Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε
|
|
- Κίρκη Ανδρέου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη: Θεωρήστε μπλοκ B 1, B 2 τ. ώ. V (B 1 ) V (B 2 ) 2. Θα δείξουμε ότι το γράφημα B 1 B 2 είναι συνεκτικό, χωρίς αρθρικό σημείο, άρα τα B 1, B 2 δεν είναι μεγιστικά. Σβήνοντας μια κορυφή V (B 1 ) V (B 2 ), το B i \{} είναι συνεκτικό, i = 1, 2. Άρα υπάρχει μονοπάτι εντός του B i \ {} προς την κορυφή y V (B 1 ) V (B 2 ) \ {}. Άρα μέσω του y υπάρχει μονοπάτι από κάθε v 1 V (B 1 ) \ {} προς κάθε v 2 V (B 2 ) \ {}. Το B 1 B 2 δεν χάνει τη συνεκτικότητα με τη διαγραφή μιας κορυφής, άρα τα B 1, B 2 δεν είναι μεγιστικά με αυτή την ιδιότητα, άτοπο. Ομοίως αποδεικνύεται και η επόμενη πρόταση. Πρόταση 4.2 Δίνονται μπλοκ B 1, B 2 του γραφήματος G. Αν v V (B 1 ) V (B 2 ), τότε το v είναι αρθρικό σημείο του G. Παρατήρηση 4.1 Τα μπλοκ ενός γραφήματος διαμερίζουν το σύνολο των ακμών. Ορισμός 4.1 Το γράφημα των μπλοκ (block graph) ενός γραφήματος G είναι ένα διμερές γράφημα H = (A B, E) όπου A είναι το σύνολο των αρθρικών σημείων του G και B το σύνολο των μπλοκ. Η ακμή {v, b}, v A, b B, περιλαμβάνεται στο E ανν v V (b). Η απόδειξη της παρακάτω πρότασης είναι επίσης παρόμοια με την απόδειξη της Πρότασης 4.1. Πρόταση 4.3 Το γράφημα των μπλοκ ενός συνεκτικού γραφήματος G είναι δέντρο. Ορισμός 4.2 Σε ένα γράφημα G, δύο μονοπάτια P 1, P 2 καλούνται εσωτερικά διακεκριμένα (internally disjoint) αν δεν έχουν καμία κοινή εσωτερική κορυφή. Το παρακάτω θεώρημα αποτελεί μια πρόγευση του Θεωρήματος του Menger. Η απόσταση δύο κορυφών u, v ορίζεται ως το μήκος του συντομότερου μονοπατιού ανάμεσα στα στα u και v και συμβολίζεται με d(u, v). Θεώρημα 4.1 (Whitney, 1932) Γράφημα G, G 3, είναι 2-συνεκτικό ανν για κάθε u, v V (G), u v, υπάρχουν τουλάχιστον δύο εσωτερικά διακεκριμένα u-v μονοπάτια. 4-1
2 Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε τώρα την κατεύθυνση. Εστω G 2-συνεκτικό. Δοσμένων u, v V (G), u v, θα δείξουμε την ύπαρξη των δύο μονοπατιών με επαγωγή στο d(u, v). ΒΑΣΗ: d(u, v) = 1. Επειδή κ (G) κ(g) = 2, αν διαγράψουμε την ακμή {u, v} το εναπομείναν γράφημα παραμένει συνεκτικό. Άρα υπάρχει u-v μονοπάτι στο G που είναι εσωτερικά διακεκριμένο από την ακμή {u, v}. ΕΠΑΓΩΓΙΚΟ ΒΗΜΑ: d(u, v) = k > 1 και υποθέτουμε ότι ισχύει για, y V (G), με 1 d(, y) < k. Εστω w η κορυφή πριν από το v σε ένα συντομότερο u-v μονοπάτι. Επειδή d(u, w) = k 1, από την Επαγωγική Υπόθεση υπάρχουν δύο εσωτερικά διακεκριμένα u-w μονοπάτια P και Q. Το γράφημα G \ {w} είναι συνεκτικό άρα περιέχει ένα u-v μονοπάτι R. Αν R P = ή R Q =, τελειώσαμε. Το R, εκτός από το u, μπορεί να περιέχει μόνο εσωτερικές κορυφές των P, Q. (Παρατηρήστε ότι το w δεν μπορεί να ανήκει στο R.) Ορίζουμε ως την τελευταία κορυφή του R πριν το v που ανήκει στο P Q. Χβτγ υποθέτουμε ότι P. (Βλ. Σχήμα 4.1.) Συνδυάζοντας το u- υπομονοπάτι του P με το -v υπομονοπάτι του R παίρνουμε u-v μονοπάτι που είναι εσωτερικά διακεκριμένο από το μονοπάτι που ορίζει η ένωση του Q με την ακμή {w, v}. R u P w v Q Σχήμα 4.1: Επαγωγικό Βήμα της απόδειξης του Θεωρήματος 4.1. Πόρισμα 4.1 Γράφημα G, G 3, είναι 2-συνεκτικό ανν κάθε δύο κορυφές του βρίσκονται πάνω στον ίδιο κύκλο. 4.2 Το Θεώρημα του Menger Ο ορισμός της συνεκτικότητας μας λέει ότι ένα γράφημα έχει υψηλή συνεκτικότητα αν δεν είναι ευάλωτο στις διαγραφές κορυφών. Το Θεώρημα του Menger, ή για την ακρίβεια τα πορίσματα του, δίνουν ένα «δυϊκό» χαρακτηρισμό της συνεκτικότητας μέσω της ύπαρξης πολλών διακεκριμένων μονοπατιών. Ορισμός 4.3 Δίνεται γράφημα G = (V, E) και έστω A, B V. Καλούμε A-B μονοπάτι ένα u-v μονοπάτι P όπου u A, v B και όλες οι εσωτερικές κορυφές του P δεν ανήκουν στο A B. Οποιοδήποτε A B αποτελεί ένα τετριμμένο A-B μονοπάτι.
3 Διάλεξη 4: Βλ. Σχήμα 4.2 για μια απεικόνιση A-B μονοπατιού. Ορισμός 4.4 Δίνεται γράφημα G = (V, E) και έστω A, B V. Ενα σύνολο X V (X E) τ. ώ. κάθε A-B μονοπάτι στο G περιέχει κορυφή (ακμή) από το X λέγεται A-B διαχωριστής (ακμοδιαχωριστής). u v A B Σχήμα 4.2: A-B μονοπάτια. Παρατήρηση 4.2 Αν X είναι A-B διαχωριστής, τότε A B X. Παρατήρηση 4.3 Αν X είναι A-B διαχωριστής, το X δεν είναι απαραίτητα διαχωριστής του γραφήματος. Το A ή το B είναι A-B διαχωριστές. Θεώρημα 4.2 (Menger, 1927) Δίνεται γράφημα G = (V, E) και έστω A, B V. Ο μέγιστος αριθμός διακεκριμένων A-B μονοπατιών είναι ίσος με το ελάχιστο μέγεθος ενός A-B διαχωριστή. Απόδειξη: Είναι προφανές ότι ο μέγιστος αριθμος διακεκριμένων μονοπατιών είναι μικρότερος ή ίσος από το μέγεθος ενός οποιουδήποτε διαχωριστή X. Κάθε μονοπάτι πρέπει να περιέχει τουλάχιστον μία κορυφή από το διαχωριστή X. Αρκεί λοιπόν να δείξουμε ότι δεδομένου ενός A-B διαχωριστή X ελάχιστου μεγέθους, υπάρχουν X διακεκριμένα A-B μονοπάτια. Η απόδειξη θα γίνει με επαγωγή στο E. Οπου αναφέρομαστε παρακάτω σε διαχωριστή, εννοείται A-B διαχωριστής. ΒΑΣΗ: E = 0. Υπάρχουν ακριβώς A B διακεκριμένα A-B μονοπάτια (όλα τετριμμένα), και το A B είναι διαχωριστής, άρα η πρόταση ισχύει. ΕΠΑΓΩΓΙΚΟ ΒΗΜΑ: E 1. Διαλέγουμε ακμή e = {, y} και ορίζουμε G = G e. Εστω S ένας ελάχιστος A-B διαχωριστής στο G, με S = k. Περίπτωση 1: ένα από τα S {}, S {y} δεν είναι ελάχιστος διαχωριστής στο G. Χβτγ, υποθέτουμε ότι το S {} δεν είναι ελάχιστος διαχωριστής. Το S {} είναι A-B διαχωριστής στο G, αφού τα μόνα A-B μονοπάτια στο G που δεν υπάρχουν και στο G είναι αυτά που περνάνε από την ακμή e,
4 Διάλεξη 4: άρα και από την κορυφή. Επομένως, το ελάχιστο μέγεθος διαχωριστή στο G είναι μικρότερο από S {} k + 1, άρα είναι το πολύ k. Είναι επίσης τουλάχιστον k = S, αφού ένας διαχωριστής στο G είναι και διαχωριστής στο G. Άρα αρκεί να βρούμε στο G k το πλήθος διακεκριμένα A-B μονοπάτια. Από την Επαγωγική Υπόθεση, υπάρχουν τόσα μονοπάτια στο G. Περίπτωση 2: το S {} και το S {y} είναι ελάχιστοι διαχωριστές στο G. Σε αυτή την περίπτωση είτε και οι δύο κορυφές και y ανήκουν στο S είτε καμία τους δεν ανήκει (ειδάλλως θα είχαμε δύο ελάχιστους διαχωριστές με διαφορετικά μεγέθη). Περίπτωση 2α:, y S. Άρα το S είναι ελάχιστος διαχωριστής μεγέθους k στο G. Τα k διακεκριμένα A-B μονοπάτια που από την Επαγωγική Υπόθεση υπάρχουν στο G είναι και μονοπάτια του G. Περίπτωση 2β:, y S. Ορίζουμε G A (αντ. G B ) το γράφημα που ενάγεται από το S {} (S {y}) και τις συνιστώσες του G (S {}) (G (S {y})) που τέμνουν το A (B). Ισχυρισμός 4.1 y V (G A ) και V (G B ). Από τον Ισχυρισμό 4.1 προκύπτει ότι: (i) οι μόνες κοινές κορυφές των G A και G B είναι οι κορυφές του S και (ii) e E(G A ) και e E(G B ). Άρα E(G A ) < E και E(G B ) < E. Εφαρμόζοντας την Επαγωγική Υπόθεση στα G A και G B παίρνουμε αντίστοιχα k + 1 A-(S {}) και k + 1 (S {y})-b διακεκριμένα μονοπάτια. Ενώνουμε ανά δύο τα μονοπάτια που έχουν κοινό άκρο στο S και για το A-{} μονοπάτι και το {y}-b μονοπάτι τα συνδέουμε βάζοντας ανάμεσα τους την ακμή e. Πήραμε k +1 διακεκριμένα A-B μονοπάτια στο G. a P b y S Σχήμα 4.3: Μονοπάτι P στην απόδειξη του Ισχυρισμού 4.1. Απομένει να αποδείξουμε τον Ισχυρισμό 4.1. Το γράφημα G S περιέχει ένα A-B μονοπάτι P που ξεκινάει από το a A και καταλήγει στο b B. Ο λόγος είναι ότι το S {} είναι ελάχιστος διαχωριστής και S. Αφού το S είναι διαχωριστής στο G, το P πρέπει να περιέχει την ακμή e.
5 Διάλεξη 4: Χβτγ, πάνω στο μονοπάτι το είναι πλησιέστερα στο a από ότι το y (βλ. ενδεικτικά Σχήμα 4.3, όμως σε καμία περίπτωση το σχήμα δεν υποκαθιστά το κείμενο της απόδειξης!). Το y b υπομονοπάτι του P δεν περιέχει εξ ορισμού το και επίσης δεν τέμνει το το S γιατί το P επιβιώνει της διαγραφής του S. Άρα το υπομονοπάτι δεν τέμνει το S {}. Αφού το S {} είναι A-B διαχωριστής, όλα τα A-{y} μονοπάτια πρέπει να τέμνουν το S {}. Αφού y S και δεν υπάρχουν A-{y} μονοπάτια στο G (S {}), συμπεραίνουμε ότι y V (G A ), συνεπώς e E(G A ). Συμμετρικά αποδεικνύεται ότι V (G B ), συνεπώς e E(G B ). Παρατηρήστε ότι το Θεώρημα 4.2 δεν αναφέρει το κ(g). Σύμφωνα με την Παρατήρηση 4.3, ένας A-B διαχωριστής δεν είναι απαραίτητα διαχωριστής του G. Αν το G είναι k-συνεκτικό δεν έπεται ότι κάθε A-B διαχωριστής έχει τουλάχιστον k κορυφές.
Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός
Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:
Διαβάστε περισσότεραΔιάλεξη 13: D Σχήμα 13.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 13.3: Σχηματική επεξήγηση περιπτώσεων πο
Διάλεξη 13: 25.11.26 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Καλλιόπη Πατερομιχελάκη & Σ. Κ. 13.1 Εναγόμενοι κύκλοι Ορισμός 13.1 Ενας κύκλος του γραφήματος G = (V, E), καλείται εναγόμενος
Διαβάστε περισσότεραΔιάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ
Διάλεξη 3: 25..26 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Καλλιόπη Πατερομιχελάκη 3. Εναγόμενοι κύκλοι Ορισμός 3. Ενας κύκλος του γραφήματος G = (V, E), καλείται εναγόμενος αν = G[V ()].
Διαβάστε περισσότεραΔιάλεξη 7: X Y Σχήμα 7.2: Παράδειγμα για το Πόρισμα 7.2, όπου: 1 = {1, 2, 5}, 2 = {1, 2, 3}, 3 = {4}, 4 = {1, 3, 4}. Θ
Διάλεξη 7: 2.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Μαργώνης & Σ. Κ. 7.1 Εφαρμογές του Θεωρήματος του Hall Πόρισμα 7.1 (Ελλειματική εκδοχή Θεωρήματος Hall) Δίνεται διμερές
Διαβάστε περισσότεραz 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2
Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από
Διαβάστε περισσότεραS A : N G (S) N G (S) + d S d + d = S
Διάλεξη 7: 2.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Μαργώνης 7.1 Εφαρμογές του Θεωρήματος του Hall Πόρισμα 7.1 (Ελλειματική εκδοχή Θεωρήματος Hall) Εάν σε διμερές γράφημα
Διαβάστε περισσότεραq(g \ S ) = q(g \ S) S + d = S.
Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος & Σ. Κ. Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε
Διαβάστε περισσότεραe 2 S F = [V (H), V (H)]. 3-1 e 1 e 3
Διάλεξη 3: 19.10.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Λίβανος & Σ. Κ. 3.1 Ακμοδιαχωριστές, Τομές, Δεσμοί Ορισμός 3.1 Ακμοδιαχωριστής (edge-separator) ενός γραφήματος =
Διαβάστε περισσότεραu v 4 w G 2 G 1 u v w x y z 4
Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E
Διαβάστε περισσότεραE(G) 2(k 1) = 2k 3.
Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από
Διαβάστε περισσότεραΔιάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από
Διάλεξη 3: 19.10.2016 Θεωρία Γραφημάτων Γραφέας: Βασίλης Λίβανος Διδάσκων: Σταύρος Κολλιόπουλος 3.1 Ακμοδιαχωριστές, Τομές, Δεσμοί Ορισμός 3.1 Ακμοδιαχωριστής (Edge-eparator) ενός γραφήματος G = (V, E)
Διαβάστε περισσότεραd(v) = 3 S. q(g \ S) S
Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε S υποσύνολο
Διαβάστε περισσότεραΘεωρία Γραφημάτων 4η Διάλεξη
Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη
Διαβάστε περισσότεραP = (J, B) T = (I, A) P = (J, B) G = (V, E) i 1 i i + 1
Θεωρία Γραφημάτων Διάλεξη 19: 14.12.2016 και 15.12.2016 Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Αγγελική Χαντζηθάνου & Σ. Κ. 19.1 Σχέση πλάτους μονοπατιού και δενδροπλάτους Πρόταση 19.1 Το πλέγμα Γ n n
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραm = 18 και m = G 2
Διάλεξη 11: 2.11.201 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιώτης Ρεπούσκος 11.1 Βασικές Ιδιότητες Θεώρημα 11.1 (Τύπος του Eulr, 172) Αν ένα συνεκτικό ενεπίπεδο γράφημα έχει n κορυφές,
Διαβάστε περισσότεραΘεωρία Γραφημάτων 11η Διάλεξη
Θεωρία Γραφημάτων 11η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη
Διαβάστε περισσότεραΘεωρία Γραφημάτων 7η Διάλεξη
Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραX i, i I Y j, j J. X i. Z j P = (J, B) G T = (I, J) 1 2 i i + 1 n. 1 i V
Θεωρία Γραφημάτων Διάλεξη 19: 14.12.2016 και 15.12.2016 Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Αγγελική Χαντζηθάνου 19.1 Σχέση πλάτους μονοπατιού και δενδροπλάτους Πρόταση 19.1 Το πλέγμα Γ n n έχει πλάτος
Διαβάστε περισσότεραΑσκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα
Ασκήσεις στους Γράφους 2 ο Σετ Ασκήσεων Δέντρα Ασκηση 1 η Ένας γράφος G είναι δέντρο αν και μόνο αν κάθε δυο κορυφές του συνδέονται με ένα μοναδικό μονοπάτι. Υποθέτουμε ότι ο γράφος G είναι δέντρο. Έστω
Διαβάστε περισσότεραΤίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΔιμερή γραφήματα και ταιριάσματα
Κεφάλαιο 6 Διμερή γραφήματα και ταιριάσματα Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι C. L. Liu and C. Liu 1985, Cameron 1994, Diestel 2005 και Stanley 1986. 6.1 Διμερή γραφήματα Η κλάση
Διαβάστε περισσότερα( ) x 1 1. cone( (10.1) ( ) x ) := D (10.2) D Ax b 0 Ax 0 b. i λ i 1
Θεωρία Γραμμικού Προγραμματισμού Διάλεξη 0: 2..204 Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Ευάγγελος Αναγνωστόπουλος, Πέτρος Μπαρμπαγιάννης & Σ. Κ. 0. Θεώρημα Minkowski-Weyl για πολύεδρα Ορισμός 0. Αν
Διαβάστε περισσότεραΘεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
Διαβάστε περισσότεραΘεωρία Γραφημάτων 6η Διάλεξη
Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη
Διαβάστε περισσότεραΘεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
Διαβάστε περισσότεραΤίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα
Διαβάστε περισσότεραΘεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα
Διαβάστε περισσότεραΘεωρία Γραφημάτων 10η Διάλεξη
Θεωρία Γραφημάτων 0η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 07 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 0η Διάλεξη
Διαβάστε περισσότεραΘεωρία Γραφημάτων 8η Διάλεξη
Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη
Διαβάστε περισσότεραχ(k n ) = n χ(c 5 ) = 3
Διάλεξη 20: 16.12.26 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιώτης Ρεπούσκος 20.1 Βασικές Ιδιότητες Θεώρημα 20.1 Για ένα πλέγμα Γ r r, ισχύει ότι bn(γ r r ) r + 1. Απόδειξη: Κατασκευάζουμε
Διαβάστε περισσότεραΑσκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα
Ασκήσεις στους Γράφους 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκηση 1 η Να αποδείξετε ότι κάθε γράφημα περιέχει μια διαδρομή από μια κορυφή u σε μια κορυφή w αν και
Διαβάστε περισσότεραΣυνεκτικότητα Γραφήματος
Συνεκτικότητα Γραφήματος Θεμελιώδης έννοια στη Θεωρία Γραφημάτων. Πληθώρα πρακτικών εφαρμογών, όπως: Αξιόπιστη και ασφαλής επικοινωνία. Δρομολόγηση σε δίκτυα. Πλοήγηση. Συνεκτικότητα Γραφήματος Θεμελιώδης
Διαβάστε περισσότεραΘεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Διαβάστε περισσότεραΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός
ΘΕΩΡΙΑ ΓΡΑΦΩΝ 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός Βασικές Έννοιες Στο κεφάλαιο αυτό θα μελετηθεί ο βαθμός συνεκτικότητας (συνδεσμικότητας)
Διαβάστε περισσότεραf(t) = (1 t)a + tb. f(n) =
Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία
Διαβάστε περισσότεραΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Πολύ ενθαρρυντική εικόνα. Σαφώς καλύτερη
Διαβάστε περισσότεραΘεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017
Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017 ΕΓΘΑ : Σ. Κοσμαδάκης, «Εισαγωγή στα Γραφήματα, Θεωρία-Ασκήσεις». Α 1 Έστω η παρακάτω σχέση Q(k) πάνω στο σύνολο {1, 2} όπου k τυχαίος
Διαβάστε περισσότεραΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την
Διαβάστε περισσότεραΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Ενθαρρυντική εικόνα, σαφώς καλύτερη από
Διαβάστε περισσότεραΠανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ 8 η Διάλεξη Επιπεδότητα (ή επιπεδικότητα γράφων) Βασικές εννοιες και ιδιότητες Θεώρημα Kuratowski Δυαδικότητα (Δυϊκότητα) επίπεδων γράφων Αλγόριθμοι
Διαβάστε περισσότεραΘεωρία Γραφημάτων 9η Διάλεξη
Θεωρία Γραφημάτων 9η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 9η Διάλεξη
Διαβάστε περισσότερα6 Συνεκτικοί τοπολογικοί χώροι
36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται
Διαβάστε περισσότεραΘεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 5 ΣΥΝΕΚΤΙΚΟΤΗΤΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Συνεκτικότητα Έννοια της συνδεσμικότητας: «Ποσότητα συνδεσμικότητας»...
Διαβάστε περισσότεραΘεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη
Διαβάστε περισσότεραΕπίπεδα Γραφήματα (planar graphs)
Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν
Διαβάστε περισσότεραΤομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα
Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)
Διαβάστε περισσότεραΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ
Συνεκτικότητα Γραφημάτων 123 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ 4.1 Τοπική και Ολική Συνεκτικότητα Γραφημάτων 4.2 Συνεκτικότητα Μη-κατευθυνόμενων Γραφημάτων 4.3 Συνεκτικότητα Κατευθυνόμενων Γραφημάτων
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson
ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι
Διαβάστε περισσότερα2 ) d i = 2e 28, i=1. a b c
ΑΣΚΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ (1) Εστω G απλός γράφος, που έχει 9 κορυφές και άθροισμα βαθμών κορυφών μεγαλύτερο του 7. Αποδείξτε ότι υπάρχει μια κορυφή του G με βαθμό μεγαλύτερο ή ίσο του 4. () Αποδείξτε ότι
Διαβάστε περισσότεραΘεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Σεπτέμβριος 2017
Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Σεπτέμβριος 2017 Όλα τα γραφήματα είναι μη-κατευθυνόμενα, αν δεν αναφέρεται κάτι άλλο. ΕΓΘΑ : Σ. Κοσμαδάκης, «Εισαγωγή στα Γραφήματα, Θεωρία-Ασκήσεις».
Διαβάστε περισσότεραΣυνεκτικά σύνολα. R είναι συνεκτικά σύνολα.
4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )
Διαβάστε περισσότεραΔιαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k
Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση επιλύουμε αναδρομικά τα υποπροβλήματα πρόβλημα μεγέθους k πρόβλημα
Διαβάστε περισσότεραΘεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία
Διαβάστε περισσότερα(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς
Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) (α) Επιλέγουµε αυθαίρετα φυσικούς αριθµούς από το σύνολο {,,3,, 3, } Να δείξετε ότι µεταξύ των αριθµών που έχουµε επιλέξει υπάρχει πάντα ένα ζευγάρι όπου ο µεγαλύτερος
Διαβάστε περισσότερα... a b c d. b d a c
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ ιδάσκοντες: Φωτάκης, Σούλιου η Γραπτή Εργασία Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) α) Σε ένα διάστηµα
Διαβάστε περισσότεραΠαράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.
Παράδειγµα (2) s t Στοιχεία Θεωρίας Γραφηµάτων (2) w x Ορέστης Τελέλης z y tllis@unipi.r v u Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Τα δύο γραφήµατα δεν είναι ισόµορφα. Ο κόµβος (αριστερά) είναι
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής
Διαβάστε περισσότεραΣυνεκτικά σύνολα. R είναι συνεκτικά σύνολα.
4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (
Διαβάστε περισσότεραΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αξιόλογη προσπάθεια,
Διαβάστε περισσότεραjτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ ιδάσκοντες: Φωτάκης, Σούλιου, Θ Λιανέας η Γραπτή Εργασία Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) α)
Διαβάστε περισσότεραΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,
Διαβάστε περισσότεραΤο Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)
Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη
Διαβάστε περισσότεραΘεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη
Διαβάστε περισσότεραΘεωρία Γραφημάτων 3η Διάλεξη
Θεωρία Γραφημάτων 3η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 3η Διάλεξη
Διαβάστε περισσότεραΣτοιχεία Θεωρίας Γραφηµάτων (2)
Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (2) 1 / 21 Παράδειγµα (2) s t w x h g
Διαβάστε περισσότεραέντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση
Διαβάστε περισσότεραΜη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.
Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων,
Διαβάστε περισσότεραΒασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων
Διαβάστε περισσότεραΒασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση
Διαβάστε περισσότεραΣημειωματάριο Δευτέρας 4 Δεκ. 2017
Σημειωματάριο Δευτέρας 4 Δεκ. 2017 Ο αλγόριθμος Floyd-Warshall για την έυρεση όλων των αποστάσεων σε ένα γράφημα με βάρη στις ακμές Συνεχίσαμε σήμερα το θέμα της προηγούμενης Τετάρτης. Έχουμε ένα γράφημα
Διαβάστε περισσότεραΕπαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα
ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα Επαγωγή για άκυκλα συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη
Διαβάστε περισσότεραιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.
Διαβάστε περισσότεραΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1
Διαβάστε περισσότεραΠαράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας
Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας Κουτσουπιάς Τροποποιήσεις: Σταύρος Κολλιόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Δομική επαγωγή Η ιδέα της μαθηματικής
Διαβάστε περισσότεραΔυναμικός προγραμματισμός για δέντρα
ΘΕ5 Ιδιότητες Δέντρων και Αναδρομή για Δέντρα Δυναμικός προγραμματισμός για δέντρα Έστω ότι, για k=1,..., m, το γράφημα Γ k = (V k, E k ) είναι δέντρο. Έστω w V 1... V m, z k V k, για k=1,..., m. Συμβολίζουμε
Διαβάστε περισσότεραΘεωρία Γραφημάτων 1η Διάλεξη
Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη
Διαβάστε περισσότεραrec(p ) rec(p ) = {y Ay = 0}. lin(p ) := rec(p ) rec(p ) = {y Ay = 0}. Ax b = α T i x = b i. P = {x R n Ax b} { x R n α T i x = b i 11-1 α T i x b i
Θεωρία Γραμμικού Προγραμματισμού Διάλεξη 11: 18.11.2014 Διδάσκων: Σταύρος Κολλιόπουλος Γραφείς: Μανιάτης Σπυρίδων & Μυρισιώτης Δημήτριος 11.1 Περί lineality space Υπενθυμίζεται η έννοια του lineality space
Διαβάστε περισσότεραΜεταθέσεις και πίνακες μεταθέσεων
Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,
Διαβάστε περισσότεραΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;
ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά
Διαβάστε περισσότεραΠανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.
Διαβάστε περισσότεραΠαράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Τμήμα Πληροφορικής και Τηλ
Μαθηματικά Πληροφορικής 3ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Δομική επαγωγή Η ιδέα της μαθηματικής επαγωγής μπορεί να επεκταθεί και σε άλλες δομές εκτός από το σύνολο N
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο
Διαβάστε περισσότεραΜορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ
Μαθηματικά Πληροφορικής 4ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.
Διαβάστε περισσότεραΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης
ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2 Μάθηµα 5.1: Παραστάσεις Γραφηµάτων ηµήτρης Ψούνης 2 ΠΕΡΙΕΧΟΜΕΝΑ Α. Σκοπός του Μαθήµατος Β.Θεωρία 1. Πίνακας Γειτνίασης 1. Ορισµός για µη κατευθυνόµενα γραφήµατα 2.
Διαβάστε περισσότεραΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Ικανοποιητική εικόνα, αντίστοιχη
Διαβάστε περισσότεραΚατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός
Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου
Διαβάστε περισσότεραb. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.
Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας
Διαβάστε περισσότερα8. Πολλαπλές μερικές παράγωγοι
94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό ) είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής
Διαβάστε περισσότεραV (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0}
1 Θεώρημα BEZOU T Ο δακτύλιος K[x 1,..., x n ] είναι περιοχή μονοσήμαντης ανάλυσης. Άρα κάθε πολυώνυμο f K[x 1,..., x n ] (που δεν είναι σταθερά, δηλαδή f / K) αναλύεται σε γινόμενο αναγώγων πολυωνύμων,
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΜέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες
Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 2 6 20 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 0 με τις ακόλουθες ιδιότητες 9 7 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση ροής:
Διαβάστε περισσότεραΚατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός
Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου
Διαβάστε περισσότερα1 Η εναλλάσσουσα ομάδα
Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις
Διαβάστε περισσότεραΑλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.
Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά
Διαβάστε περισσότερα4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.
8 Έστω (, ) 4 Ασθενείς τοπολογίες σε χώρους με νόρμα 4. θεωρήματα Mazur, Alaoglou, Goldste. χώρος με νόρμα. Υπενθυμίζουμε ότι η ασθενής τοπολογία T του έχει ως βάση ( ανοικτών ) περιοχών του όλα τα σύνολα
Διαβάστε περισσότεραΤο Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)
Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Διατύπωση Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη από κλέφτες. Σε
Διαβάστε περισσότερα