ΠΕΡΙ ΦΥΣΗΣ ΚΑΙ ΜΑΘΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ. Μαρία Καλδρυμίδου
|
|
- Τρίτωνος Κοντολέων
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΕΡΙ ΦΥΣΗΣ ΚΑΙ ΜΑΘΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ Μαρία Καλδρυμίδου
2 μάθηση των μαθηματικών εννοιών από τις επιδόσεις των μαθητών και τον εντοπισμό και την κατηγοριοποίηση των λαθών τους στην αναζήτηση θεωρητικών εργαλείων περιγραφής των μηχανισμών μάθησης των μαθηματικών εννοιών.
3 μάθηση των μαθηματικών εννοιών θεωρητικές προσεγγίσεις περιγραφής και ερμηνείας της γνώσης σωστής ή λανθασμένης, που αποκτούν οι μαθητές διαφορετικές θεωρήσεις για τις μαθηματικές έννοιες, για τη μάθηση
4 Αρχικές θεωρητικές προσεγγίσεις από το πεδίο της γνωστικής ψυχολογίας It is clear that cogni/ve psychology generally forms the basis of the theore/cal framework as well as most of the methodological tools, the data analyses as well their interpreta/on and conclusions. (R. Hershkovwitz & C. Breen, 2006 p. ix) η πιαζετιανή θεωρία και η κονστρουκτιβιστική προσέγγιση ήταν κυρίαρχες.
5 Αρχικές θεωρητικές προσεγγίσεις εποικοδομισμός (construcmvism) ριζοσπαστικός εποικοδομισμός (radical construcmvism) refer to a construc/vist approach, according to which children not only are taught mathema/cs, but also develop their mathema/cal competencies and ideas by facing situa/ons, interpre/ng them, and genera/ng processes and behaviors on the spot.generally, it meant that the student was an ac/ve constructor of knowledge, and that no one else could really understand the student s ideas (J. Mulligan & G. Vergnaud, 2006, p. 123)
6 θεωρητικές προσεγγίσεις ο κοινωνικός κονστρουκτιβισμός (social construcmvism), η θεωρία της κοινωνικής αλληλεπίδρασης (social interacmonism), η θεωρία συστημάτων (system theory) η θεωρία της δραστηριότητας (acmvity theory).
7 μαθηματική γνώση για το ρεύμα του εποικοδομισμού (construcmvism), η (μαθηματική) γνώση είναι το αποτέλεσμα της προσαρμογής του υποκειμένου σε ένα συγκεκριμένο περιβάλλον,
8 μαθηματική γνώση για τη κοινωνική- πολιτισμική (socio- cultural) θεώρηση είναι το αποτέλεσμα της διαδικασίας πολιτιστικής ενσωμάτωσης σε μια δεδομένη κουλτούρα, ενώ
9 μαθηματική γνώση για την αλληλεπιδραστική (interacmonism) προσέγγιση η ατομική κατασκευή του νοήματος γίνεται σε αλληλεπίδραση με την κουλτούρα της τάξης στη διαμόρφωση της οποίας συμμετέχει το άτομο.
10 μαθηματική γνώση για τη συστημική προσέγγιση η μαθηματική γνώση δημιουργείται μέσα σε ένα σύστημα (σχολείο, τάξη), σε ένα πλαίσιο (μαθηματικό περιεχόμενο, τρόπος διαπραγμάτευσης και λειτουργία αυτού του περιεχομένου στις συγκεκριμένες καταστάσεις, δραστηριότητες και έργα που δίνονται) και με αναφορά σε αυτό (η γνώση που αναδύεται ή κατασκευάζεται στοχεύει στη βέλτιστη λειτουργία για την αντιμετώπιση αυτού του πλαισίου). Τα χαρακτηριστικά του συστήματος και του πλαισίου καθορίζουν το περιεχόμενο και τη φύση της μαθηματικής γνώσης. (Chevallard, 1992, Brousseau, 1997)
11 μαθηματική γνώση/μαθηματικές έννοιες Οι μαθηματικές έννοιες είναι τα βασικά αντικείμενα, η διερεύνηση των οποίων (ιδιότητες, σχέσεις, διαδικασίες, αναπαραστάσεις) αποτελεί τον άξονα ανάπτυξης και οργάνωσης της Μαθηματικής επιστήμης.
12 μαθηματική γνώση/μαθηματικές έννοιες οι μαθηματικές έννοιες έχουν πολλές όψεις, εμφανίζονται με διαφορετικό ρόλο στα διάφορα πεδία και στις διαφορετικές χρήσεις τους, γεγονός που κάνει τη φύση των εννοιών να διαφοροποιείται επιστημολογικά, ανάλογα με την κατάσταση που αντιμετωπίζεται κάθε φορά.
13 παράδειγμα επιστημολογικής διαφοροποίησης μια συνάρτηση μπορεί να θεωρηθεί ως ένα σύνολο διατεταγμένων ζευγών, ως αντιστοιχία μεταξύ δύο συνόλων, ως μετασχηματισμός ενός συνόλου σε ένα άλλο ένας ρητός μπορεί να θεωρηθεί ως σχέση μέρους - όλου, ως διαίρεση, ως αναλογία
14 εννοιολογικές αντιλήψεις μελέτη των λαθών των μαθητών στη δεκαετία του συστηματικά λάθη παγιωμένες, σταθερές και κοινές λανθασμένες εννοιολογικές αντιλήψεις παρανοήσεις, misconcepmons γνώση
15 misconcepmons Δεν πρόκειται για περιστασιακές ιδέες και λάθη, αλλά για το αποτέλεσμα προηγούμενης γνώσης, η οποία είναι σωστή, λειτουργεί και είναι αποτελεσματική αλλά σε κάποιο άλλο πλαίσιο μια λανθασμένη εννοιολογική αντίληψη έχει τομέα εγκυρότητας, αλλιώς δεν θα υπήρχε ως τέτοια (Balacheff & Gaudin, 2002)
16 μάθηση μαθηματική γνώση που αναπτύσσεται μέσα στη σχολική τάξη των Μαθηματικών και το νόημα που της αποδίδεται από τους μαθητές υπόκειται και εξαρτάται από περιορισμούς: ως προς το μαθηματικό περιεχόμενο, ως προς την κατάσταση υπό εξέταση, ως προς το κοινωνικό- πολιτισμικό περιβάλλον, ως προς το διδακτικό περιβάλλον.
17 θεωρητικές προσεγγίσεις έμφαση στον αναπαραστατικό χαρακτήρα της μαθηματικής γνώσης έμφαση στο σταδιακό χαρακτήρα ανάπτυξης της μαθηματικής γνώσης διπολικές προσεγγίσεις έμφαση στη διασύνδεση και στη συνθετική φύση των μαθηματικών εννοιών έμφαση στη επιστημολογία και την ανάδειξη του μαθηματικού νοήματος
18 Προσεγγίσεις που δίνουν έμφαση στον αναπαραστατικό χαρακτήρα της μαθηματικής γνώσης
19 Bruner (1964) η εμπράγματη ή βιωματική αναπαράσταση (enacmve), η εικονική (iconic) και η συμβολική (symbolic) αναπαράσταση Fischbein (1978, 1983) πρωταρχικά, διαισθητικά μοντέλα (intuimve models) λειτουργούν ως παραδειγματικά μοντέλα για την ανάπτυξη των εννοιών
20 Οι Tall & Vinner (1981)θεωρούν ότι η μαθηματική γνώση των μαθητών οργανώνεται σε διαφορετικές οντότητες: τη διατυπωμένη ή λεκτική γνώση, την έννοια- ορισμό (concept definimon) και την έννοια- εικόνα (concept image), η οποία αποτελείται από τα αναπαραστατικά σχήματα που έχουν οργανωθεί με βάση τις αναπαραστάσεις που κυριαρχούν στην καθημερινή σχολική πρακτική των μαθητών μάθηση των εννοιών κυρίως της μαθηματικής ανάλυσης και του συναρτησιακού λογισμού
21 η θεώρηση της δημιουργίας του πρωτοτυπικού (prototypical) σχήματος (Hershkowitz, R, 1990), το οποίο λειτουργεί ως βασικό εργαλείο αναγνώρισης των μαθηματικών εννοιών κατά τη μαθηματική δραστηριότητα των μαθητών. μάθηση των γεωμετρικών εννοιών, των κλασμάτων και των συναρτήσεων.
ΠΕΡΙ ΦΥΣΗΣ ΚΑΙ ΜΑΘΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ. Μαρία Καλδρυμίδου
ΠΕΡΙ ΦΥΣΗΣ ΚΑΙ ΜΑΘΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ Μαρία Καλδρυμίδου μάθηση των μαθηματικών εννοιών από τις επιδόσεις των μαθητών και τον εντοπισμό και την κατηγοριοποίηση των λαθών τους στην αναζήτηση θεωρητικών
Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ
Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της
Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων
Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της
Σύγχρονες θεωρήσεις για τη μάθηση
Σύγχρονες θεωρήσεις για τη μάθηση Ισαβέλλα Κοτίνη, Σοφία Τζελέπη Ορισμός της μάθησης Σχολές που θεωρούν τη μάθηση ως μια διαδικασία πρόσκτησης της γνώσης (θεωρίες που συνδέονται με το συμπεριφορισμό),
Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων
Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα
εννοιολογικές παρανοήσεις και δυσκολίες στην έννοια της συνάρτησης
εννοιολογικές παρανοήσεις και δυσκολίες στην έννοια της συνάρτησης ί ί η έννοια της συνάρτησης: παρανοήσεις και δυσκολίες η έννοια της συνάρτησης είναι µια πολύ δύσκολη έννοια πλήθος ερευνών 1973 Freudenthal
Κασιμάτη Αικατερίνη Αναπληρώτρια Καθηγήτρια Παιδαγωγικού Τμήματος ΑΣΠΑΙΤΕ
Κασιμάτη Αικατερίνη Αναπληρώτρια Καθηγήτρια Παιδαγωγικού Τμήματος ΑΣΠΑΙΤΕ Σύγχρονες θεωρητικές αντιλήψεις Ενεργή συμμετοχή μαθητή στην oικοδόμηση - ανάπτυξη της γνώσης (θεωρία κατασκευής της γνώσης-constructivism).
ανάπτυξη μαθηματικής σκέψης
ανάπτυξη μαθηματικής σκέψης (έννοιες, αντιλήψεις, αναπαραστάσεις) οργάνωση περιεχομένου μαθηματικών, εννοιολογικές αντιλήψεις στα μαθηματικά και στους μαθητές Μαρία Καλδρυμίδου θέματα οργάνωση περιεχομένου
Πρώτο Κεφάλαιο Φάσεις & Μοντέλα ένταξης των ΤΠΕ στην Εκπαίδευση...13 1.1 Εκπαιδευτική Τεχνολογία: η προϊστορία της πληροφορικής στην εκπαίδευση 14
Περιεχόµενα Πρώτο Κεφάλαιο Φάσεις & Μοντέλα ένταξης των ΤΠΕ στην Εκπαίδευση....13 1.1 Εκπαιδευτική Τεχνολογία: η προϊστορία της πληροφορικής στην εκπαίδευση 14 1.1.1 Ορισµός της εκπαιδευτικής τεχνολογίας...14
ΑΝΑΠΤΥΞΗ ΜΑΘΗΜΑΤΙΚΟΥ ΝΟΗΜΑΤΟΣ ΣΤΗΝ ΤΑΞΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΑΧΕΙΡΙΣΗ ΤΗΣ ΤΑΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΜΑΡΙΑ ΚΑΛΔΡΥΜΙΔΟΥ
ΑΝΑΠΤΥΞΗ ΜΑΘΗΜΑΤΙΚΟΥ ΝΟΗΜΑΤΟΣ ΣΤΗΝ ΤΑΞΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΑΧΕΙΡΙΣΗ ΤΗΣ ΤΑΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΜΑΡΙΑ ΚΑΛΔΡΥΜΙΔΟΥ ΜΑΘΗΜΑΤΙΚΟ ΝΟΗΜΑ κατάλληλο διδακτικό περιβάλλον εκπαιδευτικός διαχειριστής της τάξης μαθητές
Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 5: Μελέτη αντιλήψεων και πεποιθήσεων
Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 5: Πόταρη Δέσποινα, Σακονίδης Χαράλαμπος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αναζήτηση των αντιλήψεων των μαθητών στα μαθηματικά
Περιεχόμενα. Εισαγωγή... 13 MΕΡΟΣ Ι. ΕΝΝΟΙΟΛΟΓΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ. 1.1. Προσεγγίσεις στην έννοια της διδασκαλίας... 22
Περιεχόμενα Εισαγωγή... 13 MΕΡΟΣ Ι. ΕΝΝΟΙΟΛΟΓΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ 1.1. Προσεγγίσεις στην έννοια της διδασκαλίας... 22 1.1.1. Τι είναι διδασκαλία... 25 1.1.2. Διδασκαλία και μάθηση... 28 1.1.3.
Μαθηματικά: θεωρίες μάθησης. Διαφορετικές σχολές Διαφορετικές υποθέσεις
Μαθηματικά: θεωρίες μάθησης Διαφορετικές σχολές Διαφορετικές υποθέσεις Τι είναι μάθηση; Συμπεριφορισμός: Aλλαγή συμπεριφοράς Γνωστική ψυχολογία: Aλλαγή νοητικών δομών Κοινωνικοπολιτισμικές προσεγγίσεις:
O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική. Δέσποινα Πόταρη Πανεπιστήμιο Πατρών
O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική Δέσποινα Πόταρη Πανεπιστήμιο Πατρών Η έννοια της δραστηριότητας Δραστηριότητα είναι κάθε ανθρώπινη δράση που έχει ένα κίνητρο και ένα
άλγεβρα και αλγεβρική σκέψη στην πρώτη σχολική περίοδο (Νηπιαγωγείο Δημοτικό) μαρία καλδρυμίδου
άλγεβρα και αλγεβρική σκέψη στην πρώτη σχολική περίοδο (Νηπιαγωγείο Δημοτικό) μαρία καλδρυμίδου κάποια ερωτήματα τι είναι η άλγεβρα; τι περιλαμβάνει η άλγεβρα; ποια η σχέση της με την αριθμητική; γιατί
άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου
άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου άλγεβρα από την επίλυση εξισώσεων στη μελέτη των μεταβολών, των σχέσεων, των κανονικοτήτων και δομών, σε ένα περιβάλλον αναλυτικού συμβολικού συλλογισμού με
Κοινωνικοπολιτισμικές. Θεωρίες Μάθησης. & Εκπαιδευτικό Λογισμικό
Κοινωνικοπολιτισμικές Θεωρίες Μάθησης & Εκπαιδευτικό Λογισμικό Κοινωνικοπολιτισμικές προσεγγίσεις Η σκέψη αναπτύσσεται (προϊόν οικοδόμησης και αναδόμησης γνώσεων) στα πλαίσια συνεργατικών δραστηριοτήτων
Η ανάπτυξη της Εποικοδομητικής Πρότασης για τη διδασκαλία και τη μάθηση του μαθήματος της Χημείας. Άννα Κουκά
Η ανάπτυξη της Εποικοδομητικής Πρότασης για τη διδασκαλία και τη μάθηση του μαθήματος της Χημείας Άννα Κουκά Μοντέλα για τη διδασκαλία της Χημείας Εποικοδομητική πρόταση για τη διδασκαλία «Παραδοσιακή»
ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ
ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΔΟΜΕΣ Δομή Ομάδας Σύνολο Α και μια πράξη η πράξη είναι κλειστή ισχύει η προσεταιριστική ιδότητα υπάρχει ουδέτερο στοιχείο υπάρχει αντίστροφο στοιχείο ισχύει η αντιμεταθετική
Οι εννοιολογικοί χάρτες και οι εφαρμογές τους στη διδασκαλία με τη βοήθεια της τεχνολογίας
Οι εννοιολογικοί χάρτες και οι εφαρμογές τους στη διδασκαλία με τη βοήθεια της τεχνολογίας Τι είναι γνώση; Για τη γνώση δεν υπάρχει ένας και μοναδικός συμφωνημένος ορισμός. Κατά έναν ορισμό είναι η θεωρητική
ΑΝΑΠΤΥΞΗ ΜΑΘΗΜΑΤΙΚΗΣ ΣΚΕΨΗΣ
ΑΝΑΠΤΥΞΗ ΜΑΘΗΜΑΤΙΚΗΣ ΣΚΕΨΗΣ Κωνσταντίνος Π. Χρήστου Ένα αρχέγονο ερώτηµα Τι είναι η γνώση; Ποια η διαδικασία του γνωρίζειν; θεωρίες, επιστημολογίες, μεταφορές και πρακτικές στην τάξη των μαθηματικών Μάθηση
Η Εκπαίδευση στην εποχή των ΤΠΕ
Η Εκπαίδευση στην εποχή των ΤΠΕ «Ενσωμάτωση και αξιοποίηση των εννοιολογικών χαρτών στην εκπαιδευτική διαδικασία μέσα από μία δραστηριότητα εποικοδομητικού τύπου» Δέγγλερη Σοφία Μουδατσάκη Ελένη Λιόβας
THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION
THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION E F R A I M F I S C H B E I N, T E L - A V I V U N I V E R S I T Y M A R I A D E R I, U N I V E R S I T Y O F P I S
Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο
Παιδαγωγικές εφαρμογές Η/Υ Μάθημα 1 ο 14/3/2011 Περίγραμμα και περιεχόμενο του μαθήματος Μάθηση με την αξιοποίηση του Η/Υ ή τις ΤΠΕ Θεωρίες μάθησης Εφαρμογή των θεωριών μάθησης στον σχεδιασμό εκπαιδευτικών
Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Χειμερινό εξάμηνο 2008-09 Διδακτική του Μαθήματος Μελέτη Περιβάλλοντος # 1η Συνάντηση # Διδάσκων: Γεώργιος Μαλανδράκης, Διδάσκων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΠΑΡΑΔΟΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Εκπαιδευτική Τεχνολογία & Διδακτική της Πληροφορικής ΙΙ: Μέρος A
Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 2: Η εξέλιξη της έρευνας και η πρόσφατη στροφή
Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 2: Η εξέλιξη της έρευνας και η πρόσφατη στροφή Πόταρη Δέσποινα, Σακονίδης Χαράλαμπος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Στροφή
ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ
ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ 3. Συνοπτικά Στοιχεία ΔτΜ με τη χρήση Ψηφιακών Τεχνολογιών 3.1 Συνοπτικά στοιχεία εξέλιξης της Διδακτικής των Μαθηματικών 3.2 Η εξέλιξη της ΔτΜ με τα εργαλεία Ψηφιακής Τεχνολογίας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής Η Πληροφορική ως αντικείμενο και ως εργαλείο μάθησης
Η Θεωρία Αυτο-κατηγοριοποίησης (ΘΑΚ) Από Χαντζή, Α. (υπό δηµοσίευση)
18 Η Θεωρία Αυτο-κατηγοριοποίησης (ΘΑΚ) Από Χαντζή, Α. (υπό δηµοσίευση) Στις αρχές της δεκαετίας του 1980, ο John Turner και οι συνεργάτες του (Turner, 1985, Turner et al. 1987), θεωρητικοί και ερευνητές
Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 1: Η έρευνα στη Διδακτική των Μαθηματικών
Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 1: Η έρευνα στη Διδακτική των Μαθηματικών Πόταρη Δέσποινα, Σακονίδης Χαράλαμπος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Η εκπαιδευτική
Μαθηµατική. Μοντελοποίηση
Μαθηµατική Μοντελοποίηση Μοντελοποίηση Απαιτητική οικονοµία και αγορά εργασίας Σύνθετες και περίπλοκες προβληµατικές καταστάσεις Μαθηµατικές και τεχνολογικές δεξιότητες Επίλυση σύνθετων προβληµάτων Μαθηµατικοποίηση
Ψηφιακές Τεχνολογίες βασικά θεωρητικά ζητήματα με αναφορά στη διαδικασία σχεδιασμού
Ψηφιακές Τεχνολογίες βασικά θεωρητικά ζητήματα με αναφορά στη διαδικασία σχεδιασμού N.Γιαννούτσου Εργαστήριο Εκπαιδευτικής Τεχνολογίας- ΦΠΨ-Φιλοσοφική σχολή http://etl.ppp.uoa.gr Τεχνολογίες για την ηλεκτρονική
ΣΥΓΧΡΟΝΗ Ι ΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
ΠΕΤΡΟΣ ΟΙΚΟΝΟΜΟΥ ΣΥΓΧΡΟΝΗ Ι ΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ Απευθύνεται: Σε κάθε εκπαιδευτικό που ενδιαφέρεται να βελτιώσει και να εκσυγχρονίσει τη διδασκαλία του/της. Στους/ις υποψήφιους/ες
1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση
1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση Στη βασική παιδεία, τα μαθηματικά διδάσκονται με στατικά μέσα α) πίνακα/χαρτιού β) κιμωλίας/στυλού γ) χάρτινου βιβλίου.
ΔΙΑΧΕΙΡΙΣΗ ΤΗΣ ΤΑΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΔΙΔΑΚΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΙΙ
ΔΙΑΧΕΙΡΙΣΗ ΤΗΣ ΤΑΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΔΙΔΑΚΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΙΙ Διδάσκοντες Μ. Καλδρυµίδου Χ. Λεµονίδης Ι. Παπαδόπουλος Μ.Τζεκάκη Αλληλεπίδραση στην τάξη Η μαθηματική γνώση δεν αποτελεί οριστικό προϊόν
άξονας : Τι παρατηρούμε (Το Κρίσιμο συμβάν. doc ως εργαλείο παρατήρησης Αναγνώριση/ περιγραφή και Αιτιολόγηση. doc κρίσιμου συμβάντος )
1ος άξονας : Τι παρατηρούμε (Το Κρίσιμο συμβάν. doc ως εργαλείο παρατήρησης Αναγνώριση/ περιγραφή και Αιτιολόγηση. doc κρίσιμου συμβάντος ) Περιγράφουμε τι παρατηρούμε στην τάξη των μαθηματικών σχετικά
Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού
Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.
Η ανάλυση της κριτικής διδασκαλίας. Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού. Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας
Η ανάλυση της κριτικής διδασκαλίας Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας Διαδικασία η γνώση ως ανάπτυξη υψηλών νοητικών λειτουργιών (
ΠΑΙΔΑΓΩΓΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Η/Υ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΙΔΑΓΩΓΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Η/Υ ΘΕΜΑΤΑ ΕΝΟΤΗΤΑΣ ΣΙΑΣΙΑΚΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ ΕΝΟΤΗΤΑΣ «ΠΑΙΔΑΓΩΓΙΚΗ
Ενότητα 1: Παρουσίαση μαθήματος. Διδάσκων: Βασίλης Κόμης, Καθηγητής
Διδακτική της Πληροφορικής: Ερευνητικές προσεγγίσεις στη μάθηση και τη διδασκαλία Μάθημα επιλογής B εξάμηνο, Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική
Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).
Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο
ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ
ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Τι είναι Μαθηματικά; Ποια είναι η αξία τους καθημερινή ζωή ανάπτυξη λογικής σκέψης αισθητική αξία και διανοητική απόλαυση ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ
Παιδαγωγικά. Ενότητα Β: Γενικοί σκοποί της διδασκαλίας και διδακτικοί στόχοι. Ζαχαρούλα Σμυρναίου Σχολή Φιλοσοφίας Τμήμα Παιδαγωγικής και Ψυχολογίας
Παιδαγωγικά Ενότητα Β: Γενικοί σκοποί της διδασκαλίας και διδακτικοί στόχοι Ζαχαρούλα Σμυρναίου Σχολή Φιλοσοφίας Τμήμα Παιδαγωγικής και Ψυχολογίας Σκοποί ενότητας Σύγχρονες προσεγγίσεις των γενικών σκοπών
Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος
Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Διαπανεπιστημιακό Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών ΔΙΔΑΚΤΙΚΗ ΚΑΙ
Διδακτικό σενάριο με χρήση ΤΠΕ
Διδακτικό σενάριο με χρήση ΤΠΕ Προϋπάρχουσες γνώσεις και πρότερες εμπειρίες σε πρόγραμμα Π.Ε. με θέμα τον ποταμό Αχελώο τα προηγούμενα σχολικά έτη Μελέτη των εργασιών που εκπονήθηκαν Καλύπτονται οι γνωστικές
Μαθηματικά για Διδασκαλία III
Μαθηματικά για Διδασκαλία III Μαριάννα Τζεκάκη Απαραίτητα στον εκπαιδευτικό Μαθηματικό περιεχόμενο γνώση Ζητήματα των στόχων της διδασκαλίας των μαθηματικών μάθησης και του σχετικού μαθηματικού περιεχομένου
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Τμήμα Ιατρικών εργαστηρίων & Προσχολικής Αγωγής Συντονίστρια: Επίκουρη Καθηγήτρια, Ελένη Μουσένα [Σύγχρονες Τάσεις στην Παιδαγωγική Επιστήμη] «Παιδαγωγικά μέσω Καινοτόμων
ΕΠΙΜΟΡΦΩΤΙΚΟ ΠΡΟΓΡΑΜΜΑ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΚΕΝΤΡΟ ΣΥΝΕΧΙΖΟΜΕΝΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΚΑΙ ΕΠΙΜΟΡΦΩΣΗΣ ΕΠΙΜΟΡΦΩΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΑΞΙΟΛΟΓΗΣΗ & ΙΑΣΦΑΛΙΣΗ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΕΚΠΑΙ ΕΥΣΗ ( ΙΑΡΚΕΙΑ 65 ΩΡΕΣ) Τίτλος Θεµατικής
ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ
ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ: ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ: ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΩ ΔΕΙΚΤΩΝ Επιβλέπων: Αθ.Δελαπάσχος
ΤΟ ΒΙΒΛΙΟ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
ΤΟ ΒΙΒΛΙΟ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΗΤΡΗΣ ΧΑΣΑΠΗΣ Επιμέλεια 7 o Διήμερο Διαλόγου για τη Διδασκαλία των Μαθηματικών 15 & 16 Μαρτίου 2008 Ομάδα Έρευνας της Μαθηματικής Εκπαίδευσης ΘΕΣΣΑΛΟΝΙΚΗ i ΤΟ
Μ. Κλεισαρχάκης (Μάρτιος 2017)
Μ. Κλεισαρχάκης (Μάρτιος 2017) Οι Γνωστικές θεωρίες μάθησης αναγνωρίζουν ότι τα παιδιά, πριν ακόμα πάνε στο σχολείο διαθέτουν γνώσεις και αυτό που χρειάζεται είναι να βοηθηθούν ώστε να οικοδομήσουν νέες
Εννοιολογική χαρτογράφηση: Διδακτική αξιοποίηση- Αποτελέσματα για το μαθητή
Το λογισμικό της εννοιολογικής χαρτογράυησης Inspiration Η τεχνική της εννοιολογικής χαρτογράφησης αναπτύχθηκε από τον καθηγητή Joseph D. Novak, στο πανεπιστήμιο του Cornell. Βασίστηκε στις θεωρίες του
Η παρατήρηση της τάξης των μαθηματικών και ο αναστοχασμός ως εργαλεία επαγγελματικής μάθησης και ανάπτυξης
ΔΠΘ/ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργαστήρια Διδακτικής των Μαθηματικών (Ε εξάμηνο, 2017-18) Η παρατήρηση της τάξης των μαθηματικών και ο αναστοχασμός ως εργαλεία
Η διδασκαλία της Ελληνικής ως δεύτερης /ξένης γλώσσας
Η διδασκαλία της Ελληνικής ως δεύτερης /ξένης γλώσσας Εισαγωγικά Μαρία Παπαλεοντίου, Φιλόλογος Π.Ι.Κ. Προβληματιζόμαστε... Τι εννοούμε με τον όρο Τεχνολογίες Πληροφορίας και Επικοινωνίας (Τ.Π.Ε.) και τι
ΟΡΓΑΝΩΣΗ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΑΠΑΙΤΟΥΜΕΝΗ ΥΛΙΚΟΤΕΧΝΙΚΗ ΥΠΟ ΟΜΗ
ΤΙΤΛΟΣ «Ο κύκλος του νερού» ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ Το σενάριο µάθησης περιλαµβάνει δραστηριότητες που καλύπτουν όλα τα γνωστικά αντικείµενα που προβλέπονται από το ΕΠΠΣ νηπιαγωγείου. Συγκεκριµένα
Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.
Παιδαγωγική ή Εκπαίδευση ΙΙ
Παιδαγωγική ή Εκπαίδευση ΙΙ Ενότητα 2 Ζαχαρούλα Σμυρναίου Σχολή: Φιλοσοφική Τμήμα: Φιλοσοφίας Παιδαγωγικής Ψυχολογίας Αναπαράσταση Κοινωνιογνωστική σύγκρουση Αναπαράσταση Η έννοια της αναπαράστασης (representation)
Να φύγει ο Ευκλείδης;
Να φύγει ο Ευκλείδης; Σωτήρης Ζωιτσάκος Βαρβάκειο Λύκειο Μαθηματικά στα ΠΠΛ Αθήνα 2014 Εισαγωγικά Dieudonné: «Να φύγει ο Ευκλείδης». Douglas Quadling: «Ο Ευκλείδης έχει φύγει, αλλά στο κενό που άφησε πίσω
Τρόποι αναπαράστασης των επιστημονικών ιδεών στο διαδίκτυο και η επίδρασή τους στην τυπική εκπαίδευση
Τρόποι αναπαράστασης των επιστημονικών ιδεών στο διαδίκτυο και η επίδρασή τους στην τυπική εκπαίδευση Κ. Χαλκιά Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών 2 Το διαδίκτυο: αποτελεί ένα νέο διδακτικό
Εκπαιδευτική Τεχνολογία και Θεωρίες Μάθησης
Θεωρίες Μάθησης Εκπαιδευτική Τεχνολογία και Θεωρίες Μάθησης Κάθε εκπαιδευτικός (εκούσια ή ακούσια) υιοθετεί μια θεωρία μάθησης. Το ίδιο ισχύει και για τις διάφορες εκπαιδευτικές τεχνολογίες. Για την εισαγωγή
ΔΙΔΑΚΤΙΚΗ ΕΝΝΟΙΩΝ ΒΙΟΛΟΓΙΑΣ ΓΙΑ ΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ Μ. Εργαζάκη Μ ά θ η μ α 1: «Ε ι σ α γ ω γ ή»
ΔΙΔΑΚΤΙΚΗ ΕΝΝΟΙΩΝ ΒΙΟΛΟΓΙΑΣ ΓΙΑ ΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ Μ. Εργαζάκη Μ ά θ η μ α 1: «Ε ι σ α γ ω γ ή» Τα σημερινά μας θέματα Το περίγραμμα του μαθήματος η ερευνητική περιοχή της «Διδακτικής της Βιολογίας»
Κοινωνιογνωστική θεωρία Social Cognitive Theory
Κοινωνιογνωστική θεωρία Social Cognitive Theory Πακλατζόγλου Σοφία Μουράτογλου Νικόλαος Καρολίδου Σωτηρία Παζάρσκη Γεωργία Γιολάντα ΠΕΣΥΠ 3 Απριλίου 2017 Θεσσαλονίκη Η μάθηση είναι διαδικασία πρόσκτησης
Από τη σχολική συμβατική τάξη στο νέο υβριδικό μαθησιακό περιβάλλον: εκπαίδευση από απόσταση για συνεργασία και μάθηση
Από τη σχολική συμβατική τάξη στο νέο υβριδικό μαθησιακό περιβάλλον: εκπαίδευση από απόσταση για συνεργασία και μάθηση Δρ Κώστας Χαμπιαούρης Επιθεωρητής Δημοτικής Εκπαίδευσης Συντονιστής Άξονα Αναλυτικών
Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη
Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη Φαινόμενα Εμπειρίες φαινομένων Οργάνωση φαινομένων Νοούμενα (πρώτες μαθηματικές έννοιες
Σύγχρονες θεωρίες μάθησης
Σύγχρονες θεωρίες μάθησης Χρυσάνθη Κουμπάρου Σχολική Σύμβουλος Φιλολόγων 1 Ορισμοί μάθησης Ποικίλοι οι ορισμοί ανάλογα με τη θεωρητική σχολή. Οι σύγχρονες θεωρήσεις επικεντρώνονται: α) στην απόκτηση γνώσεων
ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ
ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ 2. Εκπαιδευτικό Λογισμικό για τα Μαθηματικά 2.1 Κύρια χαρακτηριστικά του εκπαιδευτικού λογισμικού για την Διδακτική των Μαθηματικών 2.2 Κατηγορίες εκπαιδευτικού λογισμικού για
Εποικοδομητική διδασκαλία μέσω γνωστικής σύγκρουσης. Εννοιολογική αλλαγή
Εποικοδομητική διδασκαλία μέσω γνωστικής σύγκρουσης. Εννοιολογική αλλαγή 1. Εισαγωγή. Βασική υπόθεση του Εποικοδομισμού Άννα Κουκά Βασική υπόθεση του Εποικοδομισμού Η γνώση συγκροτείται μέσα σε καταστάσεις
ΑΛΛΑΓΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ:
ΑΛΛΑΓΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ: σύγχρονες αναγνώσεις Καβάλα 14/11/2015 ΜΑΡΙΑΝΝΑ ΤΖΕΚΑΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 2 Γιατί αλλαγές; 1 3 Για ουσιαστική μαθηματική ανάπτυξη, Σύγχρονο πρόγραμμα
Ελένη Μοσχοβάκη Σχολική Σύμβουλος 47ης Περιφέρειας Π.Α.
Ελένη Μοσχοβάκη Σχολική Σύμβουλος 47ης Περιφέρειας Π.Α. Τι θα Δούμε. Γιατί αλλάζει το Αναλυτικό Πρόγραμμα Σπουδών. Παιδαγωγικό πλαίσιο του νέου Α.Π.Σ. Αρχές του νέου Α.Π.Σ. Μαθησιακές περιοχές του νέου
απόδειξη στα μαθηματικά και τη μαθηματική εκπαίδευση μαρία καλδρυμίδου
απόδειξη στα μαθηματικά και τη μαθηματική εκπαίδευση μαρία καλδρυμίδου πείθω αιτιολογώ επαληθεύω δείχνω αποδεικνύω επιχειρηματο λογώ εξηγώ εγκυροποιώ ελέγχω πολύπλοκο ζήτημα που απασχόλησε και απασχολεί
Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης
ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα
ΣΧΕΔΙΟ ΥΠΟΒΟΛΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
ΣΧΕΔΙΟ ΥΠΟΒΟΛΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Σχολικό Έτος: 2014-2015 Σχολική Μονάδα: ΓΕΛ ΚΡΑΝΙΔΙΟΥ Τίτλος Ερευνητικής Εργασίας: Εργαλεία Web 2.0 για την τάξη ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΣΤΟΙΧΕΙΑ ΥΠΕΥΘΥΝΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΟΠΟΙΗΣΗ
«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»
Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο
εργαλείο δυναμικής διαχείρισης γεωμετρικών σχημάτων και αλγεβρικών παραστάσεων δυνατότητα δυναμικής αλλαγής των αντικειμένων : είναι δυνατή η
εργαλείο δυναμικής διαχείρισης γεωμετρικών σχημάτων και αλγεβρικών παραστάσεων δυνατότητα δυναμικής αλλαγής των αντικειμένων : είναι δυνατή η μετακίνηση, περιστροφή, αυξομείωση, ανάκλαση και απόκρυψη του
1. Οι Τεχνολογίες της Πληροφορίας και των Επικοινωνιών στην εκπαιδευτική διαδικασία
1. Οι Τεχνολογίες της Πληροφορίας και των Επικοινωνιών στην εκπαιδευτική διαδικασία Ο διδακτικός σχεδιασμός (instructional design) εμφανίσθηκε στην εκπαιδευτική διαδικασία και στην κατάρτιση την περίοδο
Μεθοδολογία Εκπαιδευτικής Έρευνας στη ΜΕ
Μεθοδολογία Εκπαιδευτικής Έρευνας στη ΜΕ Χ Α Ρ Α Λ Α Μ Π Ο Σ Σ Α Κ Ο Ν Ι Δ Η Σ, Δ Π Θ Μ Α Ρ Ι Α Ν Ν Α Τ Ζ Ε Κ Α Κ Η, Α Π Θ Α. Μ Α Ρ Κ Ο Υ, Δ Π Θ Α Χ Ε Ι Μ Ε Ρ Ι Ν Ο 2 0 17-2018 2 ο παραδοτέο 8/12/2016
ΕΡΩΤΗΜΑΤΑ- ΠΡΟΚΛΗΣΕΙΣ- ΠΡΟΟΠΤΙΚΕΣ
Η ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΕΜΠΕΙΡΙΑΣ ΕΦΑΜΟΓΗΣ ΤΟΥ MASCIL ΣΤΟ ΕΛΛΗΝΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ: ΕΡΩΤΗΜΑΤΑ- ΠΡΟΚΛΗΣΕΙΣ- ΠΡΟΟΠΤΙΚΕΣ MasciL και Σχολική πραγματικότητα Καλλιόπη Σιώπη, Μαθηματικός Πρότυπο ΓΕΛ Ευαγγελικής
Δ19. Γνωστική Ψυχολογία- Ψυχολογία Μάθησης
Δ19. Γνωστική Ψυχολογία- Ψυχολογία Μάθησης Κωνσταντίνος Π. Χρήστου Ένα αρχέγονο ερώτηµα Τι είναι η (μαθηματική) γνώση; Ποια η διαδικασία του γνωρίζειν; θεωρίες, επιστημολογίες, μεταφορές και πρακτικές
ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ
ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ
ΣΑ88 Θεωρητικές και μεθοδολογικές αρχές στη μελέτη της κλασικής τέχνης. Δημήτρης Πλάντζος
ΣΑ88 Θεωρητικές και μεθοδολογικές αρχές στη μελέτη της κλασικής τέχνης Δημήτρης Πλάντζος Δομή του Σεμιναρίου: Εισαγωγικά (10.10) Τι είναι θεωρία; Σε τι χρησιμεύει; (17.10) Εύρημα / έργο / έκθεμα / δημιουργός
Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού
ΜΟΥΡΑΤΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού Μεταπτυχιακή Εργασία Ειδίκευσης που υποβλήθηκε στο πλαίσιο του Προγράμματος
Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον)
ΔΡΑΣΤΗΡΙΟΤΗΤΑ: ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ με τη βοήθεια του λογισμικού Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Νοέμβριος 2013 0 ΤΙΤΛΟΣ ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ
Παιδαγωγικό Υπόβαθρο ΤΠΕ. Κυρίαρχες παιδαγωγικές θεωρίες
Παιδαγωγικό Υπόβαθρο ΤΠΕ Κυρίαρχες παιδαγωγικές θεωρίες Θεωρίες μάθησης για τις ΤΠΕ Συμπεριφορισμός (behaviorism) Γνωστικές Γνωστικής Ψυχολογίας (cognitive psychology) Εποικοδομητισμός (constructivism)
Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών
Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η Ευκλείδεια Γεωμετρία σε σχέση με Θεωρία van Hiele Οι τρεις κόσμοι του Tall
λογισμικό Κidspiration Εννοιολογικοί Χάρτες και οι εφαρμογές τους στη διδασκαλία των Φυσικών Επιστημών
Xαρτογράφηση Εννοιών λογισμικό Κidspiration Εννοιολογικοί Χάρτες και οι εφαρμογές τους στη διδασκαλία των Φυσικών Επιστημών Υπουργείο Παιδείας και Πολιτισμού Πρόγραμμα Πληροφορικού Εμπλουτισμού ΑΠ της
Δ19. Γνωστική Ψυχολογία- Ψυχολογία Μάθησης. επ. Κωνσταντίνος Π. Χρήστου
Δ19. Γνωστική Ψυχολογία- Ψυχολογία Μάθησης Κωνσταντίνος Π. Χρήστου Ένα αρχέγονο ερώτημα Τι είναι η (μαθηματική) γνώση; Ποια η διαδικασία του γνωρίζειν; θεωρίες, επιστημολογίες, μεταφορές και πρακτικές
Οπτικές Aναπαραστάσεις και πόστερ. Βασιλική Σπηλιωτοπούλου
Οπτικές Aναπαραστάσεις και πόστερ Βασιλική Σπηλιωτοπούλου Το περιβάλλον της διδασκαλίας των Θετικών Επιστημών Μέσα εργαλεία της διδασκαλίας των Θετικών Επιστημών Το γνωστικό και αισθητικό περιβάλλον των
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον
Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 2: Η εξέλιξη της έρευνας και η πρόσφατη στροφή
Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 2: Η εξέλιξη της έρευνας και η πρόσφατη στροφή Πόταρη Δέσποινα, Σακονίδης Χαράλαμπος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Διδακτική
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2015-201 Α ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ Κατηγορία ECTS ΥΑ0007 Εισαγωγή στην Παιδαγωγική Υποχρεωτικό Επιστήμη ΥΔ0001 Ελληνική Γλώσσα Υποχρεωτικό ΥΒ0003 Η Ιστορία και η Διδακτικής της
Παιδαγωγικά. Ενότητα A: Διασάφηση βασικών παιδαγωγικών εννοιών. Ζαχαρούλα Σμυρναίου Σχολή Φιλοσοφίας Τμήμα Παιδαγωγικής και Ψυχολογίας
Παιδαγωγικά Ενότητα A: Διασάφηση βασικών παιδαγωγικών εννοιών Ζαχαρούλα Σμυρναίου Σχολή Φιλοσοφίας Τμήμα Παιδαγωγικής και Ψυχολογίας Σκοποί ενότητας Εννοιολογική προσέγγιση των βασικών εννοιών της Παιδαγωγικής,
Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης. Η πραγματικότητα έχει την ίδια σημασία για όλους. Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές
Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης Βασικές παραδοχές : Η πραγματικότητα έχει την ίδια σημασία για όλους Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές Αυτοί που δεν καταλαβαίνουν είναι ανίκανοι,
Ο υπολογιστής ως γνωστικό εργαλείο. Καθηγητής Τ. Α. Μικρόπουλος
Ο υπολογιστής ως γνωστικό εργαλείο Καθηγητής Τ. Α. Μικρόπουλος Τεχνολογίες Πληροφορίας & Επικοινωνιών ΟιΤΠΕχαρακτηρίζουνόλαταμέσαπουείναιφορείς άυλων μηνυμάτων (χαρακτήρες, εικόνες, ήχοι). Η αξιοποίησή
ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04)
«Επιµόρφωση εκπαιδευτικών στη χρήση και αξιοποίηση των ΤΠΕ στην εκπαιδευτική διδακτική διαδικασία» (Γ ΚΠΣ, ΕΠΕΑΕΚ, Μέτρο 2.1, Ενέργεια 2.1.1, Κατηγορία Πράξεων 2.1.1 θ) Αναλυτικό Πρόγραµµα Σπουδών για
αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και
1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο
ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΣΧΕΔΙΟΥ ΜΑΘΗΜΑΤΟΣ
ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΣΧΕΔΙΟΥ ΜΑΘΗΜΑΤΟΣ Καθηγητής/τρια: Αρ. Μαθητών/τριών : Ημερομηνία: Χρόνος: Τμήμα: Ενότητα & Θέμα Μαθήματος: Μάθημα: ΓΕΩΓΡΑΦΙΑ Απαραίτητες προϋπάρχουσες/προαπαιτούμενες γνώσεις (προηγούμενοι/προαπαιτούμενοι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-2015*
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-2015* ΔΕΥΤΕΡΑ 19/1 ΤΡΙΤΗ 20/1 ΤΕΤΑΡΤΗ 21/1 ΠΕΜΠΤΗ 22/1 ΠΑΡΑΣΚΕΥΗ 23/1 ΑΥΓΕΡΙΝΟΣ ΕΥΓΕΝΙΟΣ