ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ. Δυναμικός Προγραμματισμός. Παντελής Μπάγκος
|
|
- Θεοφιλά Δυοβουνιώτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Δυναμικός Προγραμματισμός Παντελής Μπάγκος
2 Δυναμικός Προγραμματισμός Στοίχιση (τοπική-ολική) RNA secondary structure prediction Διαμεμβρανικά τμήματα Hidden Markov Models Άλλες εφαρμογές
3 Στοίχιση Ολική Τοπική Ειδικές περιπτώσεις
4 Δυναμικός προγραμματισμός
5 Δυο περιπτώσεις στοιχίσεων F( i 1, j 1) s( xi, y j), F( i, j) max F( i 1, j) d, F( i, j 1) d F( i 1, j 1) s( xi, y j), F( i 1, j) d, F( i, j) max F( i, j 1) d, 0 F(i,0)=-id, F(0,j)=-jd F(i,0)=0, F(0,j)=0
6 Ποινές για τα κενά (gap penalties) Απλή ποινή για τα κενά: ( g) gd Σύνθετη ποινή για τα κενά: ( g ) d ( g 1) e
7 Έστω δυο ακολουθίες: Παράδειγμα x AAGTTAGCAG y CAGTATCGCA Αν έχουμε για τα κενά: s( x i, d=1 y i 1, αν ) 1, αν Τότε η καλύτερη ολική στοίχιση θα είναι: A A G T T A G C A G C A G T A T C G C A - x x i i y y i i
8 Ολική στοίχιση A A G T T A G C A G C A G T A T C G C A -
9 Τοπική στοίχιση A G T T A G C A A G T A T C G C A
10 Άλλοι αλγόριθμοι Υπάρχουν επίσης ειδικές περιπτώσεις στοίχισης (π.χ. προσαρμογή) Θέλουμε δηλαδή να εντοπίσουμε, μια μικρή ακολουθία αν συναντάται σε μια μεγαλύτερη Έστω ότι θέλουμε να ανιχνεύσουμε αν στην αλληλουχία του γονιδίου laci της E.coli υπάρχει η γνωστή αλληλουχία του υποκινητή (promoter). Έστω ακόμα ότι το τμήμα του γονιδίου έχει αλληλουχία: x TCGCGGTATGGCATGATAGCGCCCGGAA και η αλληλουχία του υποκινητή είναι y TATAAT
11 συνέχεια F( i 1, j 1) s( x, y ), i j F( i, j) max F( i 1, j) d, F( i, j 1) d F(i,0)=-id F(0,j)=0.
12 Και η ακολουθία του πιθανού υποκινητή είναι: C A T G A T
13 RNA secondary structure prediction
14 Nussinov
15
16 Διαμεμβρανικά τμήματα C IN N OUT N IN C OUT
17
18
19
20
21 Τα 3 βασικά ερωτήματα σε ένα ΗΜΜ... Εκτίμηση Δεδομένου του μοντέλου, πως θα υπολογίσουμε την ολική πιθανότητα μιας ακολουθίας συμβόλων. P(x θ) Αποκωδικοποίηση Πως θα βρούμε την πιο πιθανή αλληλουχία καταστάσεων (path) από την οποία έχει διέλθει το μοντέλο, για να δώσει την συγκεκριμμένη ακολουθία συμβόλων. Εκπαίδευση * argmax P( x, ) Πως θα τροποποιήσουμε τις παραμέτρους του μοντέλου, έτσι ώστε να μεγιστοποιηθεί η συνολική πιθανοφάνεια των ακολουθιών θ ML =argmaxp(x θ)
22 ... και οι απαντήσεις τους Εκτίμηση Αλγόριθμος FORWARD, αλγόριθμος δυναμικού προγραμματισμού, που υπολογίζει την συνολική πιθανότητα της ακολουθίας, χωρίς να διέλθει από όλα τα δυνατά μονοπάτια (αλληλουχίες καταστάσεων). Αποκωδικοποίηση Αλγόριθμος του VITERBI, αλγόριθμος δυναμικού προγραμματισμού, που μέσω αναδρομής (recursion) υπολογίζει την πιο πιθανή αλληλουχία καταστάσεων για τη δεδομένη ακολουθία και το δεδομένο μοντέλο. (Εναλλακτικά NBEST). Εκπαίδευση Αλγόριθμος των BAUM-WELCH (η αλλιώς FORWARD-BACKWARD), ειδική περίπτωση του αλγόριθμου ΕΜ (Expectation-Maximization), ο οποίος χειρίζεται τα δεδομένα σαν δεδομένα με ελλειπής τιμές (missing values) και υπολογίζει Ε.Μ.Π. για τις παραμέτρους του μοντέλου (Εναλλακτικά Gradient Descent).
23 Αλγόριθμος Forward
24
25
26 Αλγόριθμος Viterbi
27 Αποκωδικοποίηση forward
28 Εκ των υστέρων αποκωδικοποίηση P( i k x) Εναλλακτικά μπορεί να υπολογισθεί η πιθανότητα: δηλαδή, η εκ των υστέρων πιθανότητα το συγκεκριμμένο νουκλεοτίδιο να προήλθε απο μια κατάσταση Κάνοντας χρήση των Forward και Backward:
29 Πλεονεκτήματα: στις περιπτώσεις που τα εναλλακτικά μονοπάτια έχουν πολύ μικρές διαφορές στις προβλεπόμενες πιθανότητες. όταν μια κατάσταση έχει πολύ μικρή πιθανότητα και το μονοπάτι με την μέγιστη πιθανότητα, δεν την «επισκέπτεται» ποτέ. Μειονεκτήματα: Μπορεί να προβλεφθεί μια πιθανότητα η οποία δεν είναι έγκυρη για το μοντέλο (μια μη επιτρεπτή μετάβαση).
30 Συνοπτικά ο αλγόριθμος Υπολογισμός των Α και Ε Υπολογισμός των ΕΜΠ Επανάληψη μέχρι να συγκλίνει
31 Ένα παράδειγμα...
32 συνέχεια... Πιθανότητες μεταβάσεως: Πιθανότητες γεννήσεως : 1 0 Α Τ G C
33 συνέχεια... Έστω μια ακολουθία DNA, η οποία προέρχεται από το παραπάνω μοντέλο: AAACAAGAATGCGCACACTACGCAAAAACAATTAGTCGCACTCACGATGAAACAAATTACCACGGTGAA AACGAATAAACCTCAGAGGCCCAGCGTATATAAACAAGATAAAAACCTAGTCAGCACTCTGACCAGACG AGCTCACGACTTGAGGATAAGAAAAAAACAACAGCTCACGACTTGAGGATAAGAAAAAAACA
34 συνέχεια...
35 συνέχεια... Αν όμως οι πιθανότητες μεταβάσεως άλλαζαν: Πιθανότητες μεταβάσεως: Πιθανότητες γεννήσεως : 1 0 Α Τ G C
36 συνέχεια...
37 Posterior-Viterbi decoding Ορίζονται οι επιτρεπτές μεταβάσεις:
38 Optimal Accuracy Posterior Decoding Παραλλαγή του Posterior-Viterbi, η οποία υπολογίζει το μονοπάτι: Συνολικά:
39
40
41 Άλλες εφαρμογές Fold recognition Threading Domain recognition
42 Fold recognition
43 Threading Protein threading is the problem of aligning a protein sequence whose structure we want to elucidate (the target protein) with a protein sequence whose structure is known (the template protein) in such a way that mapping residues of the target onto a template according to the alignment affords an accurate model of the backbone structure of the target.
44 Domain recognition
45
Βιοπληροφορική Ι. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Πανεπιστήμιο Θεσσαλίας Λαμία, 2015
Βιοπληροφορική Ι Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Διάλεξη 4 Hidden Markov Models (HMMs) 2 Μαρκοβιανά μοντέλα εξάρτησης Η πιθανότητα εμφάνισης ενός νουκλεοτιδίου
Ειδικά Θέματα Βιοπληροφορικής
Ειδικά Θέματα Βιοπληροφορικής Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Διάλεξη 5 Profile Hidden Markov Models και Transformational Grammars 2 Profile HMM Ένα ΗΜΜ με left-to-right
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΙΑΤΡΙΚΗ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΙΑΤΡΙΚΗ» Hidden Markov Model (HMM) και επεκτάσεις τους στην Βιοπληροφορική Hidden
Βιοπληροφορική. Ενότητα 14: Μοντέλα Πολλαπλής Στοίχισης (2/2), 1.5ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 14: Μοντέλα Πολλαπλής Στοίχισης (2/2), 1.5ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι παρουσίαση των μοντέλων πολλαπλής στοίχισης. κατανόηση των εφαρμογών
Βιοπληροφορική. Ενότητα 14: Μοντέλα Πολλαπλής Στοίχισης (2/2), 1.5ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 14: Μοντέλα Πολλαπλής Στοίχισης (2/2), 1.5ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι παρουσίαση των μοντέλων πολλαπλής στοίχισης. κατανόηση των εφαρμογών
Βιοπληροφορική Ι. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Πανεπιστήμιο Θεσσαλίας Λαμία, 2015
Βιοπληροφορική Ι Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Στοίχιση αλληλουχιών 2 Τρόποι μελέτης των ακολουθιών Global information Η ακολουθία αναπαρίσταται από ένα διάνυσμα
Πιθανοτικός Συμπερασμός: Πού βρίσκομαι στο πλέγμα; [ΠΛΗ 513] Αυτόνομοι πράκτορες - Project Εξαμήνου ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
Πιθανοτικός Συμπερασμός: Πού βρίσκομαι στο πλέγμα; [ΠΛΗ 513] Αυτόνομοι πράκτορες - Project Εξαμήνου Γεωργαρά Αθηνά (A.M. 2011030065) ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική. Ενότητα 7: Σύγκριση αλληλουχιών Part II
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 7: Σύγκριση αλληλουχιών Part II Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ Αλγόριθµοι εκπαίδευσης για Hidden Markov Models Ιωάννης Μηντσόπουλος ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Υπεύθυνοι Παντελεήµων
Βιοπληροφορική Ι. Παντελής Μπάγκος. Παν/µιο Στερεάς Ελλάδας
Βιοπληροφορική Ι Παντελής Μπάγκος Παν/µιο Στερεάς Ελλάδας Λαµία 2006 1 Βιοπληροφορική Ι Εισαγωγή: Ορισµός της Βιοπληροφορικής, Υποδιαιρέσεις της Βιοπληροφορικής, Τα είδη των δεδοµένων στη Βιοπληροφορική.
Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων
Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων Σε αυτό το κεφάλαιο παρουσιάζουµε 2 βασικούς αλγορίθµους σύγκρισης ακολουθιών Βιολογικών εδοµένων τους BLAST & FASTA. Οι δυο αλγόριθµοι
Πρόγνωση δομής πρωτεϊνών (Μέρος Ι)
Πρόγνωση δομής πρωτεϊνών (Μέρος Ι) Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου Ταχ.Κιβ. 20537 1678, Λευκωσία ΚΥΠΡΟΣ
ΑΣΚΗΣΗ 4η Αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών
ΑΣΚΗΣΗ 4η Αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών ΕΙΣΑΓΩΓΗ Η αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών (database similarity searching) αποτελεί µια από τις συχνότερα χρησιµοποιούµενες
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος Ι: Στοιχίσεις ακολουθιών κατά ζεύγη Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο
Κεφάλαιο 8: Μαρκοβιανά Μοντέλα
Κεφάλαιο 8: Μαρκοβιανά Μοντέλα Σύνοψη Στο κεφάλαιο αυτό, θα γίνει η απαραίτητη εισαγωγή στα μαρκοβιανά μοντέλα εξάρτησης και κατόπιν, παρουσίαση των κρυπτομαρκοβιανών μοντέλων (Hdden Marov Models) τα οποία
ΑΣΚΗΣΗ 3η Στοίχιση ακολουθιών βιολογικών µακροµορίων
ΑΣΚΗΣΗ 3η Στοίχιση ακολουθιών βιολογικών µακροµορίων ΕΙΣΑΓΩΓΗ Ένας από τους πρωταρχικούς στόχους της σύγκρισης των ακολουθιών δύο µακροµορίων είναι η εκτίµηση της οµοιότητάς τους και η εξαγωγή συµπερασµάτων
Μέτρα της οργάνωσης και της ποιότητας για τον Self-Organizing Hidden Markov Model Map (SOHMMM)
Μέτρα της οργάνωσης και της ποιότητας για τον Self-Organizing Hidden Markov Model Map (SOHMMM) Γενική περιγραφή του SOHMMM Ένα υβριδικό νευρωνικό δίκτυο, σύζευξη δύο πολύ επιτυχημένων μοντέλων: -Self-Organizing
Κατα ζέυγη στοίχιση και στατιστική σημαντικότητα αυτής
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Κατα ζέυγη στοίχιση και στατιστική σημαντικότητα αυτής Παντελής Μπάγκος 1 Διάλεξη 2 Αναζήτηση ομοιότητας και κατά ζεύγη στοίχιση ακολουθιών 2 Κατά ζεύγη στοίχιση ακολουθιών Από τα πιο
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
Βιοπληροφορική. Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών,(2/2) 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών,(2/2) 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση της μεθόδου κατασκευής και
ΔΟΜΗ ΠΡΩΤΕΪΝΩΝ II. Σελίδα 1 ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ. Τ. Θηραίου
ΔΟΜΗ ΠΡΩΤΕΪΝΩΝ II Σελίδα 1 Υπολογιστικός Προσδιορισμός Δομής πειραματικός προσδιορισμός δομών κρυσταλλογραφία ακτίνων X πυρηνικός μαγνητικός συντονισμός (NMR) χρόνος / κόστος / περιορισμοί sequence - structure
Προγνωστικές μέθοδοι με βάση αμινοξικές αλληλουχίες
Προγνωστικές μέθοδοι με βάση αμινοξικές αλληλουχίες Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus ΣΥΝΟΨΗ Εισαγωγή Πρόγνωση της δομής πρωτεϊνών
Βιοπληροφορική. Blast/PSI-Blast 3o εργαστήριο
Βιοπληροφορική Blast/PSI-Blast 3o εργαστήριο Αναζήτηση οµόλογων ακολουθιών σε βάσεις δεδοµένων (i) Οµόλογες ακολουθίες πιθανόν να έχουν παρόµοιες λειτουργίες. Ακολουθία επερώτησης (query sequence) Υποκείµενες
Κεφάλαιο 4. Δυναµικός Προγραµµατισµός (Dynamic Programming) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 4 Δυναµικός Προγραµµατισµός (Dynamic Programming) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Τεχνικές Σχεδίασης Αλγορίθµων Απληστία. Χτίζουµε µια λύση σταδιακά, βελτιστοποιώντας
Βιοπληροφορική. Μαργαρίτα Θεοδωροπούλου. Πανεπιστήμιο Θεσσαλίας, Λαμία 2016
Βιοπληροφορική Μαργαρίτα Θεοδωροπούλου Πανεπιστήμιο Θεσσαλίας, Λαμία 2016 Βιοπληροφορική Εισαγωγή στη Μοριακή Βιολογία, Γενωμική και Βιοπληροφορική. Βάσεις Βιολογικών Δεδομένων. Ακολουθίες Πρωτεϊνών και
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Σελίδα 1 Αναζήτηση πληροφορίας σε βιολογικές ΒΔ Αναζήτηση δεδομένων στην UniProt Καταγράψτε το μήκος της αμινοξικής ακολουθίας (Sequence length), τη λειτουργία (Function)
ΠΟΛΛΑΠΛΗ ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ IΙ ΦΥΛΟΓΕΝΕΤΙΚΗ ΑΝΑΛΥΣΗ
ΠΟΛΛΑΠΛΗ ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ IΙ ΦΥΛΟΓΕΝΕΤΙΚΗ ΑΝΑΛΥΣΗ Σελίδα 1 Μοντέλα Πολλαπλής Στοίχισης Consensus sequences Patterns and regular expressions Position Specifc Scoring Matrices (PSSMs) Generalized Profiles
Θεωρία Πληροφορίας. Διάλεξη 10: Κωδικοποίηση καναλιού με συνελικτικούς κώδικες. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 10: Κωδικοποίηση καναλιού με συνελικτικούς κώδικες Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Κωδικοποίηση καναλιού: Σύντομη επανάληψη Συνελικτικοί κώδικες Ιστορική
Βιοπληροφορική. Ενότητα 5: Στοίχιση ακολουθιών ανά ζεύγη, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 5: Στοίχιση ακολουθιών ανά ζεύγη, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της συσχέτισης ομολογίας ομοιότητας. Παρουσίαση των πληροφοριών
Αρχές Δοµικής Βιοπληροφορικής Πρωτεϊνών
Αρχές Δοµικής Βιοπληροφορικής Πρωτεϊνών (σε
Στοίχιση κατά ζεύγη. Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment)
Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment) Στοίχιση κατά ζεύγη: Τι είναι Αντιστοίχιση των νουκλεοτιδίων/αµινοξέων δυο ακολουθιών, ώστε να εντοπιστούν οι οµοιότητες και οι διαφορές τους. Χρησιµοποιείται
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική. Ενότητα 6: Σύγκριση αλληλουχιών Part I
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 6: Σύγκριση αλληλουχιών Part I Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
Θέµα 3: Dynamic Time Warping (DTW). Hidden Markov Models (HMM).
Θέµα 3: Dynamic Time Warping (DTW). Hidden Markov Models (HMM). Άσκηση 1: Αναγνώριση οµιλίας µε χρήση τεχνικών Dynamic Time Warping. Ο σκοπός της παρούσας άσκησης είναι να βοηθήσει τους φοιτητές να κατανοήσουν
Επικοινωνία Ανθρώπου Υπολογιστή. Β2. Αναγνώριση ομιλίας
Επικοινωνία Ανθρώπου Υπολογιστή Β2. Αναγνώριση ομιλίας (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ Οι διαφάνειες αυτές βασίζονται στην ύλη του βιβλίου Speech and Language Processing των
Μάθημα 16 ο ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ
Μάθημα 16 ο ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Περιεχόμενα Παρουσίασης Βιολογικό υπόβαθρο Το κεντρικό αξίωμα Σύνοψη της Βιοπληροφορικής Ερευνητικές περιοχές Πηγές πληροφοριών Τι είναι η Βιοπληροφορική Βιο Πληροφορική μοριακή
ΑΡΧΕΣ ΒΙΟΛΟΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ
ΑΡΧΕΣ ΒΙΟΛΟΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Εργαστήριο Βιοπληροφορικής 7 ο εξάμηνο Σχολή Μηχανολόγων Μηχανικών ΕΜΠ Διδάσκων: Λεωνίδας Αλεξόπουλος Fritz Kahn (1888 1968) 1 Περιεχόμενα Ομοιότητα πρωτεϊνών Σύγκριση αλληλουχιών
Βιοπληροφορική. Ενότητα 12: Μέθοδοι Πολλαπλής Στοίχισης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 12: Μέθοδοι Πολλαπλής Στοίχισης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση των μεθόδων πολλαπλής στοίχισης. Ανάδειξη των πλεονεκτημάτων και
Βιοπληροφορική Ι (ΜΕΡΟΣ Α) Βιοπληροφορική Ανάλυση Γονιδιωμάτων. Εισαγωγή στης Βιολογικές Βάσεις Δεδομένων
Βιοπληροφορική Ι (ΜΕΡΟΣ Α) Βιοπληροφορική Ανάλυση Γονιδιωμάτων Εισαγωγή στης Βιολογικές Βάσεις Δεδομένων Η επιστήμη της Βιολογίας έχει μετατραπεί τα τελευταία χρόνια σε μια υπερπλούσια σε πληροφορίες επιστήμη.
Βιοπληροφορική. Ενότητα 21: Υπολογιστικός Προσδιορισμός Δομής (3/3), 1 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 21: Υπολογιστικός Προσδιορισμός Δομής (3/3), 1 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι επισκόπηση των μεθόδων αναγνώρισης διπλώματος και απ αρχής πρόγνωσης
Μηχανική μάθηση (Machine Learning)
Μηχανική μάθηση (Machine Learning) Μηχανική Μάθηση The field of study that gives computers the ability to learn without being explicitly programmed Arthur Samuel (1959) "A computer program is said to learn
Πρόβλεψη δομής πρωτεϊνών
Πρόβλεψη δομής πρωτεϊνών (Prediction of Protein Structure) http://www.youtube.com/watch?v=ms_ehuvvkkk&feature=player_detailpage http://lectures.molgen.mpg.de/proteinstructure/comparativemodelling/ Ενώ
ΕΠΑΝΑΛΗΨΗ. Σελίδα 1 ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ. Τ. Θηραίου
ΕΠΑΝΑΛΗΨΗ Σελίδα 1 τεχνική σύγκρισης ακολουθιών υπολογισµός ενός µέτρου οµοιότητας αναζήτηση ομολογίας S-S match S1 HFCGGSLINEQWVVSAGHC HFCG S NE AGHC S2 HFCGASIYNENYA-TAGHC gap mismatch Σελίδα 2 ολική
ΠΛΗ513 - Αυτόνομοι Πράκτορες Αναφορά Εργασίας
ΠΛΗ513 - Αυτόνομοι Πράκτορες Αναφορά Εργασίας Ομάδα εργασίας: LAB51315282 Φοιτητής: Μάινας Νίκος ΑΦΜ: 2007030088 ΠΕΡΙΓΡΑΦΗ ΙΔΕΑΣ Η ιδέα της εργασίας βασίζεται στην εύρεση της καλύτερης πολιτικής για ένα
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 13: Συνελικτικοί Κώδικες Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Κώδικες: Εισαγωγή Συνελικτικοί κώδικες Ατζέντα Ιστορική αναδρομή Μαθηματικό υπόβαθρο Αναπαράσταση
Πρόβλημα. Σύνολο γνωστών αλληλουχιών
BLAST Πρόβλημα Άγνωστη αλληλουχία Σύνολο γνωστών αλληλουχιών Η χρήση ενός υπολογιστή κι ενός αλγόριθμου είναι απαραίτητη για την ανακάλυψη της σχέσης μιας αλληλουχίας με τις γνωστές υπάρχουσες Τί είναι
Μ.Δ.Ε. ''ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ''
Η ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΣΤΗ ΜΕΛΕΤΗ & ΠΡΟΣΤΑΣΙΑ ΤΗΣ ΒΙΟΠΟΙΚΙΛΟΤΗΤΑΣ (16:00-19:00) Αίθουσα Πανταζή 29/10/2012 Επιστημονική ονομασία και ταξινόμηση, περιγραφή ειδών Αναπλ. Καθ. Αναστάσιος Λεγάκις 5/11/2012 Κατανομή
ΠΟΛΛΑΠΛΗ ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ I
ΠΟΛΛΑΠΛΗ ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ I Σελίδα 1 Πολλαπλή στοίχιση αποκαλύπτει συντηρημένες περιοχές αντιστοίχιση καταλοίπων με κριτήρια ομοιότητας σε επίπεδο δομής εξέλιξης λειτουργίας ακολουθίας Σελίδα 2 Πολλαπλή
Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα -
Διοίκηση Λειτουργιών Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Θεματολογία Μορφές δικτύων έργων Χρονικός προγραμματισμός έργων Ανδρέας Νεάρχου Συμβολισμοί για δίκτυα έργων
Μηχανική Μάθηση Μερωνυµιών για Αναγνώριση Γεγονότων
Μηχανική Μάθηση Μερωνυµιών για Αναγνώριση Γεγονότων Αναστάσιος Σκαρλατίδης 1,2 anskarl@iit.demokritos.gr επιβλέπων: Καθ. Βούρος Γ. 1 1 Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Πανεπιστήµιο
1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0
Στοχαστικές Διαδικασίες ΙΙ Ιανουάριος 07 Διαδικασίες Markov σε Συνεχή Χρόνο - Παραδείγματα Μ. Ζαζάνης Πρόβλημα. Εστω ένα σύστημα M/M//3 στο οποίο οι αφίξεις είναι Poisson με ρυθμό λ και οι δύο υπηρέτες
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7 8 Μπεϋζιανή εκτίμηση συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Εκτίμηση ML για την κανονική κατανομή Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή
Συγκριτική Γονιδιωματική
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Συγκριτική Γονιδιωματική Παντελής Μπάγκος 1 2 Μέθοδοι Ανάλυσης Μέθοδοι βασισμένες στην ομοιότητα ακολουθιών Τοπική ομοιότητα Ολική ομοιότητα Προγνωστικές μέθοδοι Δευτεροταγής δομή Διαμεμβρανικά
Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις
Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου
ΔΕΥΤΕΡΟΓΕΝΕΙΣ ΒΑΣΕΙΣ ΠΡΩΤΕΪΝΙΚΩΝ. Δρ. Μαργαρίτα Θεοδωροπούλου
ΔΕΥΤΕΡΟΓΕΝΕΙΣ ΒΑΣΕΙΣ ΠΡΩΤΕΪΝΙΚΩΝ Δρ. Μαργαρίτα Θεοδωροπούλου Βάσεις δεδομένων οικογενειών Οι πρωτεΐνες αποτελούνται από μία ή περισσότερες διακριτές λειτουργικές περιοχές (domains), οι οποίες πολλές
Προγνωστικές μέθοδοι με βάση αλληλουχίες DNA
Προγνωστικές μέθοδοι με βάση αλληλουχίες DNA Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus ΣΥΝΟΨΗ Εισαγωγή Αλυσίδες Markov και αλληλουχίες
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7-8 Μπεϋζιανή εκτίμηση - συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Δυαδικές τ.μ. κατανομή Bernoulli : Εκτίμηση ML: Εκτίμηση Bayes για εκ των προτέρων
καθ. Βασίλης Μάγκλαρης
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ενισχυτική Μάθηση - Δυναμικός Προγραμματισμός: 1. Markov Decision Processes 2. Bellman s Optimality Criterion 3. Αλγόριθμος
Πανεπιστήµιο Θεσσαλίας Σχολή Τεχνολογικών Επιστηµών Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας
Πανεπιστήµιο Θεσσαλίας Σχολή Τεχνολογικών Επιστηµών Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΗΣ ΠΑΡΑΓΩΓΗΣ Ασκήσεις Χρονικού Προγραµµατισµού Παραγωγής Λύσεις Πρόβληµα 1. ίνεται
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 12: Αναζήτηση ομοιοτήτων έναντι βάσεων δεδομένων με τη χρήση ευρετικών αλγορίθμων Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr
Βιοπληροφορική. Ενότητα 16: Μεθοδολογίες (Ανα-) Κατασκευής, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 16: Μεθοδολογίες (Ανα-) Κατασκευής, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Επεξήγηση των μεθόδων (ανα-)κατασκευής φυλογενετικών δέντρων. Παρουσίαση
Δικτυακή Αναπαράσταση Έργων (Δίκτυα ΑΟΑ και ΑΟΝ) & η Μέθοδος CPM. Λυμένες Ασκήσεις & Παραδείγματα
Δικτυακή Αναπαράσταση Έργων (Δίκτυα ΑΟΑ και ΑΟΝ) & η Μέθοδος PM Λυμένες Ασκήσεις & Παραδείγματα Άσκηση σχεδίασης έργου με δίκτυο ΑΟΑ Σχεδιάστε το δίκτυο ΑΟΑ που ικανοποιεί του ακόλουθους περιορισμούς:
Chalkou I. C. [PROJECT] Ανάθεση εργασιών.
Πληροφορική της Υγείας 2014 Chalkou I. C. [PROJECT] Ανάθεση εργασιών. Περιεχόμενα 1. Ομάδα Δ... 3 1.1 Σκιαδά Σαϊσανά Σιδέρη- Γεωργίου... 3 1.2 ΜΗΤΡΟΥ - ΜΠΑΡΑ... 3 1.3 ΜΠΟΧΑΤΖΙΑΡ Α.- ΜΠΟΧΑΤΖΙΑΡ Φ. - ΠΛΕΥΡΙΑ...
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση
Εισαγωγή στους Αλγορίθμους Ενότητα 11η
Εισαγωγή στους Αλγορίθμους Ενότητα 11η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Δυναμικός Προγραμματισμός Σταθμισμένος Χρονοπρογραμματισμός
FORTRAN και Αντικειμενοστραφής Προγραμματισμός
FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών
ΕΥΡΕΤΗΡΙΑΣΗ ΔΕΔΟΜΕΝΩΝ ΚΙΝΗΣΗΣ ΜΕ ΧΡΗΣΗ ΜΟΝΤΕΛΩΝ
Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Ε Ι Ρ Α Ι Ω Σ Σχολή Χρηματοοικονομικής και Στατιστικής Τ μήμα Στατιστικής και Ασφαλιστικής Επιστήμης ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΕΥΡΕΤΗΡΙΑΣΗ ΔΕΔΟΜΕΝΩΝ
Βιοπληροφορική. Ενότητα 19: Υπολογιστικός Προσδιορισμός Δομής (1/3), 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 19: Υπολογιστικός Προσδιορισμός Δομής (1/3), 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι κατανόηση της αναγκαιότητας και των εφαρμογών της υπολογιστικής
Επαναληπτικές μέθοδοι
Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,
ΦΥΣΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ. Πρωτεύοντα ΙΙΙ Χρήση µοριακών δεδοµένων
ΦΥΣΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ Πρωτεύοντα ΙΙΙ Χρήση µοριακών δεδοµένων Φυλογένεση Η φυλογένεσης αφορά την ανεύρεση των συνδετικών εκείνων κρίκων που συνδέουν τα διάφορα είδη µεταξύ τους εξελικτικά, σε µονοφυλετικές
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ 08 DP I 1 Dynamic Programming Richard Bellman (1953) Etymology (at
Αξιοποίηση Αλληλεπίδρασης του Χρήστη σε Συστήματα Διερευνητικής Αναζήτησης
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων Εργαστήριο Διοίκησης Πληροφοριακών Συστημάτων Αξιοποίηση
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 6 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων κανονικές τυχαίες μεταβλητές Εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές
Πολλαπλή στοίχιση multiple sequence alignment (MSA)
Πολλαπλή στοίχιση multiple sequence alignment (MSA) MSA: Τι είναι Στοίχιση για 3 ή περισσότερες ακολουθίες. Αποκαλύπτονται οι συντηρηµένες περιοχές µεταξύ των ακολουθιών µιας οικογένειας. Χρειάζεται για:
Μάθηση Λανθανόντων Μοντέλων με Μερικώς Επισημειωμένα Δεδομένα (Learning Aspect Models with Partially Labeled Data) Αναστασία Κριθαρά.
Μάθηση Λανθανόντων Μοντέλων με Μερικώς Επισημειωμένα Δεδομένα (Learning Aspect Models with Partially Labeled Data) Αναστασία Κριθαρά Xerox Research Centre Europe LIP6 - Université Pierre et Marie Curie
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
Κεφάλαιο 23 Παραδείγµατα Μεθόδων E-M Αλγόριθµου
Κεφάλαιο 23 Παραδείγµατα Μεθόδων E-M Αλγόριθµου Οι µέθοδοι E-M αλγόριθµου µπορούν να επεξηγηθούν πιο εύκολα στην περίπτωση ενός τυχαίου δείγµατος το οποίο αποτελείται από παρατηρηθείσες και µη παρατηρηθείσες
Πιθανοθεωρητικά µοντέλα αναπαράστασης ακολουθιών
Πιθανοθεωρητικά µοντέλα αναπαράστασης ακολουθιών Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus ΣΥΝΟΨΗ Εισαγωγή Αλυσίδες Markov και αλληλουχίες
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Outline. 6 Edit Distance
Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι και Δυναμικός Προγραμματισμός Ασκήσεις CoReLab ΣΗΜΜΥ - Ε.Μ.Π. 16 Νοεμβρίου 216 (CoReLab - NTUA) Αλγόριθμοι - Ασκήσεις 16 Νοεμβρίου 216 1 / 52 Outline 1
Ειδικά Θέματα Βιοπληροφορικής
Ειδικά Θέματα Βιοπληροφορικής Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Πολλαπλή στοίχιση ακολουθιών και φυλογενετικά δέντρα 2 Πολλαπλή στοίχιση Αναφέρεται στην ταυτόχρονη
General Models & Inapproximability Overview. Influence Maximization σε Social Networks
Συνοπτικά: Αν θέλω να πετύχω υιοθέτηση μιας άποψης/προϊόντος από πολλούς, πως διαλέγω το αρχικό target group (free samples) Συνοπτικά: Αν θέλω να πετύχω υιοθέτηση μιας άποψης/προϊόντος από πολλούς, πως
www.epignosi.edu.gr ΘΕΜΑ Α
ΘΕΜΑ Α Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ημιτελείς προτάσεις 1 έως 5 και δίπλα το γράμμα που αντιστοιχεί στη λέξη ή τη φράση, η οποία συμπληρώνει σωστά την ημιτελή πρόταση.
Βιοπληροφορική. Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών, (1/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών, (1/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση της μεθόδου κατασκευής και
Μέθοδοι Φυλογένεσης. Μέθοδοι που βασίζονται σε αποστάσεις UPGMA Κοντινότερης γειτονίας (Neighbor joining) Fitch-Margoliash Ελάχιστης εξέλιξης
Μέθοδοι Φυλογένεσης Μέθοδοι που βασίζονται σε αποστάσεις UPGMA Κοντινότερης γειτονίας (Neighbor joining) Fitch-Margoliash Ελάχιστης εξέλιξης Μέθοδοι που βασίζονται σε χαρακτήρες Μέγιστη φειδωλότητα (Maximum
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Δυναμικός Προγραμματισμός με Μεθόδους Monte Carlo: 1. Μάθηση Χρονικών Διαφορών (Temporal-Difference Learning) 2. Στοχαστικός
ΘΕΜΑ Α Να επιλέξετε την φράση που συμπληρώνει ορθά κάθε μία από τις ακόλουθες προτάσεις:
ΜΑΘΗΜΑ / ΤΑΞΗ: ΒΙΟΛΟΓΙΑ ΟΠ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ & ΧΕΙΜΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 22/10/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΛΑΖΑΡΑΚΗ ΝΟΤΑ ΘΕΜΑ Α Να επιλέξετε την φράση που συμπληρώνει ορθά κάθε μία από τις ακόλουθες προτάσεις:
Δυναμικός Προγραμματισμός
πρόβλημα μεγέθους Ν «Διαίρει και βασίλευε» : ανεξάρτητα υποπροβλήματα διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k πρόβλημα μεγέθους Ν Σε κάποιες περιπτώσεις όμως τα υποπροβλήματα δεν είναι ανεξάρτητα
Εισαγωγή στους αλγορίθμους Βιοπληροφορικής. Στοίχιση αλληλουχιών
Στοίχιση αλληλουχιών Σύνοψη Καθολική στοίχιση Μήτρες βαθμολόγησης Τοπική στοίχιση Στοίχιση με ποινές εισαγωγής κενών Από την LCS στη στοίχιση: αλλαγές στη βαθμολόγηση Το πρόβλημα της Μεγαλύτερης Κοινής
Μ.Δ.Ε. ''ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ''
ΑΡΧΕΣ & ΜΕΘΟΔΟΙ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗΣ (16:00-19:00) 17/10/2005 Εισαγωγή (Ι) 24/10/2005 Εισαγωγή (ΙΙ) 31/10/2005 Βάσεις Δεδομένων Ζωή Λίτου 7/11/2005 14/11/2005 21/11/2005 28/11/2005 5/12/2005 12/12/2005 19/12/2005
A sequence alignment algorithm using the transition quantity
1 1 1 MTRAP A sequence alignment algorithm using the transition quantity Toshihide Hara, 1 Keiko Sato 1 and Masanori Ohya 1 We have been developed a sequence alignment algorithm using the transition quantity.
ΒΙΟ230 - Εισαγωγή στην Υπολογιστική Βιολογία Πρακτικό Εργαστήριο: Basic Local Alignment Search Tool BLAST
ΒΙΟ230 - Εισαγωγή στην Υπολογιστική Βιολογία Πρακτικό Εργαστήριο: Basic Local Alignment Search Tool BLAST Στέλλα Ταμανά, Βασίλης Προμπονάς Λευκωσία 2016-2018 Περίληψη (Overview) Κατά τη διάρκεια αυτού
LALING/PLALING :
1. Άρθρα- δημοσιεύσεις Scopus DBLP Pubmed Google Scholar 2. Αναζήτηση νουκλεοτιδίου- πρωτεΐνης Entrez : http://www.ncbi.nlm.nih.gov/nuccore/ Uniprot (πρωτεΐνης): http://www.uniprot.org/ Blast : http://blast.ncbi.nlm.nih.gov/blast.cgi
Βιοπληροφορική II. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Πανεπιστήμιο Θεσσαλίας Λαμία, 2015
Βιοπληροφορική II Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 Μικροσυστοιχίες Γυάλινο πλακίδιο που αποτελείται από συγκεκριμένες αλληλουχίες οι οποίες είναι ειδικές για συγκεκριμένα
Προγραμματισμός Η/Υ. 6 η ενότητα: Συναρτήσεις. Τμήμα. Τεχνολόγων Περιβάλλοντος. ΤΕΙ Ιονίων Νήσων. Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Προγραμματισμός Η/Υ 6 η ενότητα: Συναρτήσεις Τμήμα Τεχνολόγων Περιβάλλοντος ΤΕΙ Ιονίων Νήσων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Επίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Βιοπληροφορική. Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (1/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (1/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Αναφορά στις παραλλαγές του BLAST. Εξοικείωση με τη
ΧΡΥΣΟΥΛΑ ΚΟΛΛΙ Α ΦΥΛΟΓΕΝΕΤΙΚΗ ΑΝΑΛΥΣΗ ΒΙΟΛΟΓΙΚΩΝ Ε ΟΜΕΝΩΝ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΙΑΤΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΙΑΤΡΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠ. ΕΤΟΣ 2007-08 Αριθµ.
Περιοχές με ακραία σύσταση / χαμηλή πολυπλοκότητα
Περιοχές με ακραία σύσταση / χαμηλή πολυπλοκότητα Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Σύνοψη Βασικές έννοιες XNU SEG LCRs και αναζητήσεις
Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n.
Πρώτο Σύνολο Ασκήσεων 2014-2015 Κατερίνα Ποντζόλκοβα, 5405 Αθανασία Ζαχαριά, 5295 Ερώτημα 1 Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n. Ο αλγόριθμος εύρεσης
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 M = 1 N = N prob k N k { k n ω wrongly classfed} = (1 ) N k 2 Η συνάρτηση πιθανοφάνειας L(p) μεγιστοποιείται όταν =k/n. 3 Αφού τα s είναι άγνωστα,