Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)
|
|
- Ἀλκμήνη Βούλγαρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής Σύνταξη και επίλυση άσκησης: Α. Ευστρατιάδης και. Κουτσογιάννης (2004) Έστω το στοιχειώδες δίκτυο του σχήµατος, που αποτελείται από µια δεξαµενή που τροφοδοτεί δύο κόµβους. Ζητείται η κατάστρωση των εξισώσεων του µαθηµατικού µοντέλου του δικτύου και η περιγραφή της διαδικασίας επίλυσης, µε τη µέθοδο γραµµικοποίησης των Η-εξισώσεων. y Q 3 Q 2 c 3 Q 23 c Μαθηµατική διατύπωση του προβλήµατος Με βάση τις (αυθαίρετες) φορές που σηµειώνονται στο σχήµα, οι εξισώσεις συνέχειας των τριών κόµβων του δικτύου διατυπώνονται ως: Κόµβος : Q 2 Q 3 = y () Κόµβος 2: Q 2 Q 23 = c 2 (2) Κόµβος 3: Q 3 + Q 23 = c 3 (3) Το σύνολο της προσφοράς νερού οφείλει να είναι ίσο µε το σύνολο της ζήτησης, συνεπώς: Αντικαθιστώντας την (4) στην (), προκύπτει: c 2 + c 3 = y (4) Q 2 + Q 3 = c 2 + c 3 (5) Αθροίζοντας τις (2) και (3) λαµβάνεται η εξίσωση συνέχειας του κόµβου. Κατά συνέπεια, από τις τρεις εξισώσεις συνέχειας, µόνο οι δύο είναι γραµµικά ανεξάρτητες. Υπενθυµίζεται ότι σε ένα µοντέλο δικτύου αποτελούµενο από n κόµβους, n 0 σηµεία γνωστού ενεργειακού υψοµέτρου (δεξαµενές), m κλάδους και r βρόχους, ισχύει η θεµελιώδης σχέση m = n + r n 0, και µπορούν να γραφούν n n 0 γραµµικά ανεξάρτητες εξισώσεις συνέχειας. Η τρίτη αναγκαία γραµµικά ανεξάρτητη εξίσωση προκύπτει µε θεώρηση της αρχής διατήρησης της ενέργειας κατά µήκος του βρόχου. Η εν λόγω σχέση γράφεται: ή, ισοδύναµα: h 2 + h 23 + h 3 = 0 (6) κ 2 Q 2 λ + κ 23 Q 23 λ κ 3 Q 3 λ = 0 (7) Η παραπάνω έκφραση προκύπτει µε βάση τη γενική σχέση γραµµικών ενεργειακών απωλειών: h ij = κ ij Q ij λ (8)
2 Η εξίσωση (8) είναι µη γραµµική ως προς την παροχή Q ij. Υπενθυµίζεται ότι ο όρος κ ij είναι σταθερός, εφόσον χρησιµοποιείται η προσεγγιστική σχέση Hazen-Williams για τον υπολογισµό των ενεργειακών απωλειών, αλλά εξαρτώµενη από την παροχή, εφόσον χρησιµοποιείται η ακριβέστερη σχέση Darcy-Weisbach, µε εκτίµηση του συντελεστή τριβών κατά Colebrook-White. Οι (2), (3) και (7) ορίζουν ένα µη γραµµικό σύστηµα τριών ανεξάρτητων εξισώσεων, µε ισάριθµους αγνώστους (παροχές κλάδων). Επίλυση µε την µέθοδο γραµµικοποίησης των Η-εξισώσεων Η επίλυση του προβλήµατος γίνεται µε την επαναληπτική µέθοδο της γραµµικοποίησης των Η- εξισώσεων. Σύµφωνα µε τη µέθοδο αυτή, θεωρούνται αυθαίρετες αρχικές τιµές ενεργειακών υψοµέτρων στους κόµβους, και διορθώνονται, σε κάθε κύκλο, οι εξισώσεις συνέχειας. Έστω οι αρχικές τιµές των ενεργειακών υψοµέτρων h 2 και h 3, στους κόµβους 2 και 3, αντίστοιχα, τέτοιες ώστε να ισχύουν οι φορές των παροχών που φαίνονται στο σχήµα. Το ενεργειακό υψόµετρο του κόµβου είναι γνωστό, καθώς ταυτίζεται µε τη στάθµη της δεξαµενής (η εν λόγω στάθµη είναι η ελάχιστη, εφόσον σκοπός της επίλυσης είναι ο έλεγχος των ελάχιστων πιέσεων). Το εν λόγω υψόµετρο συµβολίζεται µε h *. Επιλύοντας τη γενική σχέση ενεργειακών απωλειών (8) ως προς την παροχή κάθε κλάδου (i, j) προκύπτει η ακόλουθη έκφραση: h ij = κ ij Q ij λ = κ ij Q ij λ Q ij Q ij = κ ij Q ij λ h ij Q ij = r ij h ij (9) όπου: r ij = κ ij Q ij λ (9) Η ποσότητα r ij καλείται γραµµικοποιηµένη αντίσταση, και είναι πάντα θετική. Θεωρώντας γνωστό το ενεργειακό υψόµετρο h i κάθε κόµβου i, υπολογίζεται η πτώση πίεσης h ij µεταξύ κάθε ζεύγους διαδοχικών κόµβων, ακολούθως επιλύεται το 2ο θεµελιώδες πρόβληµα της υδραυλικής και εκτιµώνται οι αρχικές παροχές Q ij των κλάδων. Οι εν λόγω παροχές εισάγονται στη σχέση (9), οπότε προκύπτουν οι αρχικές εκτιµήσεις των γραµµικοποιηµένων αντιστάσεων, r ij. Επισηµαίνεται ότι κατά τη διάρκεια ενός επαναληπτικού βήµατος, οι τιµές των r ij θεωρούνται γνωστές, παρόλο που, στην πραγµατικότητα, είναι, όπως και οι παροχές, συνάρτηση των ενεργειακών υψοµέτρων. Με βάση τις παραπάνω υποθέσεις, η εξίσωση συνέχειας του κόµβου αναδιατυπώνονται ως εξής (παραλείπεται ο δείκτης του επαναληπτικού βήµατος): r 2 h 2 r 3 h 3 = y r 2 (h h 2 ) r 3 (h h 3 ) = y (r 2 + r 3 ) h + r 2 h 2 + r 3 h 3 = y (0) Οµοίως, οι εξισώσεις συνέχειας των κόµβων 2 και 3 διατυπώνονται, αντίστοιχα, ως: Κόµβος 2: r 2 h 2 r 23 h 23 = c 2 r 2 (h h 2 ) r 23 (h 2 h 3 ) = c 2 r 2 h (r 2 + r 23 ) h 2 + r 23 h 3 = c 2 () 2
3 Κόµβος 3: r 3 h 3 + r 23 h 23 = c 3 Προκύπτει λοιπόν ένα γραµµικό σύστηµα της µορφής: που, ισοδύναµα, γράφεται ως: r 3 (h h 3 ) + r 23 (h 2 h 3 ) = c 3 r 3 h + r 23 h 2 (r 3 + r 23 ) h 3 = c 3 (2) b h + b 2 h 2 + b 3 h 3 = y b 2 h + b 22 h 2 + b 23 h 3 = c 2 b 3 h + b 32 h 2 + b 33 h 3 = c 3 (3) b b 2 b 3 h y b 2 b 22 b 23 b 3 b 32 b 33 h 2 = c 2 h 3 c 3 (4) όπου οι διαγώνιοι όροι b ii είναι πάντα αρνητικοί, και περιέχουν αθροίσµατα γραµµικοποιηµένων αντιστάσεων, ενώ οι µη διαγώνιοι όροι b ij ταυτίζονται µε τις γραµµικοποιηµένες αντιστάσεις r ij των αντίστοιχων κλάδων (i, j), ήτοι: b ij = n a ij r ij j i a ij r ij αν i = j (διαγώνια στοιχεία) αν i j (µη διαγώνια στοιχεία) όπου α ij =, εφόσον υπάρχει σύνδεση (κλάδος) µεταξύ των κόµβων i και j, και α ij = 0 διαφορετικά. Εφόσον οι αρχική υπόθεση για τα ενεργειακά υψόµετρα ήταν ορθή, τότε η επίλυση των εξισώσεων συνέχειας θα έπρεπε να δίνει τις πραγµατικές παροχές εξόδου, c 2 και c 3. Επειδή κάτι τέτοιο δεν συµβαίνει, οι εκτιµώµενες παροχές εξόδου διαφέρουν από τις πραγµατικές, µε συνέπεια να προκύπτει σφάλµα τόσο όσον αφορά τις παροχές κάθε επιµέρους κόµβου, όσο και τη συνολική παροχή του δικτύου. Συγκεκριµένα: ή σε µορφή µητρώων: b b 2 b 3 b 2 b 22 b 32 b 3 h * y b 23 b 33 h 2 = c 2 h 3 c 3 y c 2 (5) c 3 (6) B h = c y (7) Η παραπάνω διαδικασία γίνεται αποκλειστικά για την εκτίµηση του σφάλµατος των παροχών εξόδου στους κόµβους, c i = c i c i, καθώς και της αθροιστικής παροχής του δικτύου, q, ήτοι: n ε q = c i q (8) j = i Η διόρθωση των αρχικών τιµών των ενεργειακών υψοµέτρων, h i, επιτυγχάνεται µε επίλυση του συστήµατος (4). Όπως ωστόσο έχει προαναφερθεί, οι εξισώσεις συνέχειας των κόµβων δεν είναι όλες γραµµικά ανεξάρτητες. Θεωρούµε δύο από αυτές, εξαιρώντας την εξίσωση συνέχειας του κόµβου της δεξαµενής, η τιµή του ενεργειακού υψοµέτρου της οποίας είναι γνωστή και ίση µε h *. Απαλείφοντας την πρώτη εξίσωση και διαχωρίζοντας τους γνωστούς από τους αγνώστους (όπου ως 3
4 άγνωστοι θεωρούνται πλέον τα ενεργειακά υψόµετρα των κόµβων 2 και 3), προκύπτει το ακόλουθο σύστηµα: b 22 b 23 b 32 b 33 h 2 h = c 2 3 c b 2 3 b h * (9) 3 ή σε µορφή µητρώων: B h = c B * h * (20) Από την επίλυση του συστήµατος, η οποία γίνεται, ως επί το πλείστον, µε αριθµητικές µεθόδους, προκύπτει η νέα εκτίµηση των ενεργειακών υψοµέτρων, ήτοι: h 2 () () h 3 = b 22 b 23 b c 2 b 2 32 b 33 c 3 b h * (2) 3 Τα νέα ενεργειακά υψόµετρα διαφέρουν από τα αρχικά, οπότε προκύπτει ένας επιπλέον τύπος σφάλµατος σύγκλισης, το οποίο µειώνεται σε κάθε επανάληψη. Με την επίλυση του συστήµατος και τον υπολογισµό των τριών τύπων σφαλµάτων, ολοκληρώνεται ο πρώτος κύκλος (µηδενική επανάληψη). Στον επόµενο κύκλο, επαναλαµβάνεται η παραπάνω () διαδικασία, µε τη διαφορά ότι η νέα εκτίµηση των παροχών των κλάδων Q ij προκύπτει ως γραµµικός συνδυασµός των ενδιάµεσων τιµών Q * ij που υπολογίζονται µε βάση τα νέα ενεργειακά υψόµετρα h () i και των τιµών του αµέσως προηγούµενου κύκλου, Q ij. Συγκεκριµένα: Q ij () = φ Q ij * + ( φ) Q ij όπου φ = 0.60 (τυπική τιµή, που εξασφαλίζει ταχεία και ευσταθή σύγκλιση). Έστω ότι στην αρχή του επαναληπτικού κύκλου k είναι διαθέσιµη µια εκτίµηση των ενεργειακών υψόµετρων, h i (k). Η υπολογιστική διαδικασία συνοψίζεται ως εξής: Βήµα : Υπολογισµός γραµµικών ενεργειακών απωλειών, h ij (k), κατά µήκος των κλάδων, και εκτίµηση ενδιάµεσων και τελικών παροχών, Q ij (k). Βήµα 2: Υπολογισµός γραµµικοποιηµένων αντιστάσεων, r ij (k), και διαµόρφωση µητρώου Β (k). Βήµα 3: Εκτίµηση σφαλµάτων παροχής εξόδου στους κόµβους ε c (k) = max { c i (k) } και συνολικής παροχής δικτύου ε q (k), µε πολλαπλασιασµό των µητρώων B (k) και h (k). Βήµα 4: Αντιστροφή µητρώου B (k), και επίλυση του συστήµατος (20) για την εκτίµηση των νέων ενεργειακών υψοµέτρων, h (k + ). Βήµα 5: Εκτίµηση σφάλµατος ενεργειακών υψοµέτρων, ε h (k) = max { h i (k ) h i (k) }. Βήµα 6: Αν δεν ικανοποιούνται και τα τρία κριτήρια σύγκλισης, ήτοι ε c (k) < 0.0 L/s, ε q (k) < 0.0 L/s και ε h (k) < 0.0 m, η διαδικασία επαναλαµβάνεται, µε αύξηση του µετρητή k και µετάβαση στο βήµα. Αριθµητικό παράδειγµα Έστω h * = 50 m, c 2 = 5 L/s, c 3 = 0 L/s, L 2 = L 3 = 00 m, L 23 = 50 m, D 2 = D 23 = 8.4 mm, D 3 = 99.4 mm, k s =.0 mm (κοινό για όλους τους κλάδους). Υποθέτουµε αρχικά ενεργειακά υψόµετρα h 2 = m, και h 3 = m. Οι αντίστοιχες γραµµικές απώλειες στους κλάδους είναι: h 2 =.000 m, h 23 =.000 m, h 23 = m (22) 4
5 Από τη σχέση Darcy-Weisbach, και µε εκτίµηση του συντελεστή γραµµικών απωλειών κατά Colebrook-White, προκύπτει µια αρχική εκτίµηση των παροχών στους κλάδους ίση µε: Q 2 = 3.23 L/s, Q 23 = 2.65 L/s, Q 23 = L/s Οι αντίστοιχες γραµµικοποιηµένες αντιστάσεις είναι: r 2 = 3.23 L/s/m, r 23 = 2.65 L/s/m, r 23 = L/s/m Με βάση τις τιµές των r ij, υπολογίζονται τα στοιχεία του µητρώου Β. Η µητρωική διατύπωση των εξισώσεων συνέχειας των κόµβων, ήτοι η σχέση (6), γράφεται: = Από την επίλυση των εξισώσεων συνέχειας προκύπτει ότι η παροχή εξόδου στον κόµβο 2 είναι L/s, έναντι του ορθού L/s, ενώ η παροχή εξόδου στον κόµβο 3 είναι L/s, έναντι του ορθού L/s. Η συνολική κατανάλωση του δικτύου είναι.003 L/s, έναντι του ορθού L/s. Συνεπώς, τα αντίστοιχα σφάλµατα είναι ε c = L/s (απόλυτο µέγιστο σφάλµα παροχής εξόδου κόµβων) και ε q = L/s (απόλυτο σφάλµα συνολικής παροχής δικτύου). Θεωρώντας άγνωστα τα ενεργειακά υψόµετρα στους κόµβους 2 και 3, οι εξισώσεις συνέχειας αναδιατυπώνονται ως (σχέση 9): h 2 h = Από την επίλυση του παραπάνω συστήµατος, προκύπτουν οι νέες εκτιµήσεις των ενεργειακών υψοµέτρων, h () 2 = 48.3 m και h () 3 = m, αντί των h 2 = m και h 3 = m που είχαν υποτεθεί αρχικά. Συνεπώς, το σφάλµα σύγκλισης είναι ε h = m. Στον επόµενο επαναληπτικό κύκλο, οι νέες τιµές των γραµµικών απωλειών στους κλάδους είναι: h 2 () =.887 m, h 23 () = m, h 23 () = m Από τη σχέση Darcy-Weisbach, και µε εκτίµηση του συντελεστή γραµµικών απωλειών κατά Colebrook-White, προκύπτει µια ενδιάµεση εκτίµηση των παροχών στους κλάδους ίση µε: Q 2 * = 4.43 L/s, Q 23 * =.653 L/s, Q 23 * = L/s Οι παραπάνω τιµές δεν χρησιµοποιούνται απευθείας για την εκτίµηση των γραµµικοποιηµένων αντιστάσεων. Αντίθετα, χρησιµοποιείται ένα σταθµισµένο άθροισµα των ενδιάµεσων και των προηγούµενων τιµών παροχής, σύµφωνα µε τη σχέση (22). Κατά συνέπεια, οι τελικές εκτιµήσεις των παροχών για τον συγκεκριµένο κύκλο είναι: Q 2 () = L/s, Q 23 () = L/s, Q 23 () = 8.25 L/s Οι αντίστοιχες γραµµικοποιηµένες αντιστάσεις είναι: r 2 () = L/s/m, r 23 () = L/s/m, r 23 () = L/s/m Με βάση τις τιµές των r ij (), υπολογίζονται τα στοιχεία του µητρώου Β (). Η µητρωική διατύπωση των εξισώσεων συνέχειας των κόµβων, ήτοι η σχέση (6), γράφεται: =
6 Από την επίλυση προκύπτει ότι η παροχή εξόδου στον κόµβο 2 είναι.906 L/s, έναντι του ορθού L/s, ενώ η παροχή εξόδου στον κόµβο 3 είναι 0.63 L/s, έναντι του ορθού L/s. Η συνολική κατανάλωση του δικτύου είναι L/s, έναντι του ορθού L/s. Συνεπώς, τα αντίστοιχα σφάλµατα είναι ε c () = L/s και ε q () = 2.93 L/s. Παρατηρείται ότι και οι δύο όροι σφάλµατος είναι µικρότεροι από τους αντίστοιχους του προηγούµενου επαναληπτικού βήµατος. Θεωρώντας άγνωστα τα ενεργειακά υψόµετρα στους κόµβους 2 και 3, οι εξισώσεις συνέχειας αναδιατυπώνονται ως (σχέση 9): h 2 h = Από την επίλυση του παραπάνω συστήµατος, προκύπτουν οι νέες εκτιµήσεις των ενεργειακών υψοµέτρων, h (2) 2 = m και h 3 = m, αντί των h () 2 = 48.3 m και h () 3 = m, που είναι οι εκτιµήσεις του προηγούµενου βήµατος. Συνεπώς, το τρέχον σφάλµα σύγκλισης είναι ε () h = m, τιµή επίσης µικρότερη από την αντίστοιχη του προηγούµςενου βήµατος. Έπειτα από επαναλήψεις, όλα τα σφάλµατα έχουν γίνει µικρότερα από τις µέγιστες επιτρεπόµενες τµές, ήτοι 0.0 L/s για τις παροχές και 0.0 m για τα ενεργειακά υψόµετρα, και η διαδικασία επίλυσης θεωρείται ότι έχει συγκλίνει. Οι τελικές εκτιµήσεις των ενεργειακών υψοµέτρων είναι h 2 () = m και h 3 () = m, ενώ οι παροχές των κλάδων είναι: Q 2 () = 5.55 L/s, Q 23 () = 0.55 L/s, Q 23 () = L/s Στα παρακάτω σχήµατα φαίνεται η πορεία σύγκλισης, όσον αφορά τις τιµές των ενεργειακών υψοµέτρων στους δύο κόµβους (δεξιά) και τους τρεις τύπους σφαλµάτων (αριστερά). Παρατηρείται ότι στις τρεις πρώτες δοκιµές η µείωση των σφαλµάτων είναι ραγδαία, ενώ οι τιµές των υψοµέτρων σταθεροποιούνται, ουσιαστικά, µετά την έβδοµη δοκιµή. Ενεργειακό υψόµετρο (m) Κόµβος Κόµβος οκιµή Σφάλµα παροχών (L/s) Ολική παροχή δικτύου Παροχή εξόδου κόµβων Ενεργειακά υψόµετρα οκιµή Σφάλµα υψοµέτρων (m) 6
Επίλυση δικτύων διανοµής
Επίλυση δικτύων διανοµής Σηµειώσεις στα πλαίσια του µαθήµατος: Τυπικά υδραυλικά έργα Ακαδηµαϊκό έτος 00-06 Ανδρέας Ευστρατιάδης & ηµήτρης Κουτσογιάννης Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών Πόρων
Διαβάστε περισσότεραΑστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης
Διαβάστε περισσότεραΚεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής
Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Εννοιολογική αναπαράσταση δίκτυων διανομής Σχηματοποίηση: δικτυακή απεικόνιση των συνιστωσών του φυσικού συστήματος ως συνιστώσες ενός εννοιολογικού μοντέλου
Διαβάστε περισσότεραΑνάλυση δικτύων διανομής
Υδραυλική & Υδραυλικά Έργα 5 ο εξάμηνο Σχολής Πολιτικών Μηχανικών Ανάλυση δικτύων διανομής Χρήστος Μακρόπουλος, Ανδρέας Ευστρατιάδης & Παναγιώτης Κοσσιέρης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό
Διαβάστε περισσότεραΥπενθύµιση εννοιών από την υδραυλική δικτύων υπό πίεση
Υπενθύµιση εννοιών από την υδραυλική δικτύων υπό πίεση Σηµειώσεις στα πλαίσια του µαθήµατος: Τυπικά υδραυλικά έργα Ακαδηµαϊκό έτος 2005-06 Ανδρέας Ευστρατιάδης & ηµήτρης Κουτσογιάννης Εθνικό Μετσόβιο Πολυτεχνείο
Διαβάστε περισσότερα800 m. 800 m. 800 m. Περιοχή A
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E5: Τροφοδοσία µονάδας επεξεργασίας αγροτικών προϊόντων (Εξέταση
Διαβάστε περισσότερα2g z z f k k z z f k k z z V D 2g 2g 2g D 2g f L ka D
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΕΤΑΣΗ ΠΡΟΟΔΟΥ ΝΟΕΜΒΡΙΟΥ 017 Άσκηση 1 1. Οι δεξαμενές Α και Β, του Σχήματος 1, συνδέονται με σωλήνα
Διαβάστε περισσότεραΕθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Άσκηση E9: Εκτίµηση παροχών εξόδου κόµβων, υπολογισµός ελάχιστης κατώτατης
Διαβάστε περισσότεραΥδραυλικός Υπολογισμός Βροχωτών Δικτύων
Υδραυλικός Υπολογισμός Βροχωτών Δικτύων Π. Σιδηρόπουλος Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@uth.gr Συνολικό δίκτυο ύδρευσης Α. Ζαφειράκου,
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΤΟΜΕΑΣ ΥΔ. ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΕΤΑΣΗ ΠΡΟΟΔΟΥ ΝΟΕΜΒΡΙΟΥ 2017
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΤΟΜΕΑΣ ΥΔ. ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΕΤΑΣΗ ΠΡΟΟΔΟΥ ΝΟΕΜΒΡΙΟΥ 2017 Σύνταξη ασκήσεων: Α. Ευστρατιάδης, Π. Κοσσιέρης, Χ. Μακρόπουλος, Δ. Κουτσογιάννης
Διαβάστε περισσότεραΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο
ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο Άσκηση Οικισµός ΑΒΓ Α υδροδοτείται από δεξαµενή µέσω
Διαβάστε περισσότεραΣχεδιασμός και ανάλυση δικτύων διανομής Υπολογισμός Παροχών Αγωγών
Σχεδιασμός και ανάλυση δικτύων διανομής Υπολογισμός Παροχών Αγωγών Π. Σιδηρόπουλος Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@uth.gr Παροχή H
Διαβάστε περισσότεραΣχεδιασμός και ανάλυση δικτύων διανομής Υδραυλικές αρχές Υδραυλικός Υπολογισμός ακτινωτών δικτύων
Σχεδιασμός και ανάλυση δικτύων διανομής Υδραυλικές αρχές Υδραυλικός Υπολογισμός ακτινωτών δικτύων Π. Σιδηρόπουλος Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail:
Διαβάστε περισσότεραΚεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων
Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης
Διαβάστε περισσότεραΚεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε
Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές
Διαβάστε περισσότεραΣυνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Διαβάστε περισσότεραΑστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών
Διαβάστε περισσότεραΑστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Διαμόρφωση μοντέλου υδραυλικής ανάλυσης δικτύου διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών
Διαβάστε περισσότεραΚεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
Διαβάστε περισσότεραΛαμβάνονται υπόψη οι απώλειες. διατομή και θεώρηση
Δρ Μ.Σπηλιώτη λώ Λαμβάνονται υπόψη οι απώλειες ενέργειας Eνιαία ταχύτητα σε όλη τη διατομή και θεώρηση συντελεστή διόρθωσης κινητικής ενέργειας Αρχικά σε όγκο ελέγχου Σε διακλαδιζόμενους αγωγούς δεν συμπίπτουν
Διαβάστε περισσότεραΤο µαθηµατικό µοντέλο του Υδρονοµέα
Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας
Διαβάστε περισσότεραΚεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
Διαβάστε περισσότεραΚεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων
Κεφάλαιο Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων. Εισαγωγή Η µοντελοποίηση πολλών φυσικών φαινοµένων και συστηµάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται µε
Διαβάστε περισσότεραΜαθηµατικά µοντέλα δικτύων
Μαθηµατικά µοντέλα δικτύων Σηµειώσεις στα πλαίσια του µαθήµατος: Τυπικά υδραυλικά έργα Ακαδηµαϊκό έτος 2004-05 Ανδρέας Ευστρατιάδης & ηµήτρης Κουτσογιάννης Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών Πόρων
Διαβάστε περισσότεραΧρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Διαβάστε περισσότεραΕπίλυση. 1) Αγωγός βαρύτητας
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τομέας Υδατικών Πόρων & Περιβάλλοντος Μάθημα: Υδραυλική και Υδραυλικά Έργα - Μέρος 3: Υδρεύσεις Άσκηση Δ2: Υπολογισμός όγκου δεξαμενής με τροφοδοτικό
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε
Διαβάστε περισσότεραΕιδικά θέµατα δικτύων διανοµής
Ειδικά θέµατα δικτύων διανοµής Σηµειώσεις στα πλαίσια του µαθήµατος: Τυπικά υδραυλικά έργα Ακαδηµαϊκό έτος 2005-06 Ανδρέας Ευστρατιάδης & ηµήτρης Κουτσογιάννης Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Μονάδες 3, Διάρκεια 20')
ΕΜΠ Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά Υδραυλικά Έργα Κανονική εξέταση 07/2008 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Μονάδες 3, Διάρκεια 20') ΠΑΡΑΛΛΑΓΗ Α Απαντήστε στις ακόλουθες ερωτήσεις, σημειώνοντας στο
Διαβάστε περισσότεραΕξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Διαβάστε περισσότεραΜοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 017-018 Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Διαβάστε περισσότεραΚεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής
Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Έλεγχος λειτουργίας δικτύων διανομής με χρήση μοντέλων υδραυλικής ανάλυσης Βασικό ζητούμενο της υδραυλικής ανάλυσης είναι ο έλεγχος
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a
Διαβάστε περισσότεραΑριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
Διαβάστε περισσότεραΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
Διαβάστε περισσότεραπροβλήµατος Το φίλτρο Kalman διαφέρει από τα συνηθισµένα προβλήµατα ΜΕΤ σε δύο χαρακτηριστικά: παραµέτρων αγνώστων
Φίλτρα Kalman Εξαγωγή των εξισώσεων τους µε βάση το κριτήριο ελαχιστοποίησης της Μεθόδου των Ελαχίστων Τετραγώνων. Αναλυτικές Μέθοδοι στη Γεωπληροφορική Μεταπτυχιακό Πρόγραµµα ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ιατύπωση του
Διαβάστε περισσότεραΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:
ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα
Διαβάστε περισσότεραΕισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)
Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)
Διαβάστε περισσότεραΣχήμα 1. Σκαρίφημα υδραγωγείου. Λύση 1. Εφαρμόζουμε τη μέθοδο που περιγράφεται στο Κεφάλαιο του βιβλίου, σελ. 95)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΚΑΝΟΝΙΚΗ ΕΞΕΤΑΣΗ ΙΑΝΟΥΑΡΙΟΥ 018 ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ και τ. ΕΦΑΡΜΟΣΜΕΝΗ ΥΔΡΑΥΛΙΚΗ Άσκηση
Διαβάστε περισσότεραΒΙΟΜΗΧΑΝΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ
ΒΙΟΜΗΧΑΝΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΩΤΟΥ ΜΕΡΟΥΣ Ι. Αναγνωστόπουλος Άσκηση. Στο συνηµµένο σχήµα δίνεται το δίκτυο διανοµής νερού στους πέντε ορόφους µιας πολυκατοικίας από µια δεξαµενή στην ταράτσα.
Διαβάστε περισσότεραΚεφάλαιο 13: Διαμόρφωση μοντέλου υδραυλικής ανάλυσης δικτύου διανομής
Κεφάλαιο 13: Διαμόρφωση μοντέλου υδραυλικής ανάλυσης δικτύου διανομής Κόμβος i Κόμβος j Συνιστώσες μοντέλου υδραυλικής ανάλυσης Κόμβος: Σημείο εισροής ή εκροής νερού ή αλλαγής της γεωμετρίας του δικτύου
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1: ΥΔΡΑΥΛΙΚΗ ΑΓΩΓΩΝ ΥΠΟ ΠΙΕΣΗ Άσκηση 1 (5.0 μονάδες). 8 ερωτήσεις x 0.625/ερώτηση
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΕΤΑΣΗ ΠΡΟΟΔΟΥ ΝΟΕΜΒΡΙΟΥ 2017 Παραλλαγή Α ΟΝΟΜΑΤΕΠΩΝΥΜΟ:. ΕΝΟΤΗΤΑ 1: ΥΔΡΑΥΛΙΚΗ ΑΓΩΓΩΝ ΥΠΟ ΠΙΕΣΗ
Διαβάστε περισσότεραΑριθµητική Ανάλυση 1 εκεµβρίου / 43
Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι
Διαβάστε περισσότεραΚαταθλιπτικοί αγωγοί και αντλιοστάσια
Υδραυλική & Υδραυλικά Έργα 5 ο εξάμηνο Σχολής Πολιτικών Μηχανικών Καταθλιπτικοί αγωγοί και αντλιοστάσια Δημήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό Μετσόβιο
Διαβάστε περισσότεραυναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.
υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 Cprigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 0. Με επιφύλαξη παντός
Διαβάστε περισσότερα4.3. Γραµµικοί ταξινοµητές
Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων
Διαβάστε περισσότεραEγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον Ενότητα 4 : Υπολογισμός οικονομικής διαμέτρου σωληνωτών αγωγών Ευαγγελίδης Χρήστος
Διαβάστε περισσότεραΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
Διαβάστε περισσότεραΑπλοποίηση υπολογισμών σε σωλήνες υπό πίεση
Υδραυλική & Υδραυλικά Έργα Απλοποίηση υπολογισμών σε σωλήνες υπό πίεση Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Καθιερωμένοι τύποι της υδραυλικής για μόνιμη ομοιόμορφη ροή
Διαβάστε περισσότερα3. Δίκτυο διανομής επιλύεται για δύο τιμές στάθμης ύδατος της δεξαμενής, Η 1 και
ΕΜΠ Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά Υδραυλικά Έργα Επαναληπτική εξέταση 10/2011 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Μονάδες 3, Διάρκεια 20') ΠΑΡΑΛΛΑΓΗ Α Απαντήστε στις ακόλουθες ερωτήσεις, σημειώνοντας
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΜΟΣ ΑΠΩΛΕΙΩΝ ΥΔΡΑΥΛΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Α.Μ.Β.Υ. ΛΟΓΩ ΙΞΩΔΩΝ ΤΡΙΒΩΝ ΣΕ ΡΟΕΣ ΥΠΟ ΠΙΕΣΗ
ΥΠΟΛΟΓΙΣΜΟΣ ΑΠΩΛΕΙΩΝ ΥΔΡΑΥΛΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Α.Μ.Β.Υ. ΛΟΓΩ ΙΞΩΔΩΝ ΤΡΙΒΩΝ ΣΕ ΡΟΕΣ ΥΠΟ ΠΙΕΣΗ (σε «κλειστούς αγωγούς») Οι απώλειες υδραυλικής ενέργειας λόγω ιξωδών τριβών σε μια υδραυλική εγκατάσταση που αποτελείται
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Μονάδες 3, Διάρκεια 20')
ΕΜΠ Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά Υδραυλικά Έργα Κανονική εξέταση 06/2011 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Μονάδες 3, Διάρκεια 20') ΠΑΡΑΛΛΑΓΗ Α Απαντήστε στις ακόλουθες ερωτήσεις, σημειώνοντας στο
Διαβάστε περισσότεραx=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).
3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Σεπτεµβρίου 2005 5:00-8:00 Σχεδιάστε έναν αισθητήρα ercetro
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai217/lai217html Παρασκευή 17 Νοεµβρίου 217 Ασκηση
Διαβάστε περισσότεραMatrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
Διαβάστε περισσότεραΑριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο
Διαβάστε περισσότεραΑστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Καταθλιπτικοί αγωγοί και αντλιοστάσια Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης
Διαβάστε περισσότερα5/3/2010. A. Στη δηµιουργία του στερεοσκοπικού µοντέλουέ B. Στη συσχέτισή του µε το γεωδαιτικό σύστηµα
5/3/ Για να είναι δυνατή η επεξεργασία στα φωτογραµµετρικά όργανα χρειάζεται κάποιο στάδιο προετοιµασίας του ζεύγους των εικόνων. Η προετοιµασία αυτή αφορά: A. Στη δηµιουργία του στερεοσκοπικού µοντέλουέ.
Διαβάστε περισσότεραΑριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015
Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου
Διαβάστε περισσότεραΕπίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων
Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων. Γραμμικοί Μετασχηματισμοί Ανυσμάτων Θεωρούμε χώρο δύο διαστάσεων και συμβατικά ένα ορθογώνιο σύστημα αξόνων για την περιγραφή κάθε ανύσματος του χώρου
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ Π. Σιδηρόπουλος Δρ. Πολιτικός Μηχανικός Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@teilar.gr ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΑ
Διαβάστε περισσότεραΑριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Διαβάστε περισσότεραΤεχνική Υδρολογία (Ασκήσεις)
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 7 ο : Διόδευση
Διαβάστε περισσότεραΕπιμέλεια: Δρ Μ. Σπηλιώτης Κείμενα σχήματα Τσακίρης 2008 Και κατά τις παραδόσεις του Κ.Κ.Μπέλλου
Συλλογικά δίκτυα κλειστών αγωγών υπό πίεση Βελτιστοποίηση Επιμέλεια: Δρ Μ. Σπηλιώτης Κείμενα σχήματα Τσακίρης 2008 Και κατά τις παραδόσεις του Κ.Κ.Μπέλλου Γενικές αρχές Συλλογικό: Μόνιμοι αγωγοί με σκάμμα
Διαβάστε περισσότεραΔιαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
Διαβάστε περισσότεραQR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)
ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων
Διαβάστε περισσότεραm 1 min f = x ij 0 (8.4) b j (8.5) a i = 1
KΕΦΑΛΑΙΟ 8 Προβλήµατα Μεταφοράς και Ανάθεσης 8. ΕΙΣΑΓΩΓΗ Μια ειδική κατηγορία προβληµάτων γραµµικού προγραµµατισµού είναι τα προβλήµατα µεταφοράς (Π.Μ.), στα οποία επιζητείται η ελαχιστοποίηση του κόστους
Διαβάστε περισσότεραΔρ. Σταύρος Καραθανάσης
Δρ. Σταύρος Καραθανάσης Μέθοδοι Επίλυσης Συστημάτων Κανονικών Διαφορικών Εξισώσεων προσαρμοσμένες στα Προβλήματα Χημικής Κινητικής Για τον υπολογισμό των συγκεντρώσεων των χημικά δραστικών ενώσεων δημιουργείται
Διαβάστε περισσότερα4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου
. Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου Σ αυτή την παράγραφο θα εξεταστεί μια παραλλαγή του προβλήματος της συντομότερης διαδρομής, το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου. Σ αυτό το πρόβλημα
Διαβάστε περισσότεραΠαρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο
Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση η : Αρχές εκτίμησης παραμέτρων Μέρος ο Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας
Διαβάστε περισσότεραΑριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών
Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Διαβάστε περισσότεραΚεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων
Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,
Διαβάστε περισσότεραΥδραυλική των υπονόμων
Υδραυλική & Υδραυλικά Έργα 5 ο εξάμηνο Σχολής Πολιτικών Μηχανικών Υδραυλική των υπονόμων Δημήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο
Διαβάστε περισσότεραMatrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
Διαβάστε περισσότερα(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai218/lai218html Παρασκευή 23 Νοεµβρίου 218 Ασκηση 1
Διαβάστε περισσότεραΑριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας.
ΔΙΑΛΕΞΗ η : Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας Στόχος: Στο μάθημα αυτό θα ασχοληθούμε με την αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας, ενώ αργότερα θα γενικεύσουμε
Διαβάστε περισσότεραΦίλτρα Kalman. Αναλυτικές μέθοδοι στη Γεωπληροφορική. ιατύπωση του βασικού προβλήματος. προβλήματος. μοντέλο. Πρωτεύων μοντέλο
Φίλτρα Kalman Εξαγωγή των εξισώσεων τους με βάση το κριτήριο ελαχιστοποίησης της Μεθόδου των Ελαχίστων Τετραγώνων. Αναλυτικές Μέθοδοι στη Γεωπληροφορική Μεταπτυχιακό Πρόγραμμα ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ιατύπωση του
Διαβάστε περισσότερα10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)
10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Διατύπωση εξισώσεων ΜΠΣ βάσει μετακινήσεων
Διαβάστε περισσότεραKΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο:
KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ ΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Έστω [ α, b], f :[ α, b], y. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: Ζητείται µια συνάρτηση y :[
Διαβάστε περισσότεραΜηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.
ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 2012. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται
Διαβάστε περισσότεραΓραμμή ενέργειας σε ένα αγωγό (χωρίς αντλία)
Γραμμή ενέργειας σε ένα αγωγό (χωρίς αντλία) Γραμμή ενεργείας: ο γεωμετρικός τόπος του ύψος θέσης, του ύψους πίεσης και του ύψους κινητικής ενέργειας Πάντοτε πτωτική από τη διατήρηση της ενέργειας Δεν
Διαβάστε περισσότεραΑνάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 16-17 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα
Διαβάστε περισσότεραwebsite:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
Διαβάστε περισσότεραΚεφάλαιο 4ο: Δικτυωτή Ανάλυση
Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.
Διαβάστε περισσότεραιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20
Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 27 Μαΐου 2010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β
Διαβάστε περισσότεραΔ Ε Υ Α Ρ ΔΗΜΟΤΙΚΗ ΕΠΙΧΕΙΡΗΣΗ ΥΔΡΕΥΣΗΣ ΑΠΟΧΕΤΕΥΣΗΣ ΔΗΜΟΥ ΡΟΔΟΥ ΤΕΥΧΟΣ 11 ΥΔΡΑΥΛΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΥΠΗΡΕΣΙΑ ΥΔΡΕΥΣΗΣ - ΑΡΔΕΥΣΗΣ ΜΕΛΕΤΗ ΕΡΓΟΥ:
Δ Ε Υ Α Ρ ΔΗΜΟΤΙΚΗ ΕΠΙΧΕΙΡΗΣΗ ΥΔΡΕΥΣΗΣ ΑΠΟΧΕΤΕΥΣΗΣ ΔΗΜΟΥ ΡΟΔΟΥ Δ Ι Ε Υ Θ Υ Ν Σ Η Δ Ι Κ Τ Υ Ω Ν ΥΠΗΡΕΣΙΑ ΥΔΡΕΥΣΗΣ - ΑΡΔΕΥΣΗΣ ΜΕΛΕΤΗ ΕΡΓΟΥ: ΑΝΤΙΚΑΤΑΣΤΑΣΗ - ΤΡΟΠΟΠΟΙΗΣΗ- ΕΠΕΚΤΑΣΗ ΔΙΚΤΥΟΥ ΥΔΡΕΥΣΗΣ ΠΕΡΙΟΧΗΣ
Διαβάστε περισσότεραΓραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss
Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και
Διαβάστε περισσότερα(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 3: Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Συστήματα Διακριτού Χρόνου Εισαγωγή στα Συστήματα Διακριτού Χρόνου Ταξινόμηση Συστημάτων ΔΧ
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε την εξίσωση
Διαβάστε περισσότεραΠεριορισμοί και Υδραυλική Επίλυση Αγωγών Λυμάτων Ι
Περιορισμοί και Υδραυλική Επίλυση Αγωγών Λυμάτων Ι Π. Σιδηρόπουλος Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@uth.gr o Τα υπολογιστικά προβλήματα
Διαβάστε περισσότερα(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
Διαβάστε περισσότεραmin f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Διαβάστε περισσότεραΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ 1 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Κύκλωμα είναι ένα σύνολο ηλεκτρικών πηγών και άλλων στοιχείων που είναι συνδεμένα μεταξύ τους και διέρχεται ηλεκτρικό ρεύμα από
Διαβάστε περισσότεραΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών
Διαβάστε περισσότεραΤεχνική Υδρολογία (Ασκήσεις)
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 5 ο : Απορροή
Διαβάστε περισσότεραΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότερα15 εκεµβρίου εκεµβρίου / 64
15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).
Διαβάστε περισσότερα