 Η εταιρία ΑΒΓ σχεδιάζει να επενδύσει σήμερα (στο έτος 0), σε ένα έργο το οποίο θα έχει αρχικό κόστος 00.000, διάρκεια ζωής 5 έτη και αναμένεται να δώσει τις ακόλουθες εισπράξεις: Έτος 1 Έτος 2

Διαβάστε περισσότερα

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { } Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το

Διαβάστε περισσότερα

ΔΙΕΘΝΗ ΤΡΑΠΕΖΙΚΑ ΘΕΜΑΤΑ

ΔΙΕΘΝΗ ΤΡΑΠΕΖΙΚΑ ΘΕΜΑΤΑ Ενότητα 5: Δραστηριότητες της Διεθνούς Τραπεζικής Αγορές Ευρωνομισμάτων και Ευρωομολόγων Μιχαλόπουλος Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 15/3/2017 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ Όνομα: Επίθετο: Ημερομηνία: 13/7/2015 Πρωί: x Απόγευμα: Θεματική ενότητα: Ποσοτικοποίηση και Αναλογιστική Διαχείριση των Κινδύνων και Φερεγγυότητα 1. Στο πλαίσιο φερεγγυότητα ΙΙ, όσον αφορά στη δραστηριότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: ΕΙΔΗ ΚΙΝΔΥΝΟΥ

ΚΕΦΑΛΑΙΟ 3: ΕΙΔΗ ΚΙΝΔΥΝΟΥ ΚΕΦΑΛΑΙΟ 3: ΕΙΔΗ ΚΙΝΔΥΝΟΥ 1 Τι είναι ο κίνδυνος; Ως κίνδυνος εκλαμβάνεται η κατάσταση η οποία θέτει ένα ποσοστό απειλής για τη ζωή, την υγεία,την ιδιοκτησία ή το περιβάλλον Παρακάτω θα παρουσιάσουμε τους

Διαβάστε περισσότερα

3 ο Συνταξιοδοτικό Φόρουμ IMH

3 ο Συνταξιοδοτικό Φόρουμ IMH 3 ο Συνταξιοδοτικό Φόρουμ IMH Μαρίνος Γιαλελή Ταμείο Προνοίας Υπαλλήλων Ξενοδοχειακής Βιομηχανίας Γενικός Διευθυντής 30 Μαΐου, 2012 Αριθμητικά Δεδομένα Μέλη 12.859 Μέλη, 31 Δεκ. 2011 o 7.600 ενεργά μέλη

Διαβάστε περισσότερα

Κεφάλαιο 17 Ένα Υπόδειγµα Δηµοσιονοµικών Κρίσεων

Κεφάλαιο 17 Ένα Υπόδειγµα Δηµοσιονοµικών Κρίσεων Κεφάλαιο 17 Ένα Υπόδειγµα Δηµοσιονοµικών Κρίσεων Στο κεφάλαιο αυτό παρουσιάζουµε ένα απλό υπόδειγµα κρίσεων δηµοσίου χρέους. Το υπόδειγµα αυτό οφείλεται στον Calvo (1988). Επικεντρωνόµαστε στο ερώτηµα

Διαβάστε περισσότερα

H τιμολόγηση των δικαιωμάτων με το υπόδειγμα Black Scholes

H τιμολόγηση των δικαιωμάτων με το υπόδειγμα Black Scholes TΟΜΟΣ Γ - ΔΙΚΑΙΩΜΑΤΑ Μάθημα 19 H τιμολόγηση των δικαιωμάτων με το υπόδειγμα Black Scholes Στην προηγούμενη ενότητα είδαμε ορισμένα από τα χαρακτηριστικά των δικαιωμάτων χρησιμοποιώντας τις τιμές των δικαιωμάτων

Διαβάστε περισσότερα

Διμεταβλητές κατανομές πιθανοτήτων

Διμεταβλητές κατανομές πιθανοτήτων Διμεταβλητές κατανομές πιθανοτήτων Για να περιγράψουμε την σχέση ανάμεσα σε δύο τυχαίες μεταβλητές χρειαζόμαστε την κοινή κατανομή πιθανοτήτων τους. Η κοινή συνάρτηση πιθανότητ ικανοποιε ί τις συνθ ήκες

Διαβάστε περισσότερα

Παραδείγματα υπολογισμού κόστους, προμήθειας χρεώσεων: Συναλλαγές Ομολόγων / Παραγώγων / Δικαιωμάτων Προαίρεσης

Παραδείγματα υπολογισμού κόστους, προμήθειας χρεώσεων: Συναλλαγές Ομολόγων / Παραγώγων / Δικαιωμάτων Προαίρεσης Συναλλαγές Ομολόγων / Παραγώγων / Δικαιωμάτων Προαίρεσης Σύμφωνα με την MiFID II, η Τράπεζα οφείλει, για λόγους διαφάνειας, να πληροφορεί τον πελάτη, σχετικά με το κόστος και τις επιβαρύνσεις, πριν την

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Οι ιδιαιτερότητες των λοιπών επιχειρηματικών κλάδων ΠΑΡΑΡΤΗΜΑ 2. Αποτίμηση (επιμέτρηση) και απομείωση σύμφωνα με το IFRS 9

Οι ιδιαιτερότητες των λοιπών επιχειρηματικών κλάδων ΠΑΡΑΡΤΗΜΑ 2. Αποτίμηση (επιμέτρηση) και απομείωση σύμφωνα με το IFRS 9 ΠΑΡΑΡΤΗΜΑ 2 Αποτίμηση (επιμέτρηση) και απομείωση σύμφωνα με το IFRS 9 Από 1.1.2018 τίθεται σε εφαρμογή το IFRS 9, το οποίο επιφέρει σημαντικές μεταβολές στους κανόνες αποτίμησης και τη διαδικασία προσδιορισμού

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

Αξιολόγηση Επενδύσεων. Διάλεξη 3 Μέθοδοι Αξιολόγησης Επενδύσεων Δράκος και Καραθανάσης, Κεφ 3 και Κεφ 4

Αξιολόγηση Επενδύσεων. Διάλεξη 3 Μέθοδοι Αξιολόγησης Επενδύσεων Δράκος και Καραθανάσης, Κεφ 3 και Κεφ 4 Αξιολόγηση Επενδύσεων Διάλεξη 3 Μέθοδοι Αξιολόγησης Επενδύσεων Δράκος και Καραθανάσης, Κεφ 3 και Κεφ 4 1 Περίγραμμα Διάλεξης Η Καθαρή Παρούσα Αξία (ΚΠΑ) Ο Εσωτερικός Βαθμός Απόδοσης (ΕΒΑ) Ο Χρόνος Επανείσπραξης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΑΜΕΙΑΚΩΝ ΡΟΩΝ

ΑΝΑΛΥΣΗ ΤΑΜΕΙΑΚΩΝ ΡΟΩΝ ΑΝΑΛΥΣΗ ΤΑΜΕΙΑΚΩΝ ΡΟΩΝ 1 ΚΑΘΑΡΗ ΤΑΜΕΙΑΚΗ ΡΟΗ Καθαρή Ταμειακή Ροή: Η διαφορά μεταξύ της ταμειακής εισροής και της ταμειακής εκροής που απορρέει από μια επενδυτική πρόταση. Το βασικό χαρακτηριστικό της ΚΤΡ

Διαβάστε περισσότερα

Αξιολόγηση Επενδυτικών Σχεδίων

Αξιολόγηση Επενδυτικών Σχεδίων Αξιολόγηση Επενδυτικών Σχεδίων Ενότητα 5: Ειδικά ζητήματα Δ. Δαμίγος Μ. Μενεγάκη Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του τέταρτου φυλλαδίου ασκήσεων.

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του τέταρτου φυλλαδίου ασκήσεων. Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 207-8 Λύσεις του τέταρτου φυλλαδίου ασκήσεων 2 2 = 8 Ίδια Ρίχνουμε ένα νόμισμα τρεις φορές και θεωρούμε το ενδεχόμενο να προκύψουν και οι δυο όψεις του νομίσματος καθώς

Διαβάστε περισσότερα

Εργαστήριο Εκπαίδευσης και Εφαρμογών Λογιστικής. Εισαγωγή στην Χρηματοοικονομική Ανάλυση

Εργαστήριο Εκπαίδευσης και Εφαρμογών Λογιστικής. Εισαγωγή στην Χρηματοοικονομική Ανάλυση Εργαστήριο Εκπαίδευσης και Εφαρμογών Λογιστικής Εισαγωγή στην Χρηματοοικονομική Ανάλυση 1 Χρηματοοικονομική ανάλυση Χρηματοοικονομική Ανάλυση είναι η ανάλυση που σκοπός της είναι: ο προσδιορισμός των δυνατών

Διαβάστε περισσότερα

Η εξίσωση της γραμμής αγοράς χρεογράφων (SML) είναι η εξίσωση του υποδείγματος κεφαλαιακών και περιουσιακών στοιχείων (CAPM)

Η εξίσωση της γραμμής αγοράς χρεογράφων (SML) είναι η εξίσωση του υποδείγματος κεφαλαιακών και περιουσιακών στοιχείων (CAPM) ΠΔΕ353 Λύση 2 ης γραπτής εργασίας 2015 Άσκηση 1 Η αναμενόμενη απόδοση της μετοχής Α σύμφωνα με το συστηματικό της κίνδυνο θα βρεθεί από το υπόδειγμα CPM E(r $ ) = r ' + β * (Ε r, r ' ) E(r $ ) = 0,05 +

Διαβάστε περισσότερα