STATISTICAL ANALYSIS OF APPLETON-WHITTELL RESEARCH RANCH INSECT COMMUNITY DATA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "STATISTICAL ANALYSIS OF APPLETON-WHITTELL RESEARCH RANCH INSECT COMMUNITY DATA"

Transcript

1 STATISTICAL ANALYSIS OF APPLETON-WHITTELL RESEARCH RANCH INSECT COMMUNITY DATA Prepared for Dr. Sandy DeBano Agricultural Research Station Oregon State University Hermiston, Oregon January 2003 by Greg Brenner Pacific Analytics PO Box 219 Albany, OR (541)

2 Prepared by: Pacific Analytics, L.L.C. Post Office Box 219 Albany, Oregon Tel. (541) Gregory Brenner Senior Associate / Project Manager Final Report of Statistical Analysis of Ashland Microarthropod Data By Pacific Analytics,L.L.C.

3 STATISTICAL ANALYSIS OF APPLETON-WHITTELL RESEARCH RANCH INSECT COMMUNITY DATA I. TABLE OF CONTENTS I. Table of Contents... 1 II. Executive Summary... 3 III. Introduction... 5 Summary of the experiment and objectives... 5 Questions of Interest... 5 Populations of Interest... 5 Sampling Design... 6 Data Matrix... 6 Structure of the Experiment... 7 IV. Statistical Procedures... 8 Summary Statistics... 8 Dataset Reduction... 8 Similarity Indices Multivariate Analysis V. Results A. Pitfall Species Species List Similarity Indices Ordination Principal Coordinate Analysis (ORD) TWINSPAN Nonmetric Multidimensional Scaling (NMDS) B. Sweep net Species Species List Similarity Indices Ordination TABLE OF CONTENTS Page 2

4 Principal Coordinate Analysis (ORD) TWINSPAN Nonmetric Multidimensional Scaling (NMDS) Multigroup Discriminant Analysis (MDA) VI. Discussion VII. Bibliography TABLE OF CONTENTS Page 3

5 II. EXECUTIVE SUMMARY This is a report of the results of statistical analysis of insect community data collected in grazed and ungrazed sampling sites on the Appleton- Whittell Research Ranch and nearby ranches. The data were received from the Dr. Sandy DeBano, OSU Hermiston Agricultural Research Station. Data to be analyzed were counts of species collected in pitfall traps and in sweep nets on the sampling sites. Questions of interest were defined after an initial consultation and discussion. A list of those questions of interest is included in this report. The report includes a summary of the project and discussion of the structure of the data, the explanatory and response variables, and the statistical procedures employed in the analysis. After reducing the number of species for analysis to those defined as not rare, the data were analyzed using multivariate techniques to discover patterns in the distributions of species. Specifically, the data were first analyzed using Principal Coordinate Analysis (ORD) and Principal Component Analysis (PCA) to find general ordination patterns of the sites in species space. The resulting ORD configurations were rescaled using Nonmetric Multidimensional Scaling (NMDS). The data were also inspected using cluster and Two-Way Indicator Species Analysis (TWINSPAN) techniques to find spatial relationships between logical groups sampling sites. The affinities of the members of the groups and distance relationships between groups were investigated using EXECUTIVE SUMMARY Page 4

6 Multigroup Discriminant Analysis. The results of these analyses are reported and statistical inferences discussed. Data decks, analysis output files, and electronic copies of this report are provided on an accompanying CD. This work is in partial fulfillment of a Professional Services Contract EXECUTIVE SUMMARY Page 5

7 III. INTRODUCTION Summary of the experiment and objectives This was a study designed to investigate the patterns of insect diversity and species distributions in grazed and ungrazed plots on several ranches in southeastern Arizona. The work was part of a PhD research project conducted in 1993 and The goal was to discover new information that would be useful in developing effective management plans for conservation grasslands and the species living in them. Questions of Interest 1. What species characterize the community composition at grazed and ungrazed sites in southeastern Arizona? 2. What species of insects may be particularly sensitive to grazing pressure? 3. What is the strength of the association within groups? 4. What is the strength of the association between groups? 5. What insect species contribute to the variations between groups? Populations of Interest The populations of interest are the total counts of adult insect species collected in pitfall traps and sweep net samples on eight grazed and ungrazed ranch plots in southeastern Arizona. INTRODUCTION Page 6

8 Sampling Design Four 30 X 30 m ungrazed sites (not grazed by livestock since 1968) on the Audubon s Appleton-Whittell Research Ranch were paired with 4 similar sites on adjacent active cattle ranches that completely surround it. Sites were paired based on similarities in elevation, topography, soil type, and vegetation type (except for those differences in vegetation due to grazing), and each pair of sites was separated by between 1.0 to 1.8 km. Two of the grazed sites (Sites 2-D and 4-D) were grazed using holistic range management practice, and the other two (Sites 1-D and 3- D) were grazed under more traditional grazing practices. Insects were sampled at the 8 sites approximately biweekly with pitfall traps and sweep nets three times in 1993 (September-November) and four times in 1994 (June-August). Each site was sampled once with 8 pitfall traps per sampling session. Sweep net sampling efforts were made once a day for 4 days per sampling session, so that each site could be sampled once during 4 time periods throughout the day: mid-morning, late-morning, early afternoon, and late afternoon. Each sampling effort consisted of 100 arc-shaped sweeps. Ants were eliminated from the analysis. Data Matrix Insects sampled by pitfall traps and sweep net were separated to morphological species (i.e., based on morphological similarity) and data from both years were combined because of the non-overlapping temporal distribution of sampling (i.e., different parts of the season were sampled each year). All samples from pitfall traps were analyzed. Sweep net INTRODUCTION Page 7

9 sample analyses include all the most common species (greater than 50 individuals for all sampling sessions combined) for both years, all Acrididae (short-horned grasshoppers) for both years, and all insects collected in the first sampling session (September, 1993). Two data sets were made from the samples, 1) pitfall trap species, and 2) sweep net species. Structure of the Experiment Experimental Units Experimental units are eight plots. samples. Response variables Counts of adult insect species in pitfall traps and in sweep net Explanatory variables Grazed and ungrazed treatments INTRODUCTION Page 8

10 IV. STATISTICAL PROCEDURES Summary Statistics The original pitfall trap data set contained abundance information for 101 species. The total abundance of each species was tabulated from the data over the entire sampling period and species were sorted in descending order according to abundance. The original sweep net data set contained abundance information for 239 species. The total abundance of each species was tabulated from the data over the entire sampling period and species were sorted in descending order according to abundance. Dataset Reduction Some of the species were present at very low abundance, an expected condition in biologically diverse communities. Low abundance may indicate truly rare species (i.e., those whose abundance is typically low in the sampled habitats) or species that occur temporarily or accidentally as migrating or vagrant species. Many forest-dwelling arthropods are vagile, and stragglers are often found in habitats where they perform no regular ecological function (or where they are not able to reproduce) (Niemelä 1997). Non-abundant species are typically removed from data analyzed with multivariate techniques because the occurrences are usually due more to chance than some underlying ecological condition (i.e., the absence of a STATISTICAL PROCEDURES Page 9

11 rare species in site traps may be due to chance, not the absence of the species at that site). Sampling artifacts may influence analyses, because outliers (low abundance of rare or vagrant species) increase the statistical noise, often masking underlying patterns (Gaston 1994). Pilanka (1986) recommends eliminating non-abundant species from multivariate analyses, only after careful consideration and with standards applied to all species. After consultation with Dr. DeBano, it was decided to identify pitfall trap species whose average abundance was less than 1.5% of the total pitfall trap captures as non-abundant and candidates for removal from the multivariate analysis. Twenty species were left in the pitfall trap data. Three additional species were eliminated because they occurred at only one sampling site. Seventeen species were used in the Pitfall Trap Data analysis. Sweep net species whose average abundance was less than or equal to 0.15% of the total sweep net captures were identified as non-abundant and candidates for removal from the multivariate analysis. Forty-one species were left for the sweep net data analysis. STATISTICAL PROCEDURES Page 10

12 Similarity Indices Similarity indices measure the ecological relationship of sites based on the abundance of species collected at those sites. The measurements are expressed in the form of an association coefficient. The result is a siteby-site association matrix. More than four dozen similarity indices have been developed and the selection of which to apply is largely personal (Krebs 1989). The performance of similarity indices may be influenced by sample size, number of rare species, and species diversity, and some indices may perform better than others depending on the nature of the community information. Several reviews have described the application of similarity indices and offer guides for their use (e.g., Janson and Vegelius 1981, Wolda 1981, Hubalek 1982, Krebs 1989, Pimentel 1993). The indices can be calculated from binary (presence/absence) data, from qualitative data with multistate variables, or from quantitative data, usually representing some form abundance of species within the sampling units. The data in this analysis are in the latter form, and the association matrices were formed from a site-by-species matrix with counts of the species in each of the eight plots. There are several ecological indices that perform well for analysis of community data. The Percentage Similarity index values between sampling sites were calculated using the insect community data. Of the many quantitative similarity indices available, Percentage Similarity appears to perform very satisfactorily over a diverse set of ecological data sets (Gauch 1982, Ludwig and Reynolds 1988, Krebs 1989). STATISTICAL PROCEDURES Page 11

13 Percentage Similarity is one of the best quantitative indices. It was first proposed by Renkonen (1938) and is sometimes called Renkonen index (Krebs 1989). The index is calculated as: P ( p, p ) = minimum 1i 2i where P = Percentage similarity between samples 1 and 2, p 1i = Percentage of species i in sample 1 p 2i = Percentage of species i in sample 2 The index ranges from 0 (no similarity) to 100 (complete similarity). Sample size and diversity have only small effects on the performance of the index to measure actual similarity between sampling units (Krebs 1989). Multivariate Analysis Ordination It is sometimes useful to sort sampling units into groups based on species composition. Communities of interest may then be designated for research and management purposes. Several techniques have been developed that group similar sampling units. Since low-cost computing has become available, calculation-intensive multivariate statistical analysis has been widely used to discover patterns or relationships between species, communities, and/or environmental factors. Comprehensive discussions of the techniques and their applications in ecological studies are available (e.g., Poole 1974, Gauch 1982, Pielou 1984, Digby and Kempton 1987). STATISTICAL PROCEDURES Page 12

14 Ordination is one of the many multivariate techniques used to analyze community data. Ordination is the collective term for multivariate analytical methods that arrange sampling units along axes such that similar sites are close together and dissimilar sites are far apart. The result is an objective summary of the relationships between sampling units in a low-dimensional species space. The goal is to reveal underlying structure in the data that represent patterns of species occurrence as determined by environmental variables. Principal component analysis (PCA) is perhaps the most popular and widely used ordination technique. The method was developed by Pearson (1901) and refined by Hotelling (1933). It was first used to analyze ecological data by Goodall (1954) and has been used extensively since. Entomologists have successfully used PCA for a wide range of studies including analysis of forest canopy-arthropod community structure (e.g., Schowalter et al. 1988, Schowalter 1995). In PCA, distance measures on component axes are Euclidean and the reduced space is no more than the original variable space with new coordinate axes. The maximum amount of variation is accounted for after minimizing distance distortions. The positions of the sampling units on the axes are determined from the data alone and hence, PCA is an objective rendition of the intrinsic ecological relationships in the data. The method is most efficient when the data have a normal distribution although the method is robust to departures from the ideal structure (Hotelling 1933, Greig-Smith 1980, Gauch 1982). However, the results of STATISTICAL PROCEDURES Page 13

15 PCA are strongly influenced by non-linear relationships between sampling units (Gauch 1982). When habitat diversity is large and environmental gradients complex, the true ecological proximity between sampling units often lies along a curved response. In this situation, PCA ordination distorts ecological distances between sampling units, with some appearing much more closely related than they really are (Digby and Kempton1987). This horseshoe effect is compensated for in other analytical methods. Principal Coordinate Analysis (ORD) is one such ordination method. The method was developed by Gower (1966) and is a generalization of Principal Component Analysis ordination (PCA). A sampling unit similarity matrix is the starting basis of comparison. The result of the method is a representation of sampling unit on axes that approximate total relationships between sampling units and that yields the best overall solution (Pimentel 1993). The method is useful in exploring gradients and ecological communities, and is less influenced by nonlinear relationships than PCA (Gauch 1982, Pimentel 1993). Appleton-Whittell Research Ranch insect community data were analyzed using ORD. Final configurations of three axes combinations showing sampling sites were plotted. The sampling site ORD scores for the first ten axes were output further analysis. The Final configuration was further evaluated using Nonmetric Multidimensional Scaling (NMDS). NMDS is ordination technique that uses rank order information from a similarity matrix, rather than the metric information, to evaluate ordinal STATISTICAL PROCEDURES Page 14

16 relationships between sampling units. The intention is to eliminate the strong and problematic assumption of linearity of species responses to underlying environmental gradients made by other ordination methods. NMDS relies on a weaker assumption of monotonicity (i.e., f(x 1 ) < f(x 2 ) for all x 1 < x 2 ). The goal of NMDS is to locate sampling units in a lowdimensional ordination space in such a manner that the interpoint distances in the ordination have the same rank order as do the interpoint similarities in the similarity matrix. NMDS is more robust when the input trial vectors are derived from another robust ordination method such as ORD. Use of randomly generated coordinates is not recommended because of the possibility of arriving at an invalid solution. Input trial vectors from ORD provide greater assurance of obtaining a global minimum solution. Random trial vectors are more likely to result in local minimum solutions (Pimentel 1993). Random trial vector results are also more susceptible to non-linear relationships between sampling units (like PCA results) and final configurations can suffer from arch distortion (Gauch 1982). Trial vectors from ORD were analyzed using NMDS. Final NMDS configurations of three axes combinations showing sampling sites were plotted. STATISTICAL PROCEDURES Page 15

17 Classification Classification is the grouping or clustering of sampling units based on some measure of their resemblance. The purpose is to summarize large data sets and aid in interpretation of community structure. Two-Way Indicator Species Analysis (TWINSPAN) is a classification procedure designed for ecological studies (Hill 1979, Gauch and Whittaker 1981, Jongman et al., 1995). The procedure simultaneously forms groups of sites with similar species composition and groups of species with similar site distributions. The classification is accomplished by transforming each species abundance data into one or more pseudospecies presence/absence. The more abundant a species, the more pseudo-species are created. Dichotomies are created by ordinating the samples with correspondence analysis (Hill 1973), making the first division at the centroid. The result is a dendogram that illustrates the hierarchical relationships between the groups. The higher the order grouping, the more dissimilar are the groups. Only dendograms of the sampling site groups are shown for the analysis of the Appleton-Whittell Research Ranch insect community data. Multigroup Discriminant Analysis (MDA) is another of the multivariate classification methods. The technique evaluates the within and between variation of a priori groups. MDA forms linear combinations of the variables (coordinate axes) that have the greatest between-group variation relative to their within-group variation (Digby and Kempton 1987). The resulting canonical axes represent combinations of variables, STATISTICAL PROCEDURES Page 16

18 the first canonical axis comprised of variables that maximize group differences. The accuracy of community analysis using MDA relies on the validity of assumptions made about the distributional properties of the data. The assumptions are the same as those of ANOVA, and include 1) random sampling; 2) normality; 3) independence of errors; and 4) equality of population dispersions (homoscedasticity). Species-by-site abundance data rarely satisfy these assumptions, however a failure of one or more of the assumptions does not necessarily invalidate the analysis (Pimentel 1993, Manly 1986, Digby and Kempton 1987). The axes that result from ORD have standardized normal distributions and are therefore ideal for use in MDA. Vectors from the first four principal coordinate axes from ORD were analyzed using MDA. Euclidean and Generalized (Standard Deviation) distances and 95% confidence radii about the group centroids were calculated. The treatment groups were classified by Geisser Classification into predicted groups and the results were compared to a priori group assignments. STATISTICAL PROCEDURES Page 17

19 V. RESULTS Species List A. PITFALL TRAP SPECIES Table V-A.1. PITFALL TRAP Species List. A list of the species in the PITFALL TRAP - Analytical Group 1, the total number of each species captures, and the proportion of the total number of individuals captured in pitfall traps. Order Species Total Proportion Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Diptera Diptera Diptera Diptera Diptera RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 18

20 Order Species Total Proportion Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Homoptera Homoptera Homoptera Homoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 19

21 Order Species Total Proportion Hymenoptera Hymenoptera Hymenoptera Hymenoptera Lepidoptera Lepidoptera Lepidoptera Lepidoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera Orthoptera RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 20

22 Table V-A.2. PITFALL TRAP Species List. A list of the species from the PITFALL TRAP used for analysis in Analytical Group 1, the total number of each species captures, and the proportion of the total number of individuals captured in pitfall traps. Order Species Total Proportion Hemiptera Coleoptera Homoptera Orthoptera Hemiptera Lepidoptera Coleoptera Lepidoptera Diptera Orthoptera Coleoptera Diptera Coleoptera Orthoptera Coleoptera Diptera Orthoptera RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 21

23 Similarity Indices Percentage Similarity Table V-A.3. PITFALL TRAP SPECIES Percentage Similarity Index. Site-by-site matrix of Percentage Similarity association coefficients calculated from Appleton- Whittell Research Ranch insect community data. SITES Site 1 Site 2 Site 3 Site 4 Site 1-D Site 2-D Site 3-D Site 4-D Site Site Site Site Site 1-D Site 2-D Site 3-D Site 4-D Table V-A.4. PITFALL TRAP SPECIES Percentage Dissimilarity Index. Site-by-site matrix of Percentage Dissimilarity association coefficients calculated from Appleton-Whittell Research Ranch insect community data. SITES Site 1 Site 2 Site 3 Site 4 Site 1-D Site 2-D Site 3-D Site 4-D Site Site Site Site Site 1-D Site 2-D Site 3-D Site 4-D The dissimilarity association matrix in Table V-A.4 was used in the ORD ordination analysis. RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 22

24 Ordination Principal Coordinate Analysis (ORD) Principal Coordinate Correlations Correlations of the seventeen species with the Principal Coordinate Axes were obtained using Principal Component Analysis (PCA) (Table V-A.5). The strength of the association of a species with a Principal Coordinate is represented by the magnitude of the correlation (absolute value). In Tables V-A.6 through V-A.11 the species are sorted by the strength of their correlation with Principal Components 1 through 6. The species with the highest associations appear at the top of the tables, along with their Principal Component axis correlation. Table V-A.5. PITFALL TRAP SPECIES Principal Component Correlations. The correlations of the 17 species with the 6 Principal Component axes obtained from PCA analysis of Appleton-Whittell Research Ranch insect community data. Species AXIS 1 AXIS 2 AXIS 3 AXIS 4 AXIS 5 AXIS 6 Hemiptera Coleoptera Homoptera Orthoptera Hemiptera Lepidoptera Coleoptera Lepidoptera Diptera Orthoptera Coleoptera Diptera Coleoptera Orthoptera Coleoptera Diptera Orthoptera RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 23

25 Table V-A.6. PITFALL TRAP SPECIES Principal Component Correlations. The correlations of the 17 species with the Principal Component Axis 1 obtained from PCA analysis of Appleton-Whittell Research Ranch insect community data. Species AXIS 1 Homoptera Coleoptera Coleoptera Diptera Diptera Hemiptera Lepidoptera Orthoptera Hemiptera Diptera Orthoptera Coleoptera Coleoptera Lepidoptera Coleoptera Orthoptera Orthoptera RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 24

26 Table V-A.7. PITFALL TRAP SPECIES Principal Component Correlations. The correlations of the 17 species with the Principal Component Axis 2 obtained from PCA analysis of Appleton-Whittell Research Ranch insect community data. Species AXIS 2 Coleoptera Homoptera Hemiptera Diptera Hemiptera Coleoptera Coleoptera Orthoptera Lepidoptera Orthoptera Lepidoptera Orthoptera Diptera Diptera Coleoptera Orthoptera Coleoptera RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 25

27 Table V-A.8. PITFALL TRAP SPECIES Principal Component Correlations. The correlations of the 17 species with the Principal Component Axis 3 obtained from PCA analysis of Appleton-Whittell Research Ranch insect community data. Species AXIS 3 Lepidoptera Coleoptera Hemiptera Orthoptera Diptera Coleoptera Orthoptera Lepidoptera Coleoptera Hemiptera Homoptera Orthoptera Coleoptera Orthoptera Diptera Coleoptera Diptera RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 26

28 Table V-A.9. PITFALL TRAP SPECIES Principal Component Correlations. The correlations of the 17 species with the Principal Component Axis 4 obtained from PCA analysis of Appleton-Whittell Research Ranch insect community data. Species AXIS 4 Hemiptera Orthoptera Coleoptera Coleoptera Hemiptera Diptera Orthoptera Coleoptera Lepidoptera Diptera Orthoptera Lepidoptera Orthoptera Homoptera Diptera Coleoptera Coleoptera RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 27

29 Table V-A.10. PITFALL TRAP SPECIES Principal Component Correlations. The correlations of the 17 species with the Principal Component Axis 5 obtained from PCA analysis of Appleton-Whittell Research Ranch insect community data. Species AXIS 5 Coleoptera Hemiptera Orthoptera Lepidoptera Hemiptera Coleoptera Orthoptera Orthoptera Coleoptera Orthoptera Diptera Coleoptera Diptera Homoptera Lepidoptera Coleoptera Diptera RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 28

30 Table V-A.11. PITFALL TRAP SPECIES Principal Component Correlations. The correlations of the 17 species with the Principal Component Axis 6 obtained from PCA analysis of Appleton-Whittell Research Ranch insect community data. Species AXIS 6 Diptera Orthoptera Coleoptera Orthoptera Hemiptera Lepidoptera Coleoptera Coleoptera Diptera Homoptera Coleoptera Orthoptera Diptera Hemiptera Orthoptera Lepidoptera Coleoptera RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 29

31 Percentage Variance The importance of the Principal Coordinate axes is measured by the amount of total variance accounted for by those axes. By definition, the first axis accounts for the most variation, and the proportion of the total variance decreases with succeeding axes. It is important to report the amount of total variance accounted for in the axes that are discussed in a scientific paper. The amount of total variance accounted for, in a way, alludes to the strength of the analysis, somewhat similar to an R 2 value in a regression analysis. For example, reporting that the first three axes account for percent of the total variance is equivalent to saying the R 2 value of the analysis is It is up to the reader to determine whether enough of the variance was accounted for, and therefore estimate the strength of the conclusions. Table V-A.12. PITFALL TRAP SPECIES Percentage Variance and Cumulative Variance for Principal Coordinate Axes. The percentage of the total variance and the cumulative variance for the Principal Coordinate Axes resulting from PCA analysis of the Appleton-Whittell Research Ranch insect community data. Axes EIGENVALUE % VARIANCE CUM. % RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 30

32 Site Principal Coordinate Axes Scores Included in the results of ORD are the scores (position) of the sampling sites on the Principal Coordinate Axes. These scores are used to produce graphs (Figures V-A.1, V-A.2, and V-A.3), to explore the structure of the data, and to form hypotheses about group associations for the sampling sites. Table V-A.13. PITFALL TRAP SPECIES Principal Coordinate Axes Scores. The scores (positions) of the sampling sites on the Principal Coordinate Axes obtained from ORD analysis of the Appleton-Whittell Research Ranch insect community data. SITE AXIS 1 AXIS 2 AXIS 3 AXIS 4 AXIS 5 AXIS D D D D Principal Coordinate Axes Ordinations Ordinations derived from ORD analysis of the Appleton-Whittell Research Ranch insect community data are plotted in three axes combinations. It is standard to report Axis 1 vs. Axis 2, Axis 1 vs. Axis 3, and Axis 2 vs. Axis 3. Other plots can be constructed using the information in Table V- A.13. RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 31

33 PITFALL TRAP SPECIES ORDINATION 0.4 Site 2 Site 4-D Site 3-D Site PRINCIPAL COORDINATE AXIS Site 1-D Site 1 Site 2-D Site PRINCIPAL COORDINATE AXIS 1 Figure V-A.1. PITFALL TRAP SPECIES Principal Coordinate Analysis Ordination, Axis 1 vs. Axis 2. RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 32

34 PITFALL TRAP SPECIES ORDINATION Site 1-D Site 4-D 0.4 PRINCIPAL COORDINATE AXIS Site 1 Site 3-D Site 2-D Site Site Site PRINCIPAL COORDINATE AXIS 1 Figure V-A.2. PITFALL TRAP SPECIES Principal Coordinate Analysis Ordination, Axis 1 vs. Axis 3. RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 33

35 PITFALL TRAP SPECIES ORDINATION Site 1-D Site 4-D 0.4 PRINCIPAL COORDINATE AXIS Site 2-D Site 1 Site Site 3-D Site Site PRINCIPAL COORDINATE AXIS 2 Figure V-A.3. PITFALL TRAP SPECIES Principal Coordinate Analysis Ordination, Axis 2 vs. Axis 3. RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 34

36 TWINSPAN Groupings Two-Way Indicator Species Analysis (TWINSPAN) was used to form groups of the sampling sites based on species abundance rather than on dissimilarity indices as in Ordination. TWINSPAN provides another relatively unbiased method of forming groups. The results of TWINSPAN are usually presented as a dendogram. Sites with similar community composition appear in groups. The differences between groups can be determined from the point of departure on the dendogram scale. The higher order the departure, the greater the group differences. This scale is not presented in this report because the biological basis of the groups was not clear. TWINSPAN resulted in the following groupings for the sampling sites (color-coded for viewing convenience). Table V-A.14. PITFALL TRAP SPECIES TWINSPAN Groups. The groups of sampling sites resulting from TWINSPAN of the Appleton-Whittell Research Ranch insect community data. Sampling Site 1 st Order group 2 nd Order Group Site Site 1-D Site 2-D Site Site Site Site 3-D... 1 Site 4-D... 1 RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 35

37 Nonmetric Multidimensional Scaling (NMDS) The vectors from the first six ORD axes were evaluated using NMDS. The results are presented as ordination plots of three axes configurations (Figures V-A.4, V-A.5, and V-A.6). These plots should be viewed to confirm ordination results obtained from ORD (Figures V-A.1, V-A.2, and V-A.3). Table V-A.15. PITFALL TRAP SPECIES Nonmetric Multidimensional Scaling Axes Scores. The scores (positions) of the sampling sites on the rescaled axes obtained from NMDS analysis of the Appleton-Whittell Research Ranch insect community data. SITE AXIS 1 AXIS 2 AXIS 3 AXIS 4 AXIS 5 AXIS D D D D After consultation with the client, it was decided that group configurations revealed by ORD, TWINSPAN, and NMDS had no clear biological meaning and therefore, there was no further analysis necessary. RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 36

38 PITFALL TRAP SPECIES NMDS ORDINATION 0.6 Site 3-D 0.4 Site 2 Site 4-D Site NMDS AXIS Site 1-D Site Site 2-D -0.6 Site NMDS AXIS 1 Figure V-A.4. PITFALL TRAP SPECIES NMDS Ordination Axis 1 vs. Axis 2. RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 37

39 PITFALL TRAP SPECIES NMDS ORDINATION 0.8 Site 4-D 0.6 Site 1-D NMDS AXIS 3 0 Site 1 Site 2-D Site 3-D Site Site Site NMDS AXIS 1 Figure V-A.5. PITFALL TRAP SPECIES NMDS Ordination Axis 1 vs. Axis 3. RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 38

40 PITFALL TRAP SPECIES NMDS ORDINATION 0.8 Site 4-D 0.6 Site 1-D NMDS AXIS 3 0 Site 2-D Site 1 Site 3-D -0.2 Site 3 Site Site NMDS AXIS 2 Figure V-A.6. PITFALL TRAP SPECIES NMDS Ordination Axis 2 vs. Axis 3. RESULTS ANALYTICAL GROUP 1 PITFALL TRAP SPECIES Page 39

41 Species List B. SWEEP NET SPECIES Table V-B.1. SWEEP NET Species List. A list of the species in the SWEEP NET - Analytical Group 2, the total number of each species captures, and the proportion of the total number of individuals captured in pitfall traps. Order Species Total Proportion Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera RESULTS ANALYTICAL GROUP 2 SWEEP NET SPECIES Page 40

42 Order Species Total Proportion Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Coleoptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera RESULTS ANALYTICAL GROUP 2 SWEEP NET SPECIES Page 41

43 Order Species Total Proportion Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Diptera Hemiptera RESULTS ANALYTICAL GROUP 2 SWEEP NET SPECIES Page 42

44 Order Species Total Proportion Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Hemiptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera RESULTS ANALYTICAL GROUP 2 SWEEP NET SPECIES Page 43

45 Order Species Total Proportion Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Homoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera RESULTS ANALYTICAL GROUP 2 SWEEP NET SPECIES Page 44

46 Order Species Total Proportion Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Hymenoptera Lepidoptera Lepidoptera Lepidoptera Lepidoptera Lepidoptera Lepidoptera Lepidoptera Lepidoptera Lepidoptera Lepidoptera Mantidae Neuroptera Neuroptera Neuroptera Neuroptera Orthoptera ag deo Orthoptera am co Orthoptera ar ps Orthoptera au fe Orthoptera bo fl Orthoptera co cr Orthoptera da va Orthoptera er si Orthoptera ha tr Orthoptera he ru Orthoptera he ve Orthoptera le ro Orthoptera me az Orthoptera me de Orthoptera me gl Orthoptera me la Orthoptera me me Orthoptera me re Orthoptera op ob RESULTS ANALYTICAL GROUP 2 SWEEP NET SPECIES Page 45

47 Order Species Total Proportion Orthoptera pa wy Orthoptera ph ne Orthoptera po pa Orthoptera ps de Orthoptera ps te Orthoptera sp Orthoptera sp Orthoptera sp Orthoptera tr me Orthoptera tr pa Phasmatidae RESULTS ANALYTICAL GROUP 2 SWEEP NET SPECIES Page 46

48 Table V-B.2. SWEEP NET Species List. A list of the species from the SWEEP NET used for analysis in Analytical Group 2, the total number of each species captures, and the proportion of the total number of individuals captured in sweep nets. Order Species Total Proportion Homoptera Hemiptera Homoptera Coleoptera Homoptera Homoptera Homoptera Homoptera Orthoptera pa wy Orthoptera sp Orthoptera er si Orthoptera da va Coleoptera Coleoptera Orthoptera he ve Orthoptera me de Orthoptera ps de Orthoptera ag deo Orthoptera ps te Diptera Orthoptera co cr Homoptera Coleoptera Diptera Orthoptera tr me Coleoptera Coleoptera Diptera Orthoptera au fe Orthoptera op ob Coleoptera Orthoptera po pa Coleoptera Homoptera Homoptera RESULTS ANALYTICAL GROUP 2 SWEEP NET SPECIES Page 47

49 Order Species Total Proportion Orthoptera am co Coleoptera Homoptera Diptera Hemiptera Orthoptera me me RESULTS ANALYTICAL GROUP 2 SWEEP NET SPECIES Page 48

50 Similarity Indices Percentage Similarity Table V-B.3. SWEEP NET SPECIES Percentage Similarity Index. Site-by-site matrix of Percentage Similarity association coefficients calculated from Appleton- Whittell Research Ranch insect community data. SITES Site 1 Site 2 Site 3 Site 4 Site 1-D Site 2-D Site 3-D Site 4-D Site Site Site Site Site 1-D Site 2-D Site 3-D Site 4-D Table V-B.4. SWEEP NET SPECIES Percentage Dissimilarity Index. Site-by-site matrix of Percentage Dissimilarity association coefficients calculated from Appleton-Whittell Research Ranch insect community data. SITES Site 1 Site 2 Site 3 Site 4 Site 1-D Site 2-D Site 3-D Site 4-D Site Site Site Site Site 1-D Site 2-D Site 3-D Site 4-D The dissimilarity association matrix in Table V-B.4 was used in the ORD ordination analysis. RESULTS ANALYTICAL GROUP 2 SWEEP NET SPECIES Page 49

51 Ordination Principal Coordinate Analysis (ORD) Principal Coordinate Correlations Correlations of the seventeen species with the Principal Coordinate Axes were obtained using Principal Component Analysis (PCA) (Table V-B.5). The strength of the association of a species with a Principal Coordinate is represented by the magnitude of the correlation (absolute value). In Tables V-B.6 through V-B.11 the species are sorted by the strength of their correlation with Principal Components 1 through 6. The species with the highest associations appear at the top of the tables, along with their Principal Component axis correlation. Table V-B.5. SWEEP NET SPECIES Principal Component Correlations. The correlations of the 41 species with the 6 Principal Component axes obtained from PCA analysis of Appleton-Whittell Research Ranch insect community data. AXIS AXIS AXIS AXIS AXIS AXIS Order Species Homoptera Hemiptera Homoptera Coleoptera Homoptera Homoptera Homoptera Homoptera Orthoptera pa wy Orthoptera sp Orthoptera er si Orthoptera da va Coleoptera Coleoptera Orthoptera he ve Orthoptera me de RESULTS ANALYTICAL GROUP 2 SWEEP NET SPECIES Page 50

52 AXIS AXIS AXIS AXIS AXIS AXIS Order Species Orthoptera ps de Orthoptera ag deo Orthoptera ps te Orthoptera co cr Diptera Homoptera Coleoptera Diptera Orthoptera tr me Coleoptera Diptera Coleoptera Orthoptera au fe Orthoptera op ob Coleoptera Orthoptera po pa Orthoptera am co Homoptera Homoptera Coleoptera Homoptera Coleoptera Hemiptera Orthoptera me me Diptera RESULTS ANALYTICAL GROUP 2 SWEEP NET SPECIES Page 51

53 Table V-B.6. SWEEP NET SPECIES Principal Component Correlations. The correlations of the 41 species with the Principal Component Axis 1 obtained from PCA analysis of Appleton-Whittell Research Ranch insect community data. Order Species AXIS 1 Orthoptera op ob Coleoptera Homoptera Homoptera Orthoptera er si Orthoptera da va Diptera Orthoptera po pa Coleoptera Orthoptera am co Homoptera Orthoptera sp Orthoptera co cr Hemiptera Homoptera Orthoptera tr me Coleoptera Homoptera Homoptera Orthoptera ps te Orthoptera me me Coleoptera Diptera Hemiptera Orthoptera ag deo Homoptera Homoptera Orthoptera me de Orthoptera au fe Diptera Diptera Homoptera Coleoptera Coleoptera RESULTS ANALYTICAL GROUP 2 SWEEP NET SPECIES Page 52

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment Contents Preface ix Part 1 Introduction Chapter 1 Introduction to Observational Studies... 3 1.1 Observational vs. Experimental Studies... 3 1.2 Issues in Observational Studies... 5 1.3 Study Design...

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΟΛΟΚΛΗΡΩΜΕΝΗ ΑΝΑΠΤΥΞΗ & ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΑΓΡΟΤΙΚΟΥ ΧΩΡΟΥ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Οικονομετρική διερεύνηση

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ» I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Block Ciphers Modes. Ramki Thurimella

Block Ciphers Modes. Ramki Thurimella Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Repeated measures Επαναληπτικές μετρήσεις

Repeated measures Επαναληπτικές μετρήσεις ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE) EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

Nuclear Physics 5. Name: Date: 8 (1)

Nuclear Physics 5. Name: Date: 8 (1) Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ Νικόλας Χριστοδούλου Λευκωσία, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο την απόκτηση του διπλώματος «Οργάνωση και Διοίκηση Βιομηχανικών Συστημάτων με εξειδίκευση στα Συστήματα Εφοδιασμού

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους

Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΔΙΑΤΡΟΦΗΣ ΚΑΙ ΔΙΑΙΤΟΛΟΓΙΑΣ Πτυχιακή Εργασία Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους Εκπόνηση:

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u .6.5. y = -.4x +.8 R =.9574 y = - x +.14 R =.9788 y = -.4 x +.7 R =.9896 Si + Al Fe + Mn +Ni y =.55 x.36 R =.9988.149.148.147.146.145..88 core rim.144 4 =.6 ±.6 4 =.6 ±.18.84.88 p.f.u..86.76 y = -3.9 x

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΑΝΔΡΕΟΥ ΣΤΕΦΑΝΙΑ Λεμεσός 2012 i ii ΤΕΧΝΟΛΟΓΙΚΟ

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

DOUGLAS FIR BEETLE TRAP-SUPPRESSION STUDY STATISTICAL REPORT

DOUGLAS FIR BEETLE TRAP-SUPPRESSION STUDY STATISTICAL REPORT DOUGLAS FIR BEETLE TRAP-SUPPRESSION STUDY STATISTICAL REPORT Prepared for Dr. Robert Progar U.S. Forest Service Forest Sciences Laboratory Corvallis, Oregon January 2005 By Greg Brenner Pacific Analytics

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση κατά του ιού της γρίπης Σε δομές του νομού Λάρισας

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση κατά του ιού της γρίπης Σε δομές του νομού Λάρισας ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΩΤΟΒΑΘΜΙΑ ΦΡΟΝΤΙΔΑ ΥΓΕΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας» ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη

Διαβάστε περισσότερα

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης Διπλωματική Εργασία Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική Αντωνίου Φάνης Επιβλέπουσες: Θεοδώρα Παπαδοπούλου, Ομότιμη Καθηγήτρια ΕΜΠ Ζάννη-Βλαστού Ρόζα, Καθηγήτρια

Διαβάστε περισσότερα

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3: 4 Πρόλογος Η παρούσα διπλωµατική εργασία µε τίτλο «ιερεύνηση χωρικής κατανοµής µετεωρολογικών µεταβλητών. Εφαρµογή στον ελληνικό χώρο», ανατέθηκε από το ιεπιστηµονικό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ-ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΠΡΟΓΡΑΜΜΑΤΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΤΟΜΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΚΑΙ ΤΗΝ ΚΟΙΝΩΝΙΚΗ ΤΟΥΣ ΕΝΣΩΜΑΤΩΣΗ

ΑΝΑΠΤΥΞΗ ΠΡΟΓΡΑΜΜΑΤΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΤΟΜΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΚΑΙ ΤΗΝ ΚΟΙΝΩΝΙΚΗ ΤΟΥΣ ΕΝΣΩΜΑΤΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ ΧΡΙΣΤΙΝΑ Σ. ΛΑΠΠΑ ΑΝΑΠΤΥΞΗ ΠΡΟΓΡΑΜΜΑΤΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΤΟΜΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΚΑΙ ΤΗΝ ΚΟΙΝΩΝΙΚΗ ΤΟΥΣ

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog J. Jpn. Soc. Soil Phys. No. +*-, p.-3.1,**0 ** * *** Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog Toshiki FUJIMOTO*, Ippei IIYAMA*, Mai SAKAI*, Osamu

Διαβάστε περισσότερα

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)] d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ Π Τ Υ Χ Ι Α Κ Η Ε Ρ Γ Α Σ Ι Α: Ο ΡΟΛΟΣ ΤΗΣ ΣΥΝΑΙΣΘΗΜΑΤΙΚΗΣ ΝΟΗΜΟΣΥΝΗΣ ΣΤΗΝ ΑΠΟΤΕΛΕΣΜΑΤΙΚΗ ΗΓΕΣΙΑ ΕΠΙΜΕΛΕΙΑ

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ

Διαβάστε περισσότερα

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗΣ ΠΡΟΣΤΑΣΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΒΙΩΣΙΜΗ ΑΝΑΠΤΥΞΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΙΕΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ

Διαβάστε περισσότερα

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0 Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ - ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) "ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ" 2 η ΚΑΤΕΥΘΥΝΣΗ

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE

Διαβάστε περισσότερα

1) Abstract (To be organized as: background, aim, workpackages, expected results) (300 words max) Το όριο λέξεων θα είναι ελαστικό.

1) Abstract (To be organized as: background, aim, workpackages, expected results) (300 words max) Το όριο λέξεων θα είναι ελαστικό. UΓενικές Επισημάνσεις 1. Παρακάτω θα βρείτε απαντήσεις του Υπουργείου, σχετικά με τη συμπλήρωση της ηλεκτρονικής φόρμας. Διευκρινίζεται ότι στα περισσότερα θέματα οι απαντήσεις ήταν προφορικές (τηλεφωνικά),

Διαβάστε περισσότερα

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points. φ φ φ φ Figure 1 Resampling of a rock-physics model from velocity-porosity to lithology-porosity space. C i are model results for various clay contents. φ ρ ρ δ Figure 2 Bulk modulus constraint cube in

Διαβάστε περισσότερα

About these lecture notes. Simply Typed λ-calculus. Types

About these lecture notes. Simply Typed λ-calculus. Types About these lecture notes Simply Typed λ-calculus Akim Demaille akim@lrde.epita.fr EPITA École Pour l Informatique et les Techniques Avancées Many of these slides are largely inspired from Andrew D. Ker

Διαβάστε περισσότερα

Correction Table for an Alcoholometer Calibrated at 20 o C

Correction Table for an Alcoholometer Calibrated at 20 o C An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ Πτυχιακή εργασία ΜΕΛΕΤΗ ΠΟΛΥΦΑΙΝΟΛΩΝ ΚΑΙ ΑΝΤΙΟΞΕΙΔΩΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΣΟΚΟΛΑΤΑΣ Αναστασία Σιάντωνα Λεμεσός

Διαβάστε περισσότερα

Φυτοεξυγίανση εδάφους από Cd και Pb με τα αλόφυτα: Halimione portulacoides(l.) Aellen, Tamarix parviflora (DC) και Limoniastrum monopetalum (L.

Φυτοεξυγίανση εδάφους από Cd και Pb με τα αλόφυτα: Halimione portulacoides(l.) Aellen, Tamarix parviflora (DC) και Limoniastrum monopetalum (L. ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Π.Μ.Σ.: Περιβαλλοντική και Υγειονομική Μηχανική Μεταπτυχιακή Διατριβή Φυτοεξυγίανση εδάφους από Cd και Pb με τα αλόφυτα: Halimione portulacoides(l.) Aellen,

Διαβάστε περισσότερα

MSM Men who have Sex with Men HIV -

MSM Men who have Sex with Men HIV - ,**, The Japanese Society for AIDS Research The Journal of AIDS Research HIV,0 + + + + +,,, +, : HIV : +322,*** HIV,0,, :., n,0,,. + 2 2, CD. +3-ml n,, AIDS 3 ARC 3 +* 1. A, MSM Men who have Sex with Men

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Μελέτη των υλικών των προετοιμασιών σε υφασμάτινο υπόστρωμα, φορητών έργων τέχνης (17ος-20ος αιώνας). Διερεύνηση της χρήσης της τεχνικής της Ηλεκτρονικής Μικροσκοπίας

Διαβάστε περισσότερα

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ» ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων» Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων

Διαβάστε περισσότερα