επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory
|
|
- Ονησίφορος Αρβανίτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μετατροπέας Αναλογικού Σήµατος σε Ψηφιακό Ο δειγματολήπτης (S/H) παίρνει δείγματα του στιγμιαίου εύρους ενός σήματος και διατηρεί την τάση που αντιστοιχεί σταθερή, τροφοδοτώντας έναν κβαντιστή, μέχρι την επόμενη στιγμή δειγματοληψίας. Αυτό γίνεται γιατί ο κβαντιστής απαιτεί κάποιο χρόνο για να μετατρέψει τα αναλογικά σήματα εισόδου σε ψηφιακά και αν το σήμα εισόδου του άλλαζε κατά την διάρκεια αυτού του χρόνου θα έδινε εσφαλμένα αποτελέσματα. Το σχήμα δείχνει έναν S/H. Οταν το FET ενεργοποιείται, ο πυκνωτής ταχέως φορτίζεται ή αποφορτίζεται στο επίπεδο του αναλογικού σήματος εισόδου. Οταν το FET απενεργοποιηθεί ο πυκνωτής κρατάει το φορτίο του μέχρις ότου το FET Control Systems Laboratory 19 Απριλίου επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος 1
2 Μετατροπέας Αναλογικού Σήµατος σε Ψηφιακό O (κλασσικός) κβαντιστής διαδοχικής προσέγγισης (successive approxima8on) φαίνεται στο σχήμα. Η μετατροπή ξεκινάει με την εντολή εκκινήσεως που καθαρίζει τα προηγούμενα δεδομένα. Το MS της εισόδου του γίνεται 1. Αν η τιμή της εξόδου του είναι μικρότερη από το αναλογικό σήμα εισόδου, διαδοχικά αυξάνονται τα bit εισόδου του DAC μέχρις ότου η έξοδος του DAC ξεπεράσει το αναλογικό σήμα εισόδου. Ο αριθμός bit του ADC είναι ίδιος με αυτόν του χρησιμοποιούμενου DAC. Η διακριτότητα ή επίπεδο κβαντισμού (quanfzafon level) είναι q =! max "! min 2 N "1 όπου! max,! min είναι η μέγιστη και ελάχιστη τάση εισόδου του αναλογικού σήματος. Μεταβολή της τάσης εισόδου μικρότερη από q μπορεί να οδηγήσει σε μη αλλαγή της κατάστασης εξόδου πράγμα που φανερώνει την ύπαρξη ενός σφάλματος κβαντισμού (quanfzafon error). 2
3 Λογικές Πύλες Οι λογικές πύλες (logic gates) είναι ηλεκτρονικά κυκλώματα που επιτελούν διάφορες λογικές πράξεις. Οι λογικές πράξεις και η άλγεβρα που διέπει αυτές μελετήθηκε από τον άγγλο μαθηματικό George oole που εισήγε την αρχή: «όλες οι προτάσεις μπορούν να αποδειχθούν με σωστές απαντήσεις σε πεπερασμένο αριθμό ερωτήσεων τύπου σωστό αληθές». Οι λογικές πράξεις της Αλγεβρας oole είναι : A A AND Y AND OR NOT A Y=A A Y=A+ X NAND Y A NAND NOR A Y=A! A OR Y X NOT Y=A + Y Y=X A NOR Y
4 Λογικές Πύλες Υπάρχουν οι πύλες XOR (EXCLUSIVE OR) που ορίζεται σαν και η XΝOR (EXCLUSIVE ΝOR) που ορίζεται ως A = A. Τα σύμβολά τους και οι αντίστοιχοι πίνακες αληθείας φαίνονται παρακάτω A = A + A A XOR XOR Y A XNOR XΝOR A Y = A! A Y=A Y 4
5 Πίνακες Αληθείας Λογική συνάρτηση είναι μία συνάρτηση που σχηματίζεται από δυαδικές μεταβλητές και λογικές πράξεις π.χ f ( x, y, z) = x y + x z + y z g( x, y, z) = x y + x z Μπορούμε να κατασκευάσουμε τους αντίστοιχους πίνακες αληθείας οι οποίοι να περιέχουν όλους τους λογικούς συνδυασμούς (πεδίο ορισμού) αυτών των μεταβλητών και να δούμε το αντίστοιχο πεδίο τιμών (range). Από τον πίνακα αληθείας μπορεί να δει κανείς ότι για όλους τους συνδυασμούς των μεταβλητών, δηλ. σε όλο το πεδίο ορισμού x y+ x z+ y z= x y+ x z Είναι προφανές ότι ο πίνακας αληθείας είναι ένα εργαλείο απόδειξης ιδιοτήτων των λογικών συναρτήσεων. x y z x y x z y z f( x, y, z ) gxyz (,, )
6 Ιδιότητες + Ιδιότητες Ιδιότητες ΝΟΤ x! y! z = x!(y! z) = (x! y)! z x = x x! y = y! x x + x = 1 x! x = x x! x = 0 x!1 = x x + x! y = x + y x!0 = 0 x + y + z = x + (y + z) = (x + y) + z x + y = y + x x + x = x x +1 = 1 x + 0 = x Ιδιότητες Λογικών Πράξεων Σχεδίαση Λογικών Κυκλωµάτων Αλλες Ιδιότητες x!(y + z) = x! y + x! z x + x! y = x x + y! z = (x + y)!(x + z) Νόμοι De Morgan x 1! x 2! x 3!! x n = x 1 + x 2 + x 3 +!+ x n x 1 + x 2 + x x n = x 1! x 2! x 3!! x n Αλγόριθμος Σχεδίασης : Κατασκευή πίνακα αληθείας με βάση της σχετικές προδιαγραφές Εύρεση εκείνων των γραμμών του πίνακα αληθείας όπου η έξοδος είναι αληθής (δηλ. ισούται με «1»). Για κάθε τέτοια γραμμή, βρίσκουμε τον συνδυασμό εισόδων με την πράξη AND που κάνει τη «σύζευξή» τους αληθή (σύζευξη = AND). Κάνουμε «διάζευξη» σε όλες αυτές τις συζεύξεις (διάζευξη = OR). 6
7 Σχεδίαση Λογικών Κυκλωµάτων: Παράδειγµα Control Systems Laboratory Να ευρεθεί η λογική συνάρτηση g( x, y, z) και το αντίστοιχο λογικό κύκλωμα που η g( x, y, z) είναι αληθής (1) όταν η πλειοψηφία των τριών εισόδων είναι αληθής και ψευδής (0) σε κάθε άλλη περίπτωση. g(x, y,z) = xyz + xyz + xyz + xyz g(x, y,z) = xyz + xyz + xyz + xyz = = xyz + xyz + xy(z + z) = = xyz + xyz + xy x y x y z g( x, y, z) Αλγόριθμος Σχεδίασης : Κατασκευή πίνακα αληθείας με βάση της σχετικές προδιαγραφές Εύρεση εκείνων των γραμμών του πίνακα αληθείας όπου η έξοδος είναι αληθής (δηλ. ισούται με «1»). Για κάθε τέτοια γραμμή, βρίσκουμε τον συνδυασμό εισόδων με την πράξη AND που κάνει τη «σύζευξή» τους αληθή (σύζευξη = AND). Κάνουμε «διάζευξη» σε όλες αυτές τις συζεύξεις (διάζευξη = OR). z xyz xyz xy gxyz (,, ) = xyz+ xyz+ xy 7
8 Απλοποίηση Λογικών Παραστάσεων µέσω Πινάκων Karnaugh Συστηματικός και γραφικός τρόπος απλοποίησης λογικών παραστάσεων και κυκλωμάτων. Πρακτικά εφαρμόσιμος για παραστάσεις μέχρι και 4, το πολύ, μεταβλητών. Για μεγαλύτερο αριθμό μεταβλητών υπάρχουν ειδικά προγράμματα απλοποίησης που στηρίζονται (και) σε μεθοδολογίες τεχνητής νοημοσύνης. Για μια λογική συνάρτηση, οι πίνακες Karnaugh παριστάνουν τη σχέση μεταξύ λογικών εισόδων και εξόδου, κάτι που κάνουν άλλωστε τόσον οι πίνακες αληθείας όσο και οι λογικές εξισώσεις. Αρχικά θα δειχθεί το πώς οι πίνακες Karnaugh προκύπτουν από τους πίνακες αληθείας και με βάση αυτό θα γίνει η όλη ανάπτυξη της μεθοδολογίας απλοποίησης, ενώ μετά θα δειχθεί το πως προκύπτουν και από τις λογικές εξισώσεις. 8
9 Κατασκευή Πινάκων Karnaugh Control Systems Laboratory { x =ΑΒ+ΑΒ} X = AC+ AC + AC + AC X = ACD+ ACD + ACD + ACD 9
10 Οµαδοποίηση των Κελιών: Κατά Ζεύγη X = AC + AC = A X = AC + AC = C X = AC + AC = C X = ACD+ ACD + ACD + ACD = AC + AD «Η ομαδοποίηση ζευγών γειτνιαζόντων κελιών οδηγεί σε εξαφάνιση της μεταβλητής που εμφανίζεται σε κάθε ζεύγος τόσο σε κανονική όσο και σε συμπληρωματική μορφή». 10
11 Οµαδοποίηση των Κελιών: Κατά Τετράδες X = C X = D X = A X Η ομαδοποίηση τετράδων γειτνιαζόντων κελιών οδηγεί σε εξαφάνιση εκείνων των δύο μεταβλητών που εμφανίζονται σε κάθε τετράδα τόσο σε κανονική όσο και σε συμπληρωματική μορφή. = AD X = D 11
12 Οµαδοποίηση των Κελιών: Κατά Οκτάδες X = C Η ομαδοποίηση οκτάδων γειτνιαζόντων κελιών οδηγεί σε εξαφάνιση εκείνων των τριών μεταβλητών που εμφανίζονται σε κάθε οκτάδα τόσο σε κανονική όσο και σε συμπληρωματική μορφή. X = X = X = D 12
13 Απλοποίηση µέσω Πίνακα Karnaugh Η απλοποίηση θα γίνει με βάση τα προηγούμενα και 2 βασικές παρατηρήσεις: σε ένα πίνακα Karnaugh πρέπει να αναζητούμε όσο το δυνατόν μεγαλύτερες ομάδες έτσι ώστε να έχουμε την μεγαλύτερη δυνατή απλοποίηση, και δεδομένου ότι για κάθε λογική μεταβλητή z ισχύει z = z + z, στην αναζήτησή μας για όσο το δυνατόν μεγαλύτερες ομάδες κελιών, ένα κελί μπορεί να ανήκει σε 2 ή περισσότερες ομάδες. Η διαδικασία απλοποίησης είναι η παρακάτω: Βήμα 1: Κατασκευή του πίνακα Karnaugh. Βήμα 2: Ανεύρεση & περικύκλωση απομονωμένων κελιών με περιεχόμενο «1» (δηλ. αυτών που δεν γειτνιάζουν με άλλα) Βήμα 3: Ανεύρεση & περικύκλωση αυτοτελών ζευγών κελιών με περιεχόμενο «1», δηλαδή ζευγών που περιέχουν ένα τουλάχιστον κελί που γειτνιάζει μόνο με το άλλο. Βήμα 4: Ανεύρεση & περικύκλωση οκτάδων κελιών με περιεχόμενο «1», ακόμα και αν κάποια κελιά τους ανήκουν σε προηγουμένως ανευρεθέντα αυτοτελή ζεύγη. Βήμα 5: Ανεύρεση & περικύκλωση τετράδων κελιών με περιεχόμενο «1» που περιέχουν ένα ή περισσότερα κελιά με περιεχόμενο «1» τα οποία δεν έχουν ήδη περικυκλωθεί προηγουμένως. Πρέπει να γίνει προσπάθεια εύρεσης του ελάχιστου αριθμού τέτοιων ομάδων. Βήμα 6: Ανεύρεση & περικύκλωση ζευγών κελιών με περιεχόμενο «1» για να περιληφθούν τα κελιά με περιεχόμενο «1» τα οποία δεν έχουν ήδη περικυκλωθεί προηγουμένως. Πρέπει να γίνει προσπάθεια εύρεσης του ελάχιστου αριθμού τέτοιων ομάδων. Βήμα 7: Διάζευξη (OR) όλων των όρων που προκύπτουν από τις παραπάνω ομάδες. Control Systems Laboratory 13
14 Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 1 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Το κελί 4 είναι το μοναδικό που δεν γειτνιάζει με άλλα. Βήμα 3: Στο ζεύγος (11,15) το κελί 15 γειτνιάζει μόνο με το 11. Είναι και το μοναδικό ζεύγος τέτοιου τύπου. Βήμα 4: Δεν υπάρχουν οκτάδες. Βήμα 5: Στην τετράδα (6,7,10,11) το κελί 11 είναι ήδη κομμάτι του ζεύγους (11,15) Βήμα 6: Δεν υπάρχουν άλλα ζεύγη Βήμα 7: X =! AC ## "## D$ + % ACD + % D loop 4 loop 11, 15 C D C D C D C D A A A A loop 6, 7, 10, 11 Βήμα 1: Κατασκευή του πίνακα Karnaugh. Βήμα 2: Ανεύρεση & περικύκλωση απομονωμένων κελιών με περιεχόμενο «1» (δηλ. αυτών που δεν γειτνιάζουν με άλλα) Βήμα 3: Ανεύρεση & περικύκλωση αυτοτελών ζευγών κελιών με περιεχόμενο «1», δηλαδή ζευγών που περιέχουν ένα τουλάχιστον κελί που γειτνιάζει μόνο με το άλλο. Βήμα 4: Ανεύρεση & περικύκλωση οκτάδων κελιών με περιεχόμενο «1», ακόμα και αν κάποια κελιά τους ανήκουν σε προηγουμένως ανευρεθέντα αυτοτελή ζεύγη. Βήμα 5: Ανεύρεση & περικύκλωση τετράδων κελιών με περιεχόμενο «1» που περιέχουν ένα ή περισσότερα κελιά με περιεχόμενο «1» τα οποία δεν έχουν ήδη περικυκλωθεί προηγουμένως. Πρέπει να γίνει προσπάθεια εύρεσης του ελάχιστου αριθμού τέτοιων ομάδων. Βήμα 6: Ανεύρεση & περικύκλωση ζευγών κελιών με περιεχόμενο «1» για να περιληφθούν τα κελιά με περιεχόμενο «1» τα οποία δεν έχουν ήδη περικυκλωθεί προηγουμένως. Πρέπει να γίνει προσπάθεια εύρεσης του ελάχιστου αριθμού τέτοιων ομάδων. Βήμα 7: Διάζευξη (OR) όλων των όρων που προκύπτουν από τις παραπάνω ομάδες. 14
Κεφάλαιο 5 Διασύνδεση Αναλογικών & Ψηφιακών Συστηµάτων
Κεφάλαιο 5 Διασύνδεση Αναλογικών & Ψηφιακών Συστηµάτων Αναλογικές & Ψηφιακές Διατάξεις Control Systems Laboratory Τα διάφορα μεγέθη των φυσικών διεργασιών τα μετράμε με αισθητήρες που ουσιαστικά παρέχουν
C D C D C D C D A B
Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 2 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Δεν υπάρχουν απομονωμένα κελιά. Βήμα 3: Στο ζεύγος (3,7) το κελί 3 γειτνιάζει μόνο με
Κεφάλαιο 5 Διασύνδεση Αναλογικών & Ψηφιακών Συστημάτων
Κεφάλαιο 5 Διασύνδεση Αναλογικών & Ψηφιακών Συστημάτων Αναλογικές & Ψηφιακές Διατάξεις Τα διάφορα μεγέθη των φυσικών διεργασιών τα μετράμε με αισθητήρες που ουσιαστικά παρέχουν ηλεκτρικά σήματα χαμηλής
Κεφαλαιο 4 Ψηφιακή Λογική & Συστήματα
Κεφαλαιο 4 Ψηφιακή Λογική & Συστήματα 1. Εισαγωγή - Γενικά 2. Συστήματα Αρίθμησης & Κώδικες 3. Μετατροπή & Δειγματοληψία Σημάτων 4. Λογικές Πύλες 5. Πίνακες Αληθείας - Ιδιότητες των Πυλών - Σχεδίαση Ψηφιακών
Κεφάλαιο 5 Διασύνδεση Αναλογικών & Ψηφιακών Συστηµάτων
Κεφάλαιο 5 Διασύνδεση Αναλογικών & Ψηφιακών Συστηµάτων Συστηµα Συλλογης Δεδοµένων ή και Ελέγχου ATA ACQUISITION OMPUTATION ΕΝΤΟΛΗ ΕΛΕΓΧΟΥ ΧΡΗΣΤΗΣ. Εντολές ΣΥΣΤΗΜΑ ΕΛΕΓΧΟΥ I/O SYSTEM ΣΗΜΑ ΕΛΕΓΧΟΥ ΕΝΙΣΧΥΤΕΣ
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΑΠΛΟΠΟΙΗΣΗ και ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Σκοπός: Η κατανόηση της σχέσης µιας λογικής συνάρτησης µε το αντίστοιχο κύκλωµα. Η απλοποίηση λογικών συναρτήσεων
Κεφαλαιο 4 Ψηφιακή Λογική & Συστήµατα
Κεφαλαιο 4 Ψηφιακή Λογική & Συστήµατα 1. Εισαγωγή - Γενικά 2. Συστήματα Αρίθμησης & Κώδικες 3. Μετατροπή & Δειγματοληψία Σημάτων 4. Λογικές Πύλες 5. Πίνακες Αληθείας - Ιδιότητες των Πυλών - Σχεδίαση Ψηφιακών
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR Σκοπός: Να επαληθευτούν πειραµατικά οι πίνακες αληθείας των λογικών πυλών OR, NOR, XOR. Να δειχτεί ότι η πύλη NOR είναι οικουµενική.
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα
Κεφάλαιο 4. Λογική Σχεδίαση
Κεφάλαιο 4 Λογική Σχεδίαση 4.1 Εισαγωγή Λογικές συναρτήσεις ονομάζουμε εκείνες για τις οποίες μπορούμε να αποφασίσουμε αν είναι αληθείς ή όχι. Χειριζόμαστε τις λογικές προτάσεις στην συγγραφή λογισμικού
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΜΥ 00 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Δυαδική λογική Πύλες AND, OR, NOT, NAND,
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ Πύλες - Άλγεβρα Boole 1 ΕΙΣΑΓΩΓΗ Α)Ηλεκτρονικά κυκλώµατα Αναλογικά κυκλώµατα Ψηφιακά κυκλώµατα ( δίτιµα ) V V 2 1 V 1 0 t t Θετική λογική: Ο V 1 µε V 1 =
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 8 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Άλγεβρα Boole Ορισμοί Λογικές πράξεις Πίνακες αληθείας Πύλες
Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης
Γ2.1 Στοιχεία Αρχιτεκτονικής Γ Λυκείου Κατεύθυνσης Ορισμός άλγεβρας Boole Η άλγεβρα Boole ορίζεται, ως μία αλγεβρική δομή A, όπου: (α) Το Α είναι ένα σύνολο στοιχείων που περιέχει δύο τουλάχιστον στοιχεία
Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή
Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω
σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.
Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του
3. Απλοποίηση Συναρτήσεων Boole
3. Απλοποίηση Συναρτήσεων Boole 3. Μέθοδος του χάρτη Η πολυπλοκότητα ψηφιακών πυλών που υλοποιούν μια συνάρτηση Boole σχετίζεται άμεσα με την πολύπλοκότητα της αλγεβρικής της έκφρασης. Η αλγεβρική αναπαράσταση
K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα
K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Λογικές πύλες Περιεχόμενα 1 Λογικές πύλες
Λογική Σχεδίαση Ψηφιακών Συστημάτων
Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδική Λογική Η δυαδική λογική ασχολείται με μεταβλητές
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 4. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Α 2 Άλγεβρα
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)
Ενότητα 5 ΑΠΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΔΥΟ ΕΠΙΠΕΔΩΝ
Ενότητα 5 ΑΠΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΔΥΟ ΕΠΙΠΕΔΩΝ Γενικές Γραμμές Χάρτης Karnaugh (K-map) Prime Implicants (πρωταρχικοί όροι) Διαδικασία Απλοποίησης με K-map ΑδιάφοροιΣυνδυασμοίΕισόδων Διεπίπεδες Υλοποιήσεις
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο
ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.3 : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών Στόχοι Μαθήματος: Να γνωρίσετε τις βασικές αρχές αριθμητικής των Η/Υ. Ποια είναι τα κυκλώματα
"My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch
"My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch Καραγιάννη Ελένη 1, Καραγιαννάκη Μαρία-Ελένη 2, Βασιλειάδης Αθανάσιος 3, Κωστουλίδης Αναστάσιος-Συμεών 4, Μουτεβελίδης Ιωάννης-Παναγιώτης 5,
Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.
ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Οι αρχές της λογικής αναπτύχθηκαν από τον George Boole (85-884) και τον ugustus De
Πράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων
9 ο Μαθητικό Συνέδριο Πληροφορικής Κεντρικής Μακεδονίας. "My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch
9 ο Μαθητικό Συνέδριο Πληροφορικής Κεντρικής Μακεδονίας Θεσσαλονίκη, 25-28 Απριλίου 2017, ΝΟΗΣΙΣ "My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch Κωνσταντίνος Παρασκευόπουλος Καθηγητής Πληροφορικής
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Άλγεβρα Boole και Λογικές Πύλες 2. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Άλγεβρα Boole και Λογικές Πύλες Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αξιωματικός Ορισμός Άλγεβρας Boole Άλγεβρα Boole: είναι μία
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ψηφιακά Συστήματα. 3. Λογικές Πράξεις & Λογικές Πύλες
Ψηφιακά Συστήματα 3. Λογικές Πράξεις & Λογικές Πύλες Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd
4. ΝΟΜΟΙ ΔΥΑΔΙΚΗΣ ΑΛΓΕΒΡΑΣ
4. ΝΟΜΟΙ ΔΥΔΙΚΗΣ ΛΓΕΡΣ 4.1 ασικές έννοιες Εισαγωγή Η δυαδική άλγεβρα ή άλγεβρα oole θεμελιώθηκε από τον Άγγλο μαθηματικό George oole. Είναι μία "Λογική Άλγεβρα" για τη σχεδίαση κυκλωμάτων διακοπτών. Η
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Απλοποίηση Συναρτήσεων Boole Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Απλοποίηση Συναρτήσεων Boole Η πολυπλοκότητα του κυκλώματος
Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα
Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών μεταβλητών a,
K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole
K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της
Λογικά Κυκλώματα και Αυτοματισμοί διαδικασιών
Λογικά Κυκλώματα και Αυτοματισμοί διαδικασιών Βιομηχανικός Αυτοματισμός Γιώργος Σούλτης 57 ΚΕΦΑΛΑΙΟ 1 Λογικά κυκλώματα Στόχοι του κεφαλαίου Η Λογική άλγεβρα είναι μια μαθηματική θεωρία την οποία ανέπτυξε
9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί
Κεφάλαιο 4 : Λογική και Κυκλώματα
Κεφάλαιο 4 : Λογική και Κυκλώματα Σύνοψη Τα κυκλώματα που διαθέτουν διακόπτες ροής ηλεκτρικού φορτίου, χρησιμοποιούνται σε διατάξεις που αναπαράγουν λογικές διαδικασίες για τη λήψη αποφάσεων. Στην ενότητα
Μάθημα 0: Εισαγωγή. Λευτέρης Καπετανάκης. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2011
ΤΛ22 Ψηφιακά Κυκλώματα Ι Μάθημα : Εισαγωγή Λευτέρης Καπετανάκης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2 Περιεχόμενα Μαθήματος Εισαγωγή στη σχεδίαση των ψηφιακών κυκλώματων Εισαγωγή
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου u Μετατροπή Αναλογικού Σήµατος σε Ψηφιακό (A/D Conversion) Ο µετασχηµατισµός Ζ u Μαθηµατική Ανάλυση της Διαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014
ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: Θεωρητική Μάθημα: Ψηφιακά Ηλεκτρονικά Τάξη: Β Αρ. Μαθητών: 8 Κλάδος: Ηλεκτρολογία Ημερομηνία:
ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH
ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH 3.1 ΣΚΟΠΟΣ Η κατανόηση της απλοποίησης λογικών συναρτήσεων με χρήση της Άλγεβρας Boole και με χρήση των Πινάκων Karnaugh (Karnaugh maps). 3.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 3.2.1 ΑΠΛΟΠΟΙΗΣΗ
ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ
Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Μάθηµα 3: Απλοποίηση συναρτήσεων Boole ιδάσκων: Καθηγητής Ν. Φακωτάκης 3-1 Η µέθοδος του χάρτη H πολυπλοκότητα
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΚΑΘΟΛΙΚΕΣ ΠΥΛΕΣ NND NOR ΑΛΓΕΒΡΑ OOLE ΘΕΩΡΗΜΑ
Αρχιτεκτονικές Υπολογιστών BOOLEAN ALGEBRA
ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών OOLEN LGER ιδάσκων: ναπλ. Καθ. Κ. Λαµπρινουδάκης clam@unp.gr Αρχιτεκτονικές Υπολογιστών ναπλ. Καθ. Κ. Λαµπρινουδάκης Άλγεβρα OOLE Οι µεταβλητές
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 2: Αλγεβρα Boole, Δυαδική Λογική, Ελαχιστόροι, Μεγιστόροι Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και
ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα
ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά
Ταλαντωτές. LC: σε ταλαντωτές συχνοτήτων άνω του 1 ΜΗz (σε τηλεπικοινωνιακές διατάξεις). RC: για συχνότητες μέχρι και 1 ΜΗz.
Ταλαντωτές Παράγουν κάποιο σήμα εξόδου χωρίς να έχουν κατ ανάγκη σήμα εισόδου. Παρέχουν σήματα συχνοτήτων, χρονισμού και ερεθισμού όπως ημιτονοειδή, τετραγωνικά, τριγωνικά ή «πριονοειδή» κύματα. Υπάρχουν
6. Σχεδίαση Κυκλωμάτων Λογικής Κόμβων (ΚΑΙ), (Η)
6. Σχεδίαση Κυκλωμάτων Λογικής Κόμβων (ΚΑΙ), (Η) 6. Εισαγωγή Όπως έχουμε δει οι εκφράσεις των λογικών συναρτήσεων για την συγκεκριμένη σχεδίαση προκύπτουν εύκολα από χάρτη Καρνώ -Karnaugh. Έτσι βρίσκουμε
Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 24-5 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης ; Ποιες κατηγορίες
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού
ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ
ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ 1.1 ΣΚΟΠΟΣ Η εξοικείωση με τη λειτουργία των Λογικών Πυλών και των Πινάκων Αληθείας. 1.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Οι λογικές πύλες είναι ηλεκτρονικά κυκλώματα που δέχονται στην είσοδο ή στις
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα 11: Βασικές έννοιες ψηφιακής λογικής Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Γιατί χρησιμοποιούμε
Ενότητα 6 ΑΝΑΛΥΣΗ & ΣΥΝΘΕΣΗ ΣΥΝΔΥΑΣΤΙΚΗΣ ΛΟΓΙΚΗΣ ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΠΟΛΛΩΝ ΕΠΙΠΕΔΩΝ
Ενότητα 6 ΑΝΑΛΥΣΗ & ΣΥΝΘΕΣΗ ΣΥΝΔΥΑΣΤΙΚΗΣ ΛΟΓΙΚΗΣ ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΠΟΛΛΩΝ ΕΠΙΠΕΔΩΝ Γενικές Γραμμές Ανάλυση Συνδυαστικής Λογικής Σύνθεση Συνδυαστικής Λογικής Λογικές Συναρτήσεις Πολλών Επιπέδων Συνδυαστικά
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΜΕΘΟΔΟΣ ΑΠΛΟΠΟΙΗΣΗΣ ΛΟΓΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕ
Συνδυαστικά Λογικά Κυκλώματα
Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και
Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες
Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 4: Ελαχιστοποίηση και Λογικές Πύλες ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Βελτιστοποίηση
Μετατροπή Αναλογικού Σήµατος σε. Ψηφιακό (A/D Conversion) Μετατροπή Ψηφιακού Σήµατος σε Αναλογικό (D/A Conversion)
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου Μετατροπή Αναλογικού Σήµατος σε Ο µετασχηµατισµός Ζ Ψηφιακό (A/D Conversion) Μαθηµατική Ανάλυση της ιαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος
ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες
ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΑΕΡΟΣΚΑΦΩΝ ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΕΙΣΑΓΩΓΗ στους Η/Υ Διδάσκουσα Δρ. Β. Σγαρδώνη 2013-14 ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες Α. ΑΛΓΕΒΡΑ Boole Η Άλγεβρα Boole (Boolean algebra) πήρε
Εισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και
Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής
Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Αριθµοί Διαφόρων Βάσεων Δυαδικά Συστήµατα 2 Υπολογιστική Ακρίβεια Ο αριθµός των δυαδικών ψηφίων αναπαράστασης αριθµών καθορίζει την ακρίβεια των αριθµών σε
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου Μετατροπή Αναλογικού Σήµατος σε Ψηφιακό (A/D Conversion) Ο µετασχηµατισµός Ζ Μαθηµατική Ανάλυση της ιαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος
Εισαγωγή στη Γλώσσα VHDL
Εισαγωγή στη Γλώσσα VHDL Παράδειγμα and3 Entity και Architecture Entity Entity - Παραδείγματα Architecture VHDL simulation παραδείγματος and3 Παράδειγμα NAND VHDL simulation παραδείγματος nand Boolean
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική / Κυκλώματα (Μέρος B) Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Βελτιστοποίηση
ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ
Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 12: Κίνδυνοι Διδάσκων: Καθηγητής Ν. Φακωτάκης Κίνδυνοι Μια από τις κυριότερες αιτίες δυσλειτουργίας των
ΑΣΚΗΣΗ 4 ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΙΚΗΣ ΣΧΕΔΙΑΣΗΣ
ΑΣΚΗΣΗ 4 ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΙΚΗΣ ΣΧΕΔΙΑΣΗΣ 4.1 ΣΚΟΠΟΣ Σκοπός αυτής της εργαστηριακής άσκησης είναι να παρουσιάσει τις βασικές αρχές της σχεδίασης λογικών (ψηφιακών) κυκλωμάτων για πρακτικές εφαρμογές. Στα προηγούμενα
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ. Ψηφιακά κυκλώματα.
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Ψηφιακά κυκλώματα Σημειώσεις Αναστάσιος Ι. Μπαλουκτσής (Μηχανολόγος/Ηλεκτρολόγος Μηχανικός,
3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων oole Επιµέλεια διαφανειών: Χρ. Καβουσιανός Απλοποίηση Συναρτήσεων oole Ø Η πολυπλοκότητα του κυκλώµατος που υλοποιεί µια συνάρτηση oole σχετίζεται άµεσα µε
Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά
Κεφάλαιο Τρία: 3.1 Τι είναι αναλογικό και τι ψηφιακό µέγεθος Αναλογικό ονοµάζεται το µέγεθος που µπορεί να πάρει οποιαδήποτε τιµή σε µια συγκεκριµένη περιοχή τιµών π.χ. η ταχύτητα ενός αυτοκινήτου. Ψηφιακό
Βασικές CMOS Λογικές οικογένειες (CMOS και Domino)
Βασικές CMOS Λογικές οικογένειες (CMOS και Domino) CMOS Κάθε λογική πύλη αποτελείται από δύο τμήματα p-mos δικτύωμα, τοποθετείται μεταξύ τροφοδοσίας και εξόδου. Όταν είναι ενεργό φορτίζει την έξοδο στην
Λογικές πύλες: Οι στοιχειώδεις δομικοί λίθοι των κυκλωμάτων
Λογικές πύλες Λογικές πύλες: Οι στοιχειώδεις δομικοί λίθοι των κυκλωμάτων Το υλικό(hardware) για την εκτέλεση των εντολών γλώσσας μηχανής(και κατ επέκταση όλων των προγραμμάτων), κατασκευάζεται χρησιμοποιώντας
6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ
6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΥΟ ΕΙΣΟ ΩΝ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΠΕ ΩΝ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Ψηφιακά Συστήματα. 4. Άλγεβρα Boole & Τεχνικές Σχεδίασης Λογικών Κυκλωμάτων
Ψηφιακά Συστήματα 4. Άλγεβρα Boole & Τεχνικές Σχεδίασης Λογικών Κυκλωμάτων Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016.
Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ
Ενότητα 8 Η ΠΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ Γενικές Γραμμές Πύλες XOR και XNOR λοποιήσεις με AND-OR-INV Κώδικας Ισοτιμίας (Parity) Άρτια και Περιττή Συνάρτηση Κυκλώματα ανίχνευσης λαθών Συγκριτές
Ενότητα 2 ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ
Ενότητα 2 ΛΓΕΡ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ Άλγεβρα Boole Γενικές Γραμμές ξιώματα Huntington και Θεωρήματα ρχή του Δυϊσμού Λογικές πύλες NAND και NOR Υλοποιήσεις με πύλες NAND ή πύλεςnor πομονωτές τριών καταστάσεων
Συνδυαστικά Κυκλώματα
3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,
Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και
Ιατρικά Ηλεκτρονικά. Δρ. Π. Ασβεστάς Εργαστήριο Επεξεργασίας Ιατρικού Σήματος & Εικόνας Τμήμα Τεχνολογίας Ιατρικών Οργάνων
Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Εργαστήριο Επεξεργασίας Ιατρικού Σήματος & Εικόνας Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΛΓΕΒΡΑ BOOLE 2017, Δρ. Ηρακλής Σπηλιώτης Γενικοί ορισμοί Αλγεβρική δομή είναι ένα σύνολο στοιχείων και κάποιες συναρτήσεις με πεδίο ορισμού αυτό το σύνολο. Αυτές οι συναρτήσεις
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 3: Ελαχιστοποίηση σε επίπεδο τιμών, Χάρτες Karnaugh, Πρωτεύοντες όροι Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων
5.2 ΑΠΛΟΠΟΙΗΣΗ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΚΑΤΑΤΑΞΗΣ ΣΕ ΠΙΝΑΚΑ
5.2 ΑΠΛΟΠΟΙΗΣΗ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΚΑΤΑΤΑΞΗΣ ΣΕ ΠΙΝΑΚΑ 5.2. Εισαγωγή Αν η λογική συνάρτηση που πρόκειται να απλοποιήσουμε έχει περισσότερες από έξι μεταβλητές τότε η μέθοδος απλοποίησης με Χάρτη Καρνώ χρειάζεται
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 6 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 6 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Συνδυαστική Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ψηφιακά Κυκλώματα Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά (combinational)
Εισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211
Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χάρτες Karnaugh, Οικουµενικές Πύλες (NAND & NOR) και Αποκλειστικό Η (ΧΟR) Εβδοµάδα: 3 Εργαστήριο Ψηφιακών Συστηµάτων
5. ΤΕΧΝΙΚΕΣ ΑΠΛΟΠΟΙΗΣΗΣ
. ΤΕΧΝΙΚΕΣ ΑΠΛΟΠΟΙΗΣΗΣ. ΑΠΛΟΠΟΙΗΣΗ ΜΕ ΧΑΡΤΗ ΚΑΡΝΩ (Karnaugh).. Εισαγωγή Οι λογικές συναρτήσεις που προκύπτουν από τη λύση ενός πρακτικού προβλήματος δεν είναι πάντα στην απλούστερη μορφή τους. Μπορεί και
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Παράσταση αριθμών «κινητής υποδιαστολής» floating point
Παράσταση αριθμών «κινητής υποδιαστολής» floating point Με n bits μπορούμε να παραστήσουμε 2 n διαφορετικούς αριθμούς π.χ. με n=32 μπορούμε να παραστήσουμε τους αριθμούς από έως 2 32 -= 4,294,967,295 4
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ, Θεωρητικής Κατεύθυνσης Ημερομηνία
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 6 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Στα προηγούμενα μaθήματα Συστήματα
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,