ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία
|
|
- Σέργιος Ὡρος Λαιμός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΜΠΣ «ΜΕΘΟΔΟΛΟΓΙΑ ΒΪΟΙΑΤΡΙΚΗΣ ΕΡΕΥΝΑΣ, ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΚΛΙΝΙΚΗ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη λογισμικού σε γλώσσα προγραματισμού python για ομαδοποίηση παρατηρήσεων με τις μεθόδους της απλής συνένωσης,της πληρους συνένωσης,των κέντρων βάρους και k-means.» Χατζηλιάδη Παναγιώτα Ευανθία
2 ΠΕΡΙΛΗΨΗ Oι μέθοδοι ομαδοποίησης μπορούν να διαχωριστούν σε δύο διαφορετικές κατηγορίες ανάλογα με τον τρόπο με τον οποίο προχωρούν στη διαμόρφωση των ομάδων: στις ιεραρχικές και στις μη ιεραρχικές μεθόδους. Σκοπός της παρούσας εργασίας είναι η ανάπτυξη ενός λογισμικού το οποίο θα εκτελεί ομαδοποίηση ενός συνόλου παρατηρήσεων με τη μέθοδο της απλής συνένωσης (Single Linkage Method), τη μέθοδο της πληρους συνένωσης ( Complete Linkage Method), τη μέθοδο των κέντρων βάρους (Centroid Method) και τέλος την k-means μέθοδο.στο πλάισιο ανάπτυξης αυτού του λογισμικού χρησιμοποιήθηκε η γλώσσα προγραμματισμού python.
3 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΙΕΡΑΡΧΙΚΕΣ ΜΕΘΟΔΟΙ ΟΜΑΔΟΠΟΙΗΣΗΣ Η Μεθοδος της απλης συνενωσης (SIMPLE LINKAGE METHOD) 2.2 Η Μεθοδος της πληρους συνενωσης (COMPLETE LINKAGE METHOD) Η Μεθοδος των κέντρων βαρους (CENTROID METHOD) 3. ΜΗ ΙΕΡΑΡΧΙΚΕΣ ΜΕΘΟΔΟΙ ΟΜΑΔΟΠΟΙΗΣΗΣ Η Μέθοδος Κ-Μeans ΜΕΘΟΔΟΙ ΑΝΑΦΟΡΕΣ... 11
4 ΠΙΝΑΚΑΣ ΣΧΗΜΑΤΩΝ Σχήμα 1: Eξοδος προγράμματος Σχήμα 2: Έξοδος προγράμματος
5 1. EIΣΑΓΩΓΗ Οι μέθοδοι ομαδοποίησης (Cluster Analysis) είναι τεχνικές της πολυμεταβλητής στατιστικής οι οποίες αποσκοπούν στη δημιουργία ομογενών ομάδων έτσι ώστε τα στοιχεία (παρατηρήσεις) που βρίσκονται στην ίδια ομάδα να παρουσιάζουν παρόμοια συμπεριφορά από άποψη κατανομής ενώ τα στοιχεία διαφορετικών ομάδων να αντιστοιχούν σε απομακρυσμένες κατανομές. Οι μέθοδοι ομαδοποίησης χωρίζονται σε δύο διαφορετικές κατηγορίες: στις ιεραρχικές και τις μη ιεραρχικές μεθόδους. Στις ιεραρχικές μεθόδους ο αριθμός των ομάδων δεν είναι γνωστός εκ των προτέρων. Εν αντιθέσει, στις μη ιεραρχικές μεθόδους θεωρείται ότι ο αριθμός των ομάδων είναι γνωστός απο πρίν. Με έναν επαναληπτικό αλγόριθμο τοποθετούνται οι παρατηρήσεις στις ομάδες ανάλογα με το ποιά ομάδα είναι πιο κοντά στην εκάστοτε παρατήρηση. Η πιο γνωστή μη ιεραρχική μέθοδος ομαδοποίησης είναι η μέθοδος Mac Queen ή k- means method. Οι ιεραρχικές μέθοδοι χωρίζονται σε συσσωρευτικές μεθόδους (agglomerative methods) οι οποίες ακολουθούν μία σειρά δαδοχικών συγχωνεύσεων n παρατηρήσεων σε ομάδες και σε διαιρετικές μεθόδους (divisive methods) οι οποίες χωρίζουν ενα σύνολο n παρατηρήσεων διαδοχικά σε μικρότερες ομάδες. Ο βασικός αλγότιθμος όλων των συσσωευτικών μεθόδων είναι περίπου ο ίδιος. Όλες οι μέθοδοι χρησιμοποιούν κάποιο συντελεστή ομοιότητας ή μία απόσταση που υπολογίζεται για όλους τους συνδυασμούς ανά δύο των υπό εξέταση παρατηρήσεων και έτσι διαμορφώνεται ο πίνακας αποστάσεων. Ο αλγόριθμος επιδρά στον πίνακα αποστάσεων και δημιουργεί ένα δενδρόγραμμα το οποίο απεικονίζει τις διαδοχικές συγχωνεύσεις των παρατηρήσεων μέχρι το επίπεδο που σχηματίζεται μία μόνο 3
6 ομάδα. Οι συσσωρευτικές μέθοδοι διαφέρουν μεταξύ τους ως προς τον ορισμό της ομοιότητας των παρατηρήσεων κάθε ομάδας. Οι συνηθέστερες μέθοδοι είναι: H μέθοδος της απλής συνένωσης (Simple Linkage Method). Η μέθοδος της πλήρους συνένωσης ( Complete Linkage Method). Η μέθοδος των σταθμισμένων μέσων ( Weighted Average Linkage Method). Η μέθοδος των κέντρων βάρους (Centroid Method). Η μέθοδος του Ward (Ward s Method). Η μέθοδος του Gower ( Gower s method). H μέθοδος της διαμέσου ( Μedian Method). Η μέθοδος του μέσου όρου των ομάδων ( Group Average Method). Η μέθοδος των Lance & Williams. Στην παρούσα εργασία θα περιγραφoύν οι μέθοδοι της απλής συνένωσης (Single Linkage Method), της πλήρους συνένωσης (Complete Linkage Method), η μέθοδος των κέντρων βάρους (Centroid Method) καθώς και η k-means μέθοδος.. 4
7 2. ΙΕΡΑΡΧΙΚΕΣ ΜΕΘΟΔΟΙ ΟΜΑΔΟΠΟΙΗΣΗΣ 2.1 Η ΜΕΘΟΔΟΣ ΤΗΣ ΑΠΛΗΣ ΣΥΝΕΝΩΣΗΣ (SIMPLE LINKAGE METHOD) Η μέθοδος της απλής συνένωσης (Simple Linkage Method) είναι η παλαιότερη και απλούστερη όλων των ιεραρχικών μεθόδων ομαδοποίησης. Στη μέθοδο αυτή η απόσταση μεταξύ δύο ομάδων ορίζεται ως η μικρότερη απόσταση μεταξύ ενός στοιχείου της μιας ομάδας και ενός στοιχείου της άλλης ομάδας. Γι αυτό η μέθοδος αυτή ονομάζεται και «μέθοδος του κοντινότερου γείτονα». Το πιο βασικό μειονέκτημα αυτής της μεθόδου ομαδοποίησης είναι ότι αντί να δημιουργεί καινούριες ομάδες, έχει την τάση να συνδέει απομονωμένα σημεία με ήδη υπάρχουσες ομάδες. Έτσι, δύο ομάδες που είναι εμφανώς διαφορετικές θα συγχωνευθούν εάν υπάρχει κάποιο σημειό ή ένα σύνολο σημείων που να τις συνδέει. Αυτό έχει σαν αποτέλεσμα οι ομάδες οι οποίες προκύπτουν με τη μέθοδο της απλής συνένωσης να είναι κακώς διαμορφωμένες, με δύο μέλη που ανήκουν στη ιδια ομάδα συνδεδεμένα με μία αλυσίδα ενδιάμεσων σημείων. Αυτό το φαινόμενο ονομάζεται φαινόμενο της αλυσίδας (chaining effect). Tο σημαντικό πλεονέκτημα αυτής της μεθόδου είναι ότι δεν επηρεάζεται από ακραίες τιμές Η ΜΕΘΟΔΟΣ ΤΗΣ ΠΛΗΡΟΥΣ ΣΥΝΕΝΩΣΗΣ(COMPLETE LINKAGE METHOD). Η μέθοδος της πλήρους συνένωνης ( Complete Linkage Method) σε αντίθεση με τη μέθοδο της απλής συνένωσης, χρησιμοποιεί ως απόσταση μεταξύ των ομάδων την απόσταση των πιο απομακρυσμένων ζευγών σημείων. Το ένα απο αυτά τα σημεία ανήκει ανήκει στη μία ομάδα και το άλλο στην άλλη. Εναλλακτική ονομασία αυτής της μεθόδου είναι «μέθοδος του μακρινότερου γείτονα». 5
8 Οι ομάδες που δημιουργούνται με τη μέθοδο αυτή είναι συνήθως μεγάλες και συμπαγείς. Υπάρχει όμως ο κίνδυνος ομάδες που φαίνονται όμοιες να μη μπορούν να συγχωνευτούν όταν υπάρχει κάποιο ζεύγος σημείων που απέχουν αρκετά μεταξύ τους. Επίσης, σε αντίθεση με τη μέθοδο της απλής συνένωσης, η συγκεκριμένη μέθοδος επηρεάζεται από την ύπαρξη ακραίων τιμών Η ΜΕΘΟΔΟΣ ΤΩΝ ΚΕΝΤΡΩΝ ΒΑΡΟΥΣ ( CENTROID METHOD) Η μέθοδος των Kέντρων Bάρους (Centroid Method) λαμβάνει ως κριτήριο συνένωσης, την ελάχιστη απόσταση μεταξύ των κέντρων βάρους των ομάδων. Σημαντικό μειονέκτημα της συγκεκριμένης μεθόδου είναι ότι μπορεί να εφαρμοστεί μόνο σε ποσοτικά δεδομένα. Η μέθοδος των κέντρων βάρους συχνά παράγει συμπαγείς και ελλειπτικές ομάδες. 6
9 3. MΗ ΙΕΡΑΡΧΙΚΕΣ ΜΕΘΟΔΟΙ ΟΜΑΔΟΠΟΙΗΣΗΣ 3.1 Κ ΜEANS METHOD H K MEANS μέθοδος χρησιμοποιεί την έννοια του κέντρου της ομάδας και εν συνεχεία κατατάσσει τα στοιχεία ανάλογα με την απόστασή τους από τα κέντρα όλων των ομάδων. Tο κέντρο της κάθε ομάδας είναι η μέση τιμή για κάθε μεταβλητή όλων των παρατηρήσεων της ομάδας. Ο αλγόριθμος αυτός έχει καλύτερη απόδοση για μεγάλα σύνολα δεδομένων καθώς είναι πολύ πιο γρήγορος σχετικά με την ιεραρχική ομαδοποίηση. Ιδιαίτερο χαρακτηριστικό της k-means μεθόδου ομαδοποίησης είναι ότι εντός της κάθε ομάδας τα στοιχεία έχουν όσο το δυνατόν μικρότερη απόσταση από το κέντρο βάρους της ομάδας,ενώ μεταξύ των ομάδων τα στοιχεία της μιας ομάδας απέχουν όσο το δυατόν περισσότερο από το κέντρο βάρους της αλλης ομάδας. Ο αλγόριθμος από τις πρώτες επαναλήψεις πλησιάζει πολύ στην τελική λύση του ενώ στις επόμενες επαναλήψεις ο,τι διαφορετικό προκύπτει οφείλεται σε μετακινήσεις ενός μικρού αριθμού παρατηρήσεων που κατά πάσα πιθανότητα βρίσκονται στα σύνορα κάποιων ομάδων. Αυτό έχει σαν αποτέλεσμα να μην απαιτούνται πολλές επαναλήψεις ενώ οι τελικές ομάδες που δημιουργούνται από τον αλγόριθμο έχουν συνήθως τον ίδιο αριθμό παρατηρήσεων. Το μεγαλύτερο μειονέκτημα του αλγορίθμου εμφανίζεται εάν δε γίνει σωστή επιλογή των αρχικών κεντρών. Σε αυτή την περίπτωση οι ομάδες που θα προκύψουν θα διαφέρουν σημαντικά από τη φυσική ομαδοποίηση που θα υπάρχει στα δεδομένα. Ένας τρόπος για να αντιμετωπιστεί αυτό το πρόβλημα είναι να τρέχουμε τη μέθοδο με διαφορετικές επιλογές έτσι ώστε να είμαστε σίγουροι ότι δε θα παγιδεύεται ο αλγόριθμος σε κάποια λύση που δε θα είναι η βέλτιστη. 7
10 Επίσης,σημαντικό μειονέκτημα του αλγορίθμου είναι ότι στην περίπτωση που υπάρχουν ακραίες παρατηρήσεις υπάρχει πιθανότητα να δημιουργηθούν ομάδες με πολύ διασπαρμένα στοιχεία. Αυτό σημαίνει ότι η απόσταση των στοιχείων κάθε ομάδας από τι κέντρο βάρους της θα είναι μεγάλη και αυτό είναι μία ένδειξη ότι η ομαδοποίηση δεν είναι ιδανική. Ακόμη, εάν είναι γνωστό ότι ο πληθυσμός μας αποτελείται απο k ομάδες και εν τέλει το δείγμα μας δεν αντιπροσωπεύεται από κάποια απο αυτές ( την πιο σπάνια συνήθως),τότε με το διαχωρισμό σε k ομάδες θα προκύψουν παραπλανητικές ομαδοποιήσεις. Μία λύση αυτού του προβλήματος θα αποτελούσε η εφαρμογή του αλγορίθμου για διάφορες τιμές του k και η σύγκριση εν συνεχεία των αποτελεσμάτων με στόχο την καλύτερη δυνατή ομαδοποίηση. 8
11 4. ΜΕΘΟΔΟΙ Η ανάπτυξη του λογισμικού έγινε με τη γλώσσα προγραμματισμού python. Το πρόγραμμα δέχεται σαν είσοδο ένα αρχείο txt το οποίο θα πρέπει να περιλαμβάνει τα σημεία που θέλουμε να ομαδοποιήσουμε.τα στοιχεία είναι πραγματικοί αριθμοί και μπορούν να έχουν όσες διαστάσεις επιθυμούμε. Εν συνεχεία επιλέγουμε τη μέθοδο ιεραρχικής ομαδοποίησης με την οποία θέλουμε να κάνουμε την ομαδοποίηση. Το πρόγραμμα δημιουργεί και εκτυπώνει τα clusters. Παράλληλα, εκτελεί ομαδοποίηση και με τη μέθοδο k means. Σχήμα 1, Έξοδος προγράμματος 1: Τα στοιχεία στα οποία θα γίνει ομαδοποίηση. 9
12 Σχήμα 2, Έξοδος προγράμματος 2: Τα αποτελέσματα από την ομαδοποίηση με τη μέθοδο k means και με τη μέθοδο απλής συνένωσης. 10
13 ΑΝΑΦΟΡΕΣ 1.) Μέθοδοι Εύρεσης Βέλτιστου Πλήθους Ομάδων για πολυδιάστατα δεδομένα (Διπλωματική Εργασία,Φανή Ζαφειροπούλου,Τμήμα Στατιστικής, Πανεπιστήμιο Πειραιώς). 2) Clustering Algorithms (Instituto Superior Tecnico, Universidade Tecnica de Lisboa. 11
14 12
15 .
ΟΜΑΔΕΣ. Δημιουργία Ομάδων
Δημιουργία Ομάδων Μεθοδολογίες ομαδοποίησης δεδομένων: Μέθοδοι για την εύρεση των κατηγοριών και των υποκατηγοριών που σχηματίζουν τα δεδομένα του εκάστοτε προβλήματος. Ομαδοποίηση (clustering): εργαλείο
Διαβάστε περισσότεραΑποθήκες Δεδομένων και Εξόρυξη Δεδομένων:
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος B http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν
Διαβάστε περισσότεραΑνάλυση κατά Συστάδες. Cluster analysis
Ανάλυση κατά Συστάδες Cluster analysis 1 H ανάλυση κατά συστάδες είναι µια µέθοδος που σκοπό έχει να κατατάξει σε οµάδες τις υπάρχουσες παρατηρήσεις χρησιµοποιώντας την πληροφορία που υπάρχει σε κάποιες
Διαβάστε περισσότεραΑποθήκες Δεδομένων και Εξόρυξη Δεδομένων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 8: Ομαδοποίηση Μέρος B Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ ΒΕΛΤΙΣΤΟΥ ΠΛΗΘΟΥΣ ΟΜΑΔΩΝ ΓΙΑ ΠΟΛΥΔΙΑΣΤΑΤΑ ΔΕΔΟΜΕΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ ΒΕΛΤΙΣΤΟΥ ΠΛΗΘΟΥΣ ΟΜΑΔΩΝ ΓΙΑ ΠΟΛΥΔΙΑΣΤΑΤΑ ΔΕΔΟΜΕΝΑ Φανή Ζαφειροπούλου
Διαβάστε περισσότερα«ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ»
Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ» Της σπουδάστριας ΚΑΤΣΑΡΟΥ ΧΑΡΙΚΛΕΙΑΣ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ
Διαβάστε περισσότεραΟμαδοποίηση ΙΙ (Clustering)
Ομαδοποίηση ΙΙ (Clustering) Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Αλγόριθμοι ομαδοποίησης Επίπεδοι αλγόριθμοι Αρχίζουμε με μια τυχαία ομαδοποίηση Βελτιώνουμε επαναληπτικά KMeans Ομαδοποίηση
Διαβάστε περισσότεραClustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων
Clustering Αλγόριθµοι Οµαδοποίησης Αντικειµένων Εισαγωγή Οµαδοποίηση (clustering): οργάνωση µιας συλλογής από αντικείµενα-στοιχεία (objects) σε οµάδες (clusters) µε βάση κάποιο µέτρο οµοιότητας. Στοιχεία
Διαβάστε περισσότεραΟμαδοποίηση Ι (Clustering)
Ομαδοποίηση Ι (Clustering) Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Αλγόριθμοι ομαδοποίησης Επίπεδοι αλγόριθμοι Αρχίζουμε με μια τυχαία ομαδοποίηση Βελτιώνουμε επαναληπτικά KMeans Ομαδοποίηση
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. ιπλωµατική Εργασία
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ιπλωµατική Εργασία «Μετάδοση πληροφορίας σε ασύρµατο δίκτυο αισθητήρων µε οµαδοποιηµένους κόµβους και µε χρήση διευθύνσεων
Διαβάστε περισσότεραΠανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db
Διαβάστε περισσότεραΕξόρυξη Δεδομένων. Συσταδοποίηση: Βασικές Έννοιες και Μέθοδοι
Εξόρυξη Δεδομένων Συσταδοποίηση: Βασικές Έννοιες και Μέθοδοι 1 2 Συσταδοποίηση: Βασικές Έννοιες και Μέθοδοι Εισαγωγή στη Συσταδοποίηση Μέθοδοι Διαχωρισμού Ιεραρχικές Μέθοδοι Μέθοδοι Πυκνότητας Αξιολόγηση
Διαβάστε περισσότεραΑποθήκες Δεδομένων και Εξόρυξη Δεδομένων:
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Α http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν
Διαβάστε περισσότερα10. Μη-κατευθυνόμενη ταξινόμηση ΚΥΡΊΩΣ ΜΈΡΗ ΔΕΥ
ΚΥΡΊΩΣ ΜΈΡΗ ΔΕΥ 1 2 3 1 ΚΑΤΗΓΟΡΊΕΣ ΤΑΞΙΝΌΜΗΣΗΣ Κατευθυνόμενη ταξινόμηση (supervised classification) Μη-κατευθυνόμενη ταξινόμηση (unsupervised classification) Γραμμική: Μη-Γραμμική: Ιεραρχική: Επιμεριστική:
Διαβάστε περισσότεραΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εξόρυξη Δεδομένων. Ανάλυση Δεδομένων. Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα,
ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ Ηλίας Κ. Σάββας Εξόρυξη Δεδομένων Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα, Μετατροπή δεδομένων σε ΠΛΗΡΟΦΟΡΙΑ, Πολλά δεδομένα αποθηκευμένα
Διαβάστε περισσότεραΑποθήκες Δεδομένων και Εξόρυξη Δεδομένων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 7: Ομαδοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραDIP_05 Τµηµατοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_05 Τµηµατοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τµηµατοποίηση εικόνας είναι η διαδικασία µε την οποία διαχωρίζεται µία εικόνα σε κατάλληλες περιοχές ή αντικείµενα. Για την τµηµατοποίηση εικόνας
Διαβάστε περισσότεραιαµέριση - Partitioning
ιαµέριση - Partitioning ιαµέριση ιαµέριση είναι η διαµοίραση αντικειµένων σε οµάδες µε στόχο την βελτιστοποίηση κάποιας συνάρτησης. Στην σύνθεση η διαµέριση χρησιµοποιείται ως εξής: Οµαδοποίηση µεταβλητών
Διαβάστε περισσότεραΑποθήκες Δεδομένων και Εξόρυξη Δεδομένων:
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Δ http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν
Διαβάστε περισσότεραΚεφάλαιο 5: Ανάλυση Συστάδων
Κεφάλαιο 5: Ανάλυση Συστάδων Σύνοψη Η ανάλυση συστάδων διευθετεί ένα σύνολο μεταβλητών ή παρατηρήσεων σε συγκεκριμένες ομάδες οι οποίες διαθέτουν κατ ιδίαν κοινά χαρακτηριστικά, ευκρινώς διαφοροποιημένα
Διαβάστε περισσότεραΣΥΣΤΑΔΟΠΟΙΗΣΗ ΙΙ
Τι είναι συσταδοποίηση Εύρεση συστάδων αντικειμένων έτσι ώστε τα αντικείμενα σε κάθε ομάδα να είναι όμοια (ή να σχετίζονται) και διαφορετικά (ή μη σχετιζόμενα) από τα αντικείμενα των άλλων ομάδων Συσταδοποίηση
Διαβάστε περισσότερα11 Ανάλυση Συστάδων
11 Ανάλυση Συστάδων Σύνοψη Η Ανάλυση Συστάδων (ΑΣ) (Clustering) είναι μια από τις βασικότερες εργασίες Εξόρυξης Δεδομένων. Στόχος της ΑΣ είναι ο επιμερισμός ενός συνόλου παραδειγμάτων σε συστάδες. Οι συστάδες
Διαβάστε περισσότεραΑποθήκες Δεδομένων και Εξόρυξη Δεδομένων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 9: Ομαδοποίηση Μέρος Γ Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
Διαβάστε περισσότεραΣΥΣΤΑΔΟΠΟΙΗΣΗ ΚΑΤΑΝΑΛΩΤΩΝ ΜΕ ΣΚΟΠΟ ΤΗΝ ΤΙΜΟΛΟΓΗΣΗ
Σ ε λ ί δ α 0 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΚΑΤΑΝΑΛΩΤΩΝ ΜΕ ΣΚΟΠΟ ΤΗΝ ΤΙΜΟΛΟΓΗΣΗ Διπλωματική
Διαβάστε περισσότεραΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΘΕΜΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΘΕΜΑ «Ανάπτυξη γραφικού περιβάλλοντος σε Matlab για συσταδοποίηση δεδομένων μέσω των ιεραρχικών αλγορίθμων
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Τμηματοποίηση εικόνας Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές
Διαβάστε περισσότεραΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ)
«ΣΠ0ΥΔΑI», Τόμος 47, Τεύχος 3o-4o, Πανεπιστήμιο Πειραιώς / «SPOUDAI», Vol. 47, No 3-4, University of Piraeus ΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ) Υπό Γιάννης
Διαβάστε περισσότεραΣχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε
Διαβάστε περισσότεραDIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_05 Τμηματοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τμηματοποίηση εικόνας είναι η διαδικασία με την οποία διαχωρίζεται μία εικόνα σε κατάλληλες περιοχές ή αντικείμενα. Για την τμηματοποίηση
Διαβάστε περισσότερα3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΑναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΟΜΟΙΟΤΗΤΑ ΒΙΟΚΟΙΝΟΤΗΤΩΝ
ΟΜΟΙΟΤΗΤΑ ΒΙΟΚΟΙΝΟΤΗΤΩΝ Είναι δυνατόν δύο βιοκοινότητες να έχουν τον ίδιο (ή σχεδόν τον ίδιο) δείκτη ποικιλότητας ειδών αν και τα είδη που συνθέτουν τη μία βιοκοινότητα να είναι -σε μεγάλο βαθμό ή και
Διαβάστε περισσότεραΠρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1
Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Διαβάστε περισσότεραΕξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση (clustering) Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων
Διαβάστε περισσότεραΑνάλυση κατά συστάδες με χρήση στατιστικών πακέτων
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Εφαρμοσμένη Πολυμεταβλητή Ανάλυση : Ανάλυση κατά συστάδες 1. Εισαγωγή Ανάλυση κατά συστάδες με χρήση στατιστικών πακέτων Η ομαδοποίηση δεδομένων
Διαβάστε περισσότεραΜΕΤΑΠΤΥΧΙΑΚΟ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ. ΘΕΣΣΑΛΟΝΙΚΗ, Σεπτέμβριος 2006
ΜΕΤΑΠΤΥΧΙΑΚΟ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΘΕΣΣΑΛΟΝΙΚΗ, Σεπτέμβριος 2006 ΠΟΛΥΔΙΑΣΤΑΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΙΑΧΡΟΝΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΠΟΛΙΤΙΚΗΣ ΤΩΝ
Διαβάστε περισσότεραΟΙ ΕΡΩΤΗΣΕ1Σ III: ΟΙ ΚΛΙΜΑΚΕΣ]
Κατερέλος - 2.3. ΟΙ ΕΡΩΤΗΣΕ1Σ III: ΟΙ ΚΛΙΜΑΚΕΣ] Η χρήση των κλιμάκων στην ψυχολογία είναι εξαιρετικά ευρεία: δοκιμασίες ικανοτήτων, μέτρηση απόψεων και στάσεων ή και κλινικές παρατηρήσεις. Ειδικότερα στην
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ποσοτικές Μέθοδοι Ανάλυσης στις Ενότητα 5: Ανάλυση στοιχείων. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
Διαβάστε περισσότεραΜηχανική Μάθηση Εργασία 2
Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος 2014-15 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Εαρινό Εξάμηνο Παρασκευάς Τσανταρλιώτης Α.Μ. 318 Μηχανική Μάθηση Εργασία 2 Ο κώδικας για τις παρακάτω ασκήσεις είναι διαθέσιμος
Διαβάστε περισσότεραΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
Διαβάστε περισσότεραP.-N. Tan, M.Steinbach, V. Kumar, Introduction to Data Mining»,
Συσταδοποίηση Ι Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Τι είναι συσταδοποίηση Εύρεση συστάδων αντικειμένων έτσι ώστε τα αντικείμενα
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ
ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ Ανάλυση συχνότητας ενός υδρολογικού μεγέθους: Είναι η εύρεση της σχέσεως μεταξύ του υδρολογικού φαινομένου και της πιθανότητας εμφανίσεως του μεγέθους αυτού. Μεταβλητή:
Διαβάστε περισσότεραΑποθήκες Δεδομένων και Εξόρυξη Δεδομένων:
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Γ http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν
Διαβάστε περισσότεραΕφαρμοσμένη Ανάλυση Συστάδων
Σχολή Μηχανικών Παραγωγής και Διοίκησης Πρόγραμμα Μεταπτυχιακών Σπουδών ''Εφαρμοσμένα μαθηματικά για μηχανικούς'' ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Εφαρμοσμένη Ανάλυση Συστάδων (Applied Cluster Analysis) Στρατινάκης
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στην κατάτμηση εικόνας Τεχνικές
Διαβάστε περισσότερα4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)
. Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).
Διαβάστε περισσότεραΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ
ΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ Εισαγωγή Τεχνικές διαχωριστικής ομαδοποίησης: Ν πρότυπα k ομάδες Ν>>k Συνήθως k καθορίζεται από χρήστη Διαχωριστικές τεχνικές: επιτρέπουν πρότυπα να μετακινούνται από ομάδα σε
Διαβάστε περισσότεραΕφαρμογή και Συγκριτική Ανάλυση Μεθόδων Ταξινόμησης για Ενεργειακή και Περιβαλλοντική Κατάταξη Κτιρίων Γραφείων ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ
Πολυτεχνείο Κρήτης Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Εφαρμογή και Συγκριτική Ανάλυση Μεθόδων Ταξινόμησης για Ενεργειακή και Περιβαλλοντική Κατάταξη Κτιρίων Γραφείων ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ Ενότητα # 7: Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Διαβάστε περισσότεραΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Data Mining - Classification
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ Data Mining - Classification Data Mining Ανακάλυψη προτύπων σε μεγάλο όγκο δεδομένων. Σαν πεδίο περιλαμβάνει κλάσεις εργασιών: Anomaly Detection:
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε
Διαβάστε περισσότεραΑκαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν
Διαβάστε περισσότεραΠανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db
Διαβάστε περισσότεραΜέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)
ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης
Διαβάστε περισσότεραΕ Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την
Διαβάστε περισσότεραΒιοπληροφορική II. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Πανεπιστήμιο Θεσσαλίας Λαμία, 2015
Βιοπληροφορική II Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 Μικροσυστοιχίες Γυάλινο πλακίδιο που αποτελείται από συγκεκριμένες αλληλουχίες οι οποίες είναι ειδικές για συγκεκριμένα
Διαβάστε περισσότεραΣύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test
1 Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου One-Sample t-test 2 Μια σύντομη αναδρομή Στα τέλη του 19 ου αιώνα μια μεγάλη αλλαγή για την επιστήμη ζυμώνονταν στην ζυθοποιία Guinness. Ο William Gosset
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )
Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,
Διαβάστε περισσότεραΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
Διαβάστε περισσότεραΣχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros
Διαβάστε περισσότεραΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM Μάθηση χωρίς επίβλεψη (unsupervised learning) Σύνολο εκπαίδευσης D={(x n )}, n=1,,n. x n =(x n1,, x nd ) T, δεν υπάρχουν τιμές-στόχοι t n. Προβλήματα μάθησης χωρίς
Διαβάστε περισσότεραΛίγα λόγια για τους συγγραφείς 16 Πρόλογος 17
Περιεχόμενα Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 1 Εισαγωγή 21 1.1 Γιατί χρησιμοποιούμε τη στατιστική; 21 1.2 Τι είναι η στατιστική; 22 1.3 Περισσότερα για την επαγωγική στατιστική 23 1.4 Τρεις
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. 1. Εισαγωγή Συνεχής ποσοτική εξαρτημένη μεταβλητή...66 Ενδεικτική εφαρμογή...68 ΛΙΓΑ ΛΟΓΙΑ ΓΙΑ ΤΟΥΣ ΣΥΓΓΡΑΦΕΙΣ...
ΠΕΡΙΕΧΟΜΕΝΑ ΛΙΓΑ ΛΟΓΙΑ ΓΙΑ ΤΟΥΣ ΣΥΓΓΡΑΦΕΙΣ...................................... 11 ΠΡΟΛΟΓΟΣ..........................................................15 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΝΑΛΥΤΙΚΗ, ΣΤΑ ΠΟΣΟΤΙΚΑ
Διαβάστε περισσότεραΠεριεχόμενα. Πρόλογος Προετοιμασία Ανάλυση συστοιχιών Πολυδιάστατη προσαρμογή κλίμακας 89
Περιεχόμενα Πρόλογος 11 1 Προετοιμασία 17 1.1 Η δομή του βιβλίου...17 1.2 Η περιορισμένη χρήση των μαθηματικών...21 1.3 Μεταβλητές...28 1.4 Η γεωμετρία της πολυμεταβλητής ανάλυσης...31 1.5 Χρήση παραδειγμάτων...32
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Χειμερινό εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Μέτρα
Διαβάστε περισσότεραΚεφάλαιο 6 Πολυμεταβλητές Μέθοδοι Ανάλυσης
Κεφάλαιο 6 Πολυμεταβλητές Μέθοδοι Ανάλυσης Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται τρεις βασικές μέθοδοι πολυμεταβλητής ανάλυσης. Συγκεκριμένα θα παρουσιαστούν η παραγοντική ανάλυση, η ανάλυση συστάδων
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ Ανάλυση κατά Συστάδες σε δεδοµένα Χρονολογικών σειρών Κωνσταντίνα Κ. Μεντζέλου ΕΡΓΑΣΙΑ Που υποβλήθηκε στο Τµήµα Στατιστικής του Οικονοµικού Πανεπιστηµίου
Διαβάστε περισσότεραΘΕΜΑ 1: Αλγόριθμος Ford-Fulkerson
ΘΕΜΑ : Αλγόριθμος Ford-Fulkerson Α Να εξετάσετε αν ισχύει η συνθήκη συντήρησης της αρχικής ροής στο δίκτυο. Β Με χρήση του αλγορίθμου Ford-Fulkerson να βρεθεί η μέγιστη ροή που μπορεί να σταλεί από τον
Διαβάστε περισσότεραΑλγόριθμος Ομαδοποίησης
Αλγόριθμος Ομαδοποίησης Εμπειρίες από τη μελέτη αναλλοίωτων χαρακτηριστικών και ταξινομητών για συστήματα OCR Μορφονιός Κωνσταντίνος Αθήνα, Ιανουάριος 2002 Γενικά Ένα σύστημα OCR χρησιμοποιείται για την
Διαβάστε περισσότεραΕίδη Έρευνας Ι: Πειραματική Έρευνα & Πειραματικοί Σχεδιασμοί
εισήγηση 9η Είδη Έρευνας Ι: Πειραματική Έρευνα & Πειραματικοί Σχεδιασμοί (252) Τεχνικές Έρευνας Συστατικά ενός πειράματος Ανεξάρτητη μεταβλητή - Παρέμβαση Εξαρτημένη μεταβλητή Πειραματική ομάδα Ομάδα ελέγχου
Διαβάστε περισσότεραΧρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Διαβάστε περισσότεραΕπαναληπτικές Διαδικασίες
Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων
ΠΕΡΙΕΧΟΜΕΝΑ Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων Εισαγωγή Η χρήση των μεταβλητών με δείκτες στην άλγεβρα είναι ένας ιδιαίτερα
Διαβάστε περισσότεραΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ. Fuzzy Clustering. Μαγδαληνή Ευαγγέλου Κουμπαρούλη
ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ Fuzzy Clustering Μαγδαληνή Ευαγγέλου Κουμπαρούλη ΕΡΓΑΣΙΑ Που υποβλήθηκε στο Τμήμα Στατιστικής του Οικονομικού Πανεπιστημίου
Διαβάστε περισσότεραΙεραρχική αναλυση αποφασεων Analytic hierarchy process (AHP)
Ιεραρχική αναλυση αποφασεων Analytic hierarchy process (AHP) Εισαγωγή Παρουσιάστηκε από τον Thomas L. Saaty τη δεκαετία του 70 Μεθοδολογία που εφαρμόζεται στην περιοχή των Multicriteria Problems Δίνει
Διαβάστε περισσότεραΚεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
Διαβάστε περισσότεραΕνότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)
ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) Δρ. Χρήστος Γενιτσαρόπουλος
Διαβάστε περισσότεραΣου προτείνω να τυπώσεις τις επόμενες τέσσερις σελίδες σε ένα φύλο διπλής όψης και να τις έχεις μαζί σου για εύκολη αναφορά.
AeppAcademy.com facebook.com/aeppacademy Γεια. Σου προτείνω να τυπώσεις τις επόμενες τέσσερις σελίδες σε ένα φύλο διπλής όψης και να τις έχεις μαζί σου για εύκολη αναφορά. Καλή Ανάγνωση & Καλή Επιτυχία
Διαβάστε περισσότεραΑποθήκες Δεδομένων και Εξόρυξη Δεδομένων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 10: Ομαδοποίηση Μέρος Δ Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΚεφάλαιο 4ο: Δικτυωτή Ανάλυση
Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.
Διαβάστε περισσότεραΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ
Tel.: +30 2310998051, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Ιστοσελίδα: http://users.auth.gr/theodoru ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ
Διαβάστε περισσότεραΜΕΡΟΣ Α Κάθε µια από τις παρακάτω φράσεις (1α, 1β, 1γ, 2α κτλ) µπορεί να είναι σωστή ή λανθασµένη. Ποιες είναι σωστές και ποιες όχι;
2. ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΠΑΓΩΓΗ. ΣΚΟΠΟΣ στο τέλος της ενότητας είναι να γνωρίζετε - Τι είναι η «δειγµατοληπτική κατανοµή» π.χ. της µέσης τιµής - τι είναι και σε τι χρησιµεύει το «τυπικό σφάλµα της µέσης
Διαβάστε περισσότεραΜεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit Τεχνικές Προβλέψεων 2 η Ενότητα http://www.fsu.gr -
Διαβάστε περισσότεραΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική
ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική Ενότητα 3: Έλεγχοι υποθέσεων - Διαστήματα εμπιστοσύνης Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Οι ερευνητικές υποθέσεις Στην έρευνα ελέγχουμε
Διαβάστε περισσότεραΓ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
Διαβάστε περισσότεραA. Να γράψετε τον αριθμό της κάθε μιας από τις παρακάτω προτάσεις και δίπλα. το γράμμα Σ, εάν είναι σωστή, ή το γράμμα Λ, εάν είναι λανθασμένη.
ΘΕΜΑ 1 ο A. Να γράψετε τον αριθμό της κάθε μιας από τις παρακάτω προτάσεις και δίπλα το γράμμα Σ, εάν είναι σωστή, ή το γράμμα Λ, εάν είναι λανθασμένη. 1. Η συνθήκη Χ = Α_Μ (Χ) είναι πάντα αληθής, για
Διαβάστε περισσότεραΜάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 9 ο Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ Εισαγωγή () Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και αντικείμενα. Μία περιοχή αναμένεται να έχει ομοιογενή χαρακτηριστικά
Διαβάστε περισσότεραΆσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:
Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του
Διαβάστε περισσότεραΗ ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΙΑTΡΙΚΗ ΣΧΟΛΗ Η ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ Έλενα Κριτσέλη, MPH PhD Επιστημονικός Συνεργάτης Επιδημιολόγος Χρόνιων Παθήσεων, Α Πανεπιστημιακή Παιδιατρική
Διαβάστε περισσότεραΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΓΡΑΦΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΣΕ MATLAB ΓΙΑ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΜΕΣΩ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ISODATA
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΝΑΠΤΥΞΗ ΓΡΑΦΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΣΕ MATLAB ΓΙΑ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΜΕΣΩ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ISODATA Μαρκαντωνάτου Μαρία Α.Μ.: 379 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Δρ. Τσιμπίρης
Διαβάστε περισσότεραΑναγνώριση Προτύπων Εργασία 2η Clustering
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Αναγνώριση Προτύπων Εργασία 2η Clustering Κιντσάκης Αθανάσιος 6667 Μόσχογλου Στυλιανός 6978 18 Ιανουαρίου, 2013
Διαβάστε περισσότεραΜ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.
Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. π.χ. Βαθμολογία διαγωνίσματος σε τμήματα: Α : 7, 11,16, 16,,. Β : 11, 13, 16, 16, 17, 17. Παρατήρηση : Για τέτοιους λόγους χρειάζεται και η εξέταση κάποιων μέτρων διασποράς
Διαβάστε περισσότεραΕξαγωγή κανόνων από αριθµητικά δεδοµένα
Εξαγωγή κανόνων από αριθµητικά δεδοµένα Συχνά το σύστηµα που θέλουµε να µοντελοποιήσουµε η να ελέγξουµε αντιµετωπίζεται ως µαύρο κουτί και η πληροφορία για τη λειτουργία του διατίθεται υπό µορφή ζευγών
Διαβάστε περισσότερα