Ασκήσεις Διδάσκοντες: Δρ. Ευγενία Αδαμοπούλου, Δρ. Κώστας Δεμέστιχας. ΔΠΜΣ «Τεχνο- Οικονομικά Συστήματα» Τεχνολογία Πληροφορίας και Τηλεπικοινωνιών
|
|
- Τυρώ Γαλάνη
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ασκήσεις Διδάσκοντες: Δρ. Ευγενία Αδαμοπούλου, Δρ. Κώστας Δεμέστιχας ΔΠΜΣ «Τεχνο- Οικονομικά Συστήματα» Τεχνολογία Πληροφορίας και Τηλεπικοινωνιών
2 Άσκηση 2 Έστω συναγερμός αυτοκινήτου ο οποίος ενεργοποιείται στις εξής περιπτώσεις: Όταν τα φώτα του αυτοκινήτου είναι αναμμένα ενώ η μηχανή του αυτοκινήτου είναι σβηστή Όταν η πόρτα του αυτοκινήτου είναι ανοιχτή ενώ η μηχανή του αυτοκινήτου είναι επίσης ανοιχτή Θεωρώντας ως απόκριση την ενεργοποίηση του συναγερμού: 1. Να καταγράψετε τις boolean μεταβλητές που μπορούν να χρησιμοποιηθούν για τη λογική παράσταση των παραπάνω γεγονότων 2. Να κατασκευάσετε τον πίνακα αληθείας του προβλήματος και να δώσετε την έκφραση της αντίστοιχης λογικής συνάρτησης 3. Με χρήση πίνακα Karnaugh να διατυπώσετε μια απλοποιημένη έκφραση της αντίστοιχης λογικής συνάρτησης 4. Να σχεδιάσετε κατάλληλο κύκλωμα για την υλοποίηση του παραπάνω προβλήματος με χρήση λογικών πυλών
3 Άσκηση 3 Σας δίνονται οι παρακάτω τρεις πίνακες με στοιχεία από τους Ολυμπιακούς Αγώνες 2012: Ο πρώτος πίνακας (Medals2012) περιέχει την κατάταξη των 10 πρώτων χωρών, καθώς και τα μετάλλια κάθε χώρας O δεύτερος πίνακας (TopMedalists) περιλαμβάνει στοιχεία για τους κορυφαίους Ολυμπιονίκες όλων των εποχών O τρίτος πίνακας (Events) περιλαμβάνει το έτος και τη χώρα διεξαγωγής των 10 πιο πρόσφατων Ολυμπιακών Αγώνων
4 Άσκηση (Συνέχεια) 4 Medals2012 TopMedalists Name% Medals% Nationality% LastMedalWon% Phelps% 22% United%States% 2012% Latynina% 18% Soviet%Union% 1964% Andrianov% 15% Soviet%Union% 1980% Shakhlin% 13% Soviet%Union% 1966% Mangiarotti% 13% Italy% 1960% Ono% 13% Japan% 1960% Nurmi% 12% Finland% 1928% Fischer% 12% Germany% 2004% % Kato% 12% Japan% 1976% Thompson% 12% United%States% 2004% Torres% 12% United%States% 2008% Nemov% 12% Russia% 2000% Coughlin% 12% United%States% 2012% % Events Year% HostingCountry% 2012% United%Kingdom% 2008% China% 2004% Greece% 2000% Australia% 1996% United%States% 1992% Spain% 1988% South%Korea% 1984% United%States% 1980% Soviet%Union% 1976% Canada%
5 Άσκηση (Συνέχεια) 5 1. Γράψτε κατάλληλο ερώτημα SQL που να σχηματίζει τον πίνακα WinningCountries2012, o οποίος να περιέχει τις χώρες που κέρδισαν πάνω από 30 μετάλλια συνολικά στους Ολυμπιακούς Αγώνες Γράψτε κατάλληλο ερώτημα SQL που να υπολογίζει τον πίνακα BronzeMedalsRanking, ο οποίος να περιέχει μόνο το όνομα κάθε χώρας και τον αριθμό των χάλκινων μεταλλίων της. 3. Γράψτε κατάλληλο ερώτημα SQL που να επιστρέφει έναν πίνακα με τα ονόματα των κορυφαίων αθλητών που κέρδισαν το τελευταίο τους ολυμπιακό μετάλλιο από το 1976 και μετά, καθώς και τη χώρα στην οποία διεξήχθησαν οι αγώνες όπου το κέρδισαν. 4. Γράψτε κατάλληλο ερώτημα SQL που να βρίσκει το άθροισμα μεταλλίων από τον πίνακα TopMedalists κάνοντας ομαδοποίηση εθνικότητα.
6 HTTP Άσκηση 6 Θέλετε να κατεβάσετε στον υπολογιστή σας μια ιστοσελίδα μεγέθους L bit, που περιέχει n αντικείμενα μεγέθους L bit το καθένα. Η σελίδα και τα n αντικείμενα βρίσκονται στον ίδιο εξυπηρετητή. Συνοψίζουμε τη διαδρομή δικτύου μεταξύ του πλοηγού και του εξυπηρετητή ιστού ως μια ζεύξη ταχύτητας R bps. Υποθέτουμε ότι ο χρόνος μετάδοσης του μηνύματος GET στη ζεύξη είναι αμελητέος (μηδενικός) και ότι ο μέσος χρόνος μετάβασης και επιστροφής μεταξύ του υπολογιστή σας και του εξυπηρετητή είναι ίσος με RTT. Πόσος χρόνος παρέρχεται από τη στιγμή που ο χρήστης κάνει κλικ μέχρις ότου ληφθεί η πλήρης ιστοσελίδα μαζί με όλα τα αντικείμενα, στις εξής περιπτώσεις; α) Non- persistent HTTP δίχως παράλληλες συνδέσεις β) Non- persistent HTTP επιτρέποντας n παράλληλες συνδέσεις γ) Persistent HTTP στην καλύτερη περίπτωση (με συνεχή παροχή) και στη χειρότερη περίπτωση (χωρίς συνεχή παροχή)
7 Άσκηση 7 Θεωρείστε το διαμοιρασμό ενός αρχείου F = 15Gbits σε Ν peers. Ο server έχει ρυθμό upload u s = 30Mbps ενώ κάθε peer έχει ρυθμό download d i = 2Mbps και ρυθμό upload ίσο με u. Για Ν = 10, 100 και 1000 και για u = 300Kbps, 700Kbps και 2 Mbps κατασκευάστε πίνακα που να δίνει τον ελάχιστο χρόνο διανομής για κάθε συνδυασμό N και u, τόσο για την client-server όσο και για την P2P προσέγγιση. Τι συμπεράσματα μπορείτε να βγάλετε;
8 8 Ευχαριστώ για την προσοχή σας!
ΑΣΚΉΣΕΙΣ ΔΙΔΆΣΚΟΝΤΕΣ: ΔΡ. ΕΥΓΕΝΊΑ ΑΔΑΜΟΠΟΎΛΟΥ, ΔΡ. ΚΏΣΤΑΣ ΔΕΜΈΣΤΙΧΑΣ. ΔΠΜΣ «Τεχνο- Οικονομικά Συστήματα» Τεχνολογία Πληροφορίας και Τηλεπικοινωνιών
ΑΣΚΉΣΕΙΣ ΔΙΔΆΣΚΟΝΤΕΣ: ΔΡ. ΕΥΓΕΝΊΑ ΑΔΑΜΟΠΟΎΛΟΥ, ΔΡ. ΚΏΣΤΑΣ ΔΕΜΈΣΤΙΧΑΣ ΔΠΜΣ «Τεχνο- Οικονομικά Συστήματα» Τεχνολογία Πληροφορίας και Τηλεπικοινωνιών Άσκηση 2 Έστω συναγερμός αυτοκινήτου ο οποίος ενεργοποιείται
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 5. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Β 2 Επαναληπτική
ΑΣΚΗΣΗ 4 ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΙΚΗΣ ΣΧΕΔΙΑΣΗΣ
ΑΣΚΗΣΗ 4 ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΙΚΗΣ ΣΧΕΔΙΑΣΗΣ 4.1 ΣΚΟΠΟΣ Σκοπός αυτής της εργαστηριακής άσκησης είναι να παρουσιάσει τις βασικές αρχές της σχεδίασης λογικών (ψηφιακών) κυκλωμάτων για πρακτικές εφαρμογές. Στα προηγούμενα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 4. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Α 2 Άλγεβρα
Κατ οίκον Εργασία ΚE5
Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Χειμερινό Εξάμηνο ΗΜΥ Εισαγωγή στην Τεχνολογία Διδάσκων: Δρ. Στέλιος Τιμοθέου Κατ οίκον Εργασία ΚE5 Ασκήσεις Ασκήσεις:. Μετατρέψτε
Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης
Γ2.1 Στοιχεία Αρχιτεκτονικής Γ Λυκείου Κατεύθυνσης Ορισμός άλγεβρας Boole Η άλγεβρα Boole ορίζεται, ως μία αλγεβρική δομή A, όπου: (α) Το Α είναι ένα σύνολο στοιχείων που περιέχει δύο τουλάχιστον στοιχεία
Συνδυαστικά Κυκλώματα
3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,
e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ
e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού
6. Σχεδίαση Κυκλωμάτων Λογικής Κόμβων (ΚΑΙ), (Η)
6. Σχεδίαση Κυκλωμάτων Λογικής Κόμβων (ΚΑΙ), (Η) 6. Εισαγωγή Όπως έχουμε δει οι εκφράσεις των λογικών συναρτήσεων για την συγκεκριμένη σχεδίαση προκύπτουν εύκολα από χάρτη Καρνώ -Karnaugh. Έτσι βρίσκουμε
Συνδυαστικά Λογικά Κυκλώματα
Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική
K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες
K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Λειτουργία Πολυπλέκτης (Mul plexer) Ο
ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ
ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Αντικείμενο της άσκησης: Μεθοδολογία ανάλυσης και σχεδίασης συνδυαστικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB. Συνδυαστικά
Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα
Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών μεταβλητών a,
ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα
ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΑΠΛΟΠΟΙΗΣΗ και ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Σκοπός: Η κατανόηση της σχέσης µιας λογικής συνάρτησης µε το αντίστοιχο κύκλωµα. Η απλοποίηση λογικών συναρτήσεων
Κεφάλαιο 2. Υπολογιστές και Τεχνολογία Επικοινωνιών Παρελθόν - Παρόν - Μέλλον
Κεφάλαιο 2 Υπολογιστές και Τεχνολογία Επικοινωνιών Παρελθόν - Παρόν - Μέλλον Εισαγωγή Μέσα αποθήκευσης Δίκτυα υπολογιστών Βάσεις δεδομένων Δίκτυα Υπολογιστών Σύνολο από υπολογιστές ή συσκευές διασυνδεδεμένες
Ψηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:05. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Ψηφιακή Σχεδίαση Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:05 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http:
ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα. λ από τον ρυθμό μετάδοσής της. Υποθέτοντας ότι ο κόμβος A
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα 1. Στο δίκτυο
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΜΕΘΟΔΟΣ ΑΠΛΟΠΟΙΗΣΗΣ ΛΟΓΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕ
ίκτυα ίκτυο υπολογιστών: Ένα σύνολο από υπολογιστικές συσκευές που συνδέονται µεταξύ τους για σκοπούς επικοινωνίας και χρήσης πόρων. Συνήθως, οι συσκε
ΙΚΤΥΑ & INTERNET ίκτυα ίκτυο υπολογιστών: Ένα σύνολο από υπολογιστικές συσκευές που συνδέονται µεταξύ τους για σκοπούς επικοινωνίας και χρήσης πόρων. Συνήθως, οι συσκευές συνδέονται µεταξύ τους µε καλώδια
K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων
K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Ένα ψηφιακό κύκλωμα με n εισόδους
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 8 ης εργαστηριακής άσκησης: Αποκωδικοποιητής ΔΗΜΗΤΡΙΟΣ
Λύση: Λύση: Λύση: Λύση:
1. Ένας δίαυλος έχει ρυθµό δεδοµένων 4 kbps και καθυστέρηση διάδοσης 20 msec. Για ποια περιοχή µηκών των πλαισίων µπορεί η µέθοδος παύσης και αναµονής να έχει απόδοση τουλάχιστον 50%; Η απόδοση θα είναι
γράψετε μια εντολή εκχώρησης σταθερής τιμής σε μεταβλητή. Μονάδες 8 Α3. ίνεται το παρακάτω τμήμα αλγορίθμου:
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 28 MAΪΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ
Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level)
Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Απαντήσεις 1. Η παραγγελία είναι σάντουιτς ή ένα σουβλάκι και τηγανητές πατάτες η οποία μπορεί να αναλυθεί ως σάντουιτς ή (σουβλάκι και τηγανητές πατάτες)
Ύλη Λογικού Σχεδιασµού Ι
4 η Θεµατική Ενότητα : Συνδυαστική Λογική Ύλη Λογικού Σχεδιασµού Ι Κεφ 2 Κεφ 3 Κεφ 4 Κεφ 6 Συνδυαστική Λογική 2 Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά:
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Λογισμικό Προσομοίωσης LogiSim καιχρήση KarnaughMaps Διδάσκοντες: Δρ. Αγαθοκλής Παπαδόπουλος & Δρ. Γιώργος Ζάγγουλος Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΠΡΩΤΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Τετάρτη 16 Ιουνίου 2004 Οδηγίες: Η διάρκεια της εξέτασης είναι 3,5 ώρες. Ισχύουν όσα αναφέρονται στους Κανονισµούς Εξετάσεων του ΕΑΠ γενικότερα και της ΘΕ ειδικότερα. Είναι υποχρεωτικό
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα 10: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Εισαγωγικές έννοιες ψηφιακής λογικής
Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:
Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.
ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.
επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory
Μετατροπέας Αναλογικού Σήµατος σε Ψηφιακό Ο δειγματολήπτης (S/H) παίρνει δείγματα του στιγμιαίου εύρους ενός σήματος και διατηρεί την τάση που αντιστοιχεί σταθερή, τροφοδοτώντας έναν κβαντιστή, μέχρι την
ΔΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα 1. Μήνυμα μήκους
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΘΕΜΑ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΗΣ 20.5.2012 ΑΠΑΝΤΗΣΕΙΣ Δίκτυο κινητής τηλεφωνίας τεχνολογίας GSM υποστηρίζει πολύ καλή κάλυψη σε ολόκληρο το γεωγραφικό χώρο της Ελλάδος. Ένας Πάροχος κινητών υπηρεσιών, για την
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. Να μελετηθεί η λειτουργία του ακόλουθου κυκλώματος. Ποιος ο ρόλος των εισόδων του (R και S) και πού βρίσκει εφαρμογή; R Q
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ = ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ = ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Συμπληρώνεται από τον διδάσκοντα (2.0) 2 (2.5) 3 (3.0) 4 (2.5) Σ ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΜΥ 00 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Δυαδική λογική Πύλες AND, OR, NOT, NAND,
Άσκηση 1. (σημειώστε πως 1KB = 2 10 bytes, 1Mbps = 10 6 bits/sec).
Άσκηση Υπολογίστε τον συνολικό χρόνο που απαιτείται για την μετάδοση ενός αρχείου 500KB πάνω από μια ζεύξη (Link), στις παρακάτω περιπτώσεις, θεωρώντας πως η καθυστέρηση μιας κατεύθυνσης (one way delay)
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού
C D C D C D C D A B
Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 2 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Δεν υπάρχουν απομονωμένα κελιά. Βήμα 3: Στο ζεύγος (3,7) το κελί 3 γειτνιάζει μόνο με
Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..
Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Σχήμα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Σχήμα Ευαγγελία Πιτουρά 1 Γενικά Για κάθε τύπο οντοτήτων και για κάθε τύπο συσχετίσεων δημιουργούμε ένα σχήμα σχέσης που παίρνει το όνομα του αντίστοιχου τύπου. Ευαγγελία
Σχεδιασμός Συνδυαστικού κυκλώματος και υλοποίηση στο Quartus (a) με πύλες: and, or, xor και not (b) μόνο με πύλες nand2 και (c) με Vhdl (dataflow)
ΗΜΥ211 4o Εργαστήριο Ψηφιακών Συστημάτων Σχεδιασμός Συνδυαστικού κυκλώματος και υλοποίηση στο Quartus (a) με πύλες: and, or, xor και not (b) μόνο με πύλες nand2 και (c) με Vhdl (dataflow) Διδάσκoντες:
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΔΙΚΤΥΑ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΔΙΚΤΥΑ Καθηγητής Δ. Συβρίδης 1η Ομάδα Ασκήσεων Άσκηση 1η Έστω
K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops
K24 Ψηφιακά Ηλεκτρονικά 9: TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 Γενικά Ύστερα από τη μελέτη συνδυαστικών ψηφιακών κυκλωμάτων, θα μελετήσουμε
Εργαστήριο ίκτυα Η/Υ ΙΙΙ
Εργαστήριο ίκτυα Η/Υ ΙΙΙ ρ. Κ. Σ. Χειλάς Στόχος του εργαστηρίου Στόχος του εργαστηρίου είναι : (α) η εµβάθυνση σε θέµατα λειτουργίας δικτύων καθώς και (β) η εξοικείωση των σπουδαστών µε ένα από τα συχνότερα
Δίκτυα και Internet στο επιχειρηµατικό περιβάλον
Δίκτυα και Internet στο επιχειρηµατικό περιβάλον Πρώτη οµάδα ασκήσεων Οδηγίες Η εργασία αυτή είναι ατοµική. Μπορείτε να µιλήσετε µε άλλους φοιτητές για να ανταλλάξετε ιδέες. Αν κάποιος συµφοιτητής σας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ - VLSI Ενότητα: Συνδιαστικά κυκλώματα, βασικές στατικές λογικές πύλες, σύνθετες και δυναμικές πύλες Κυριάκης
3. Απλοποίηση Συναρτήσεων Boole
3. Απλοποίηση Συναρτήσεων Boole 3. Μέθοδος του χάρτη Η πολυπλοκότητα ψηφιακών πυλών που υλοποιούν μια συνάρτηση Boole σχετίζεται άμεσα με την πολύπλοκότητα της αλγεβρικής της έκφρασης. Η αλγεβρική αναπαράσταση
Δίκτυα Πρόσβασης Νέας Γενιάς
Vodafone Home VDSL Τι είναι NGA; Τι σημαίνει NGA; Next Generation Access Δίκτυα Πρόσβασης Νέας Γενιάς NGA θεωρείται οποιαδήποτε τεχνολογία πρόσβασης μπορεί να προσφέρει ταχύτητες μετάδοσης δεδομένων άνω
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 28 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ
ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 28 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ Α1. ίνονται τα παρακάτω τµήµατα αλγορίθµου σε φυσική γλώσσα. 1. Αν η βαθµολογία (ΒΑΘΜΟΣ)
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό 1 Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Προσοχή είτε αυτά που ακολουθούν ως παράδειγμα Μην τα ακολουθείτε τυφλά ως «μαγική συνταγή» 2 : Μετατροπή Μοντέλου ΟΣ σε Σχεσιακό
Λύσεις 1ης Ομάδας Ασκήσεων
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΔΙΚΤΥΑ Καθηγητής Δ. Συβρίδης Λύσεις ης Ομάδας Ασκήσεων Άσκηση
ΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ
ΑΣΚΗΣΗ ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Στόχος της άσκησης: Η διαδικασία σχεδίασης σύγχρονων ακολουθιακών κυκλωμάτων. Χαρακτηριστικό παράδειγμα σύγχρονων ακολουθιακών κυκλωμάτων είναι οι σύγχρονοι μετρητές. Τις αδυναμίες
Δεύτερη Σειρά Ασκήσεων
Δεύτερη Σειρά Ασκήσεων ΑΣΚΗΣΗ 1 Από ένα αθόρυβο κανάλι 4 khz παίρνουμε δείγματα κάθε 1 msec. - Ποιος είναι ο μέγιστος ρυθμός μετάδοσης δεδομένων; - Πώς μεταβάλλεται ο μέγιστος ρυθμός μετάδοσης δεδομένων
Απόδειξη Ισοδυναμίας Συναρτήσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 2ης εργαστηριακής άσκησης: Απόδειξη Ισοδυναμίας
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Σχήμα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Σχήμα Ευαγγελία Πιτουρά 1 Τι θα δούμε σήμερα: 1. Ο/Σ -> σχεσιακό 2. Ορισμός σχεσιακής βάσης σε SQL Αρχικά ας σχεδιάσουμε μια σχεσιακή βάση δεδομένων χωρίς να σχεδιάσουμε
ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Ι ΕΞΕΤΑΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Ι ΕΞΕΤΑΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΥ 2010 ΔΙΑΡΚΕΙΑ : 150 ΠΡΟΣΟΧΗ Απαντάτε και επιστρέφετε μόνο τη παρούσα κόλλα. Δε θα βαθμολογηθεί οτιδήποτε άλλο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΤΟΣ ΣΠΟΥΔΩΝ ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ ΥΠΟΓΡΑΦΗ
Εισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Δικτύωση υπολογιστών
Δικτύωση υπολογιστών Από το 1985 αρχίζει η δικτύωση των υπολογιστών Επικοινωνία μεταξύ των συνδεδεμένων Η/Υ για μεταφορά αρχείων και δεδομένων Διαχειριστής δικτύου (Server) Εκτυπωτής 1 Πλεονεκτήματα δικτύου
Κεφάλαιο 4 : Λογική και Κυκλώματα
Κεφάλαιο 4 : Λογική και Κυκλώματα Σύνοψη Τα κυκλώματα που διαθέτουν διακόπτες ροής ηλεκτρικού φορτίου, χρησιμοποιούνται σε διατάξεις που αναπαράγουν λογικές διαδικασίες για τη λήψη αποφάσεων. Στην ενότητα
T R T R L 2 L 3 L 4 Αναγεννητής α 1 = 0.18 db/km α 2 = 0.45 db/km α 3 = 0.55 db/km α 4 = 0.34 db/km
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ Καθηγητής Συβρίδης η Οµάδα Ασκήσεων Άσκηση 1η ίνεται η
ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Αντικείμενο της άσκησης: Λογική και μεθοδολογία σχεδίασης αριθμητικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB.. Αθροιστές. Σχεδίαση
ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH
ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH 3.1 ΣΚΟΠΟΣ Η κατανόηση της απλοποίησης λογικών συναρτήσεων με χρήση της Άλγεβρας Boole και με χρήση των Πινάκων Karnaugh (Karnaugh maps). 3.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 3.2.1 ΑΠΛΟΠΟΙΗΣΗ
Σχεδιασμός Συνδυαστικού κυκλώματος και υλοποίηση στο Quartus και στο Logisim. Υλοποίηση κυκλώματος μόνο με πύλες Nand 2 εισόδων.
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Σχεδιασμός Συνδυαστικού κυκλώματος και υλοποίηση στο Quartus και στο Logisim. Υλοποίηση κυκλώματος μόνο με πύλες Nand 2 εισόδων. Διδάσκoντες: Δρ. Γιώργος Ζάγγουλος
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)
Εισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2010
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2010 ΘΕΜΑ Α Α1. ίνονται τα παρακάτω τμήματα αλγορίθμου σε φυσική γλώσσα. 1. Αν η βαθμολογία (ΒΑΘΜΟΣ) είναι μεγαλύτερη
3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
Βασίλειος Κοντογιάννης ΠΕ19
Ενότητα3 Επικοινωνία και Διαδίκτυο Κεφ10: Υπηρεσίες και Εφαρμογές Διαδικτύου 10.1 Υπηρεσίες Διαδικτύου Υπηρεσίες Επικοινωνίας Ηλεκτρονικό Ταχυδρομείο (e-mail) Υπηρεσία του Διαδικτύου για διακίνηση γραπτών
Ψηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Ψηφιακή Σχεδίαση Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http:
ΘΕΜΑΤΑ ΚΑΙ ΕΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2010 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. ίνονται τα παρακάτω τμήματα αλγορίθμου σε φυσική γλώσσα. 1 Αν η βαθμολογία (ΒΑΘΜΟΣ) είναι μεγαλύτερη από τον Μέσο Ορο (ΜΟ), τότε να τυπώνει «Πολύ
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ. = + + εφαρμόζονται στις. αποτελεί το χρήσιμο σήμα ενώ το σήμα συχνότητας ω
ΣΧΟΛΗ Ε.Μ.Φ.Ε. Ε.Μ.Π. - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΚΑΝΟΝΙΚΗ ΕΞΕΤΑΣΗ ΗΛΕΚΤΡΟΝΙΚΑ ΚΑΙ ΕΡΓΑΣΤΗΡΙΟ ΙΙ 9 ο ΕΞΑΜΗΝΟ ΦΥΣΙΚΩΝ ΕΦΑΡΜΟΓΩΝ -4 4 Μαρτίου 4 Διδάσκοντες: Θ. Αλεξόπουλος, Σ. Μαλτέζος, Γ. Τσιπολίτης ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ
ΑΣΚΗΣΗ 6 ΑΠΟΚΩΔΙΚΟΠΟΙΗΕΣ ( DECODERS )
6.1. ΣΚΟΠΟΣ ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών ΑΣΚΗΣΗ 6 ΑΠΟΚΩΔΙΚΟΠΟΙΗΕΣ ( ECOERS ) Η κατανόηση της λειτουργίας των αποκωδικοποιητών και των εφαρμογών τους. 6.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Ο
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
Πρωτόκολλα Επικοινωνίας και Τείχος Προστασίας
Β5.1.2 Πρωτόκολλα Επικοινωνίας και Τείχος Προστασίας Τι θα μάθουμε σήμερα: Να ορίζουμε τι είναι πρωτόκολλο επικοινωνίας Να εξηγούμε τη χρησιμότητα των πρωτοκόλλων επικοινωνίας Να ονομάζουμε τα σημαντικότερα
ΑΣΤΑΣΗ Τ ΩΝ ΤΟΥ ΙΚΗ ΔΙΑ ΚΟΝΟΜΙ Η ΟΙΚ
Η ΔΙΑΣΤΑΣΗ ΑΓΩΝ 1 ΚΟΣΤΟΣ ΑΓΩΝΩΝ 2 1. Δαπάνες Ολυμπιακών Υποδομών (ΠΔΕ) 6,2 δις 2. Δαπάνες Τακτικού Προϋπολογισμού 06δις 0,6 3. Δαπάνες Οργανωτικής Επιτροπής «Αθήνα» 1,8 δις ΣΥΝΟΛΟ: 9 δις Πηγή: Ανακοίνωση
Εργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI
Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο
O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου
O πύραυλος Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι
Άσκηση 1 (κλιμακωτή χρέωση) Ένα γραφείο ενοικίασης αυτοκινήτων εφαρμόζει την παρακάτω τιμολογιακή πολιτική: Πάγιο 30 ευρώ
Α ν α κ ε φ α λ α ι ω τ ι κ έ ς α σ κ ή σ ε ι ς Άσκηση 1 (κλιμακωτή χρέωση) Ένα γραφείο ενοικίασης αυτοκινήτων εφαρμόζει την παρακάτω τιμολογιακή πολιτική: Πάγιο 30 ευρώ Αριθμός χλμ Χρέωση (ευρώ / χλμ)
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Μονάδες 10. Β. ίνεται το παρακάτω τμήμα αλγορίθμου ΑΝ ποσότητα <= 50 TOTE. Κόστος Ποσότητα * 520. ΑΛΛΙΩΣ_ΑΝ Ποσότητα > 50 ΚΑΙ Ποσότητα <= 100 ΤΟΤΕ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΛΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Απλοποίηση Συναρτήσεων Boole Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Απλοποίηση Συναρτήσεων Boole Η πολυπλοκότητα του κυκλώματος
Το αερόπλοιο. Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες
Το αερόπλοιο Γνωστικό Αντικείμενο: Φυσική (Δύναμη) - Τεχνολογία Τάξη: Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι μαθητές: - Να εξηγούν
Ανάλυση και έλεγχος δικτύου με χρήση του εργαλείου Wireshark
Ανάλυση και έλεγχος δικτύου με χρήση του εργαλείου Wireshark Version 1.01 Επιμέλεια Σημειώσεων: Πουλίζος Μίλτος Τσεβάς Σπύρος Πατρικάκης Χαράλαμπος Πίνακας περιεχομένων Εισαγωγικές έννοιες: ανίχνευση,
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
Πολιτική Ορθής Χρήσης του BigBlueButton
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Το Πανεπιστήμιο Αιγαίου, βασικός παράγοντας για την οικονομική και κοινωνική ανάπτυξη του Αιγαιοπελαγίτικου χώρου «Στήριξη και Ανάδειξη Πολυνησιωτικών ΑΕΙ» Ε.Π. «Εκπαίδευση και Διά
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Σχήμα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Μετατροπή Σχήματος Ο/Σ σε Σχεσιακό Σχήμα Βάσεις Δεδομένων 2018-2019 Ευαγγελία Πιτουρά 1 Σχήμα μιας βάσης βεδομένων ACTOR Name Day Month Year Sex Nationality MOVIE Title Year Genre Runtime PLAYS Name Title
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
Σύνθετη Άσκηση για Απώλειες και ιασπορά
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ Καθηγητής. Συβρίδης Σύνθετη Άσκηση για Απώλειες και ιασπορά
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις έννοιες της Προτασιακής Λογικής. Η εργασία πρέπει να γραφεί ηλεκτρονικά
Ολοκληρωμένα Κυκλώματα
Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Γ. Δημητρακόπουλος Ολοκληρωμένα Κυκλώματα Πρόοδος - Φθινόπωρο 2017 Θέμα 1 ο Σχεδιάστε το datapath για τον υπολογισμό
Ασκήσεις μελέτης της 19 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 19 ης διάλεξης 19.1. Δείξτε ότι το Perceptron με (α) συνάρτηση ενεργοποίησης
1. Μία συνάρτηση δεν μπορεί να έχει παραπάνω από μία παραμέτρους.
1ΗΣ ΣΕΛΙΔΑΣ Κυριακή 12 Μαΐου 2019 Προσομοιωμένο διαγώνισμα στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Προσανατολισμού Περιφερειακή Διεύθυνση Α/θμιας & Β/θμιας Εκπαίδευσης Νοτίου Αιγαίου
Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου
Ψηφιακή Σχεδίαση Εργαστηριο 1 Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΕΡΓΑΛΕΙΑ ΕΡΓΑΣΤΗΡΙΟ Το εργαλείο που θα χρησιμοποιηθεί
Εισαγωγή στη Δικτύωση Υπολογιστών
Εισαγωγή στη Δικτύωση Υπολογιστών Ενότητα 2: Το Φυσικό Επίπεδο Δημήτριος Τσώλης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Στόχοι Μαθήματος
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΟΜΕΑΣ ΥΠΟΔΟΜΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Δρ. ΑΣΗΜΑΚΗΣ ΝΙΚΟΛΑΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
Κεφάλαιο 4. Λογική Σχεδίαση
Κεφάλαιο 4 Λογική Σχεδίαση 4.1 Εισαγωγή Λογικές συναρτήσεις ονομάζουμε εκείνες για τις οποίες μπορούμε να αποφασίσουμε αν είναι αληθείς ή όχι. Χειριζόμαστε τις λογικές προτάσεις στην συγγραφή λογισμικού
Δίκτυα Υπολογιστών Λύσεις σειράς ασκήσεων επανάληψης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής (1) Δίκτυα Υπολογιστών Λύσεις σειράς ασκήσεων επανάληψης Απρόκλητο