ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ. Αιολική ενέργεια. 1o Μάθημα. Δ. Κουζούδης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ. Αιολική ενέργεια. 1o Μάθημα. Δ. Κουζούδης"

Transcript

1 ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ Αιολική ενέργεια 1o Μάθημα Δ. Κουζούδης

2 Ιστορία της Αιολικής Ενέργειας Η προσπάθεια να αξιοποιηθεί ο άνεμος για την παραγωγή ενέργειας, γνωστή ως αιολική ενέργεια, χρονολογείται από τους αρχαίους ακόμα χρόνους, αφού ως γνωστόν χρησιμοποιήθηκε μέσω ιστίων για την προώθηση πλοίων και σκαφών. Αργότερα, η αιολική ενέργεια υπηρέτησε την ανθρωπότητα μέσω των ανεμόμυλων για την άλεση του σιταριού και την άντληση του νερού. Υπάρχει διαφωνία σχετικά με την πιο αρχαία προέλευση της χρήσης της αιολικής ενέργειας. Μερικοί πιστεύουν ότι η πρώτη χρήση της έλαβε χώρα στην αρχαία Βαβυλωνία όπου ο αυτοκράτορας Χαμουραμπί σχεδίαζε να τη χρησιμοποιήσει για ένα φιλόδοξο αρδευτικό έργο κατά τη διάρκεια του δέκατου έβδομου αιώνα π.χ. Άλλοι ισχυρίζονται ότι ο τόπος γέννησης των πρώτων ανεμόμυλων είναι η Ινδία. Σε ένα κλασικό αρχαίο έργο Arthasastra που γράφτηκε από κάποιον Kautiliya κατά τη διάρκεια του 4ου αιώνα π.χ., παρατηρούνται αναφορές σε νερό που μετακινούταν με τη βοήθεια του ανέμου. Παρόλα αυτά δεν υπάρχουν αποδείξεις ότι αυτές οι ιδέες οδήγησαν σε κάποιον μηχανισμό. Η αρχαιότερη τεκμηρίωση για τον σχεδιασμό ενός ανεμόμυλου χρονολογείται στο 200 π.χ. από τους Πέρσες για την άλεση δημητριακών. Αυτές ήταν μηχανές κάθετου άξονα που έχουν πανιά με πλαίσια από καλάμια ή ξύλο. Το μέγεθος των ιστίων ήταν 5 m επί 9 m. Στον 13ο αιώνα, η χρήση ανεμόμυλων στα ελαιοτριβεία ήταν δημοφιλής στο μεγαλύτερο μέρος της Ευρώπης. Οι Γάλλοι υιοθέτησαν αυτή την τεχνολογία από το 1105 μ.χ. και η Αγγλία από το 1191 μ.χ. Σε αντίθεση με την χρήση του κατακόρυφου άξονα στον Περσικό σχεδιασμό, οι ευρωπαϊκές τεχνολογίες είχαν οριζόντιο άξονα. Η εποχή της ηλεκτρικής γεννήτριας αιολικής ενέργειας (ανεμογεννήτρια) ξεκίνησε κοντά στο Η πρώτη σύγχρονη ανεμογεννήτρια, ειδικά σχεδιασμένη για την παραγωγή ηλεκτρικής ενέργειας, κατασκευάστηκε στη Δανία το Παρείχε ηλεκτρική ενέργεια στις αγροτικές περιοχές. Την ίδια περίοδο, χτίστηκε μια μεγάλη αιολική ηλεκτρική γεννήτρια διαμέτρου 17 m στο Κλίβελαντ του Οχάιο. Για πρώτη φορά, ένα κιβώτιο ταχυτήτων εισήχθη στο σχεδιασμό (η χρήση του θα εξηγηθεί παρακάτω) και η γεννήτρια λειτούργησε για 20 χρόνια παράγοντας μια ονομαστική ισχύ 12 kw. Η εντατική όμως έρευνα για τη συμπεριφορά των ανεμογεννητριών εμφανίστηκε κατά τη διάρκεια της δεκαετίας του 1950 με πρωτοπόρους την ΕΣΣΔ και τη Γερμανία. Μια τυπική ανεμογεννήτρια είχε πτερύγια διαμέτρου 15 m από συνθετικό υλικό με υαλώδεις ίνες και παρήγαγε ονομαστική ισχύ 100 kw. Οι κολώνες τους στηρίζονταν με συρματόσχοινα από ειδικά διαμορφωμένα στηρίγματα στο έδαφος. Όπως βλέπετε, η ιδέα της αιολικής ενέργειας δεν είναι πρόσφατη αλλά εγκαταλείφθηκε το 1950 επειδή η τιμή των ορυκτών καυσίμων έπεσε στα 3-6 λεπτά ανά κιλοβατώρα εν σύγκριση με τα λεπτά από αιολική ενέργεια. Επομένως η αιολική ενέργεια ήταν ασύμφορη για την εποχή εκείνη και δεδομένης και της στατιστικής της φύσης, εγκαταλείφθηκε ως ιδέα εκείνη την εποχή. Η πετρελαϊκή κρίση ωστόσο το 1973, ανάγκασε την επιστημονική κοινότητα, τους μηχανικούς και τους φορείς χάραξης πολιτικής να αναθεωρήσουν την τότε ενεργειακή εξάρτηση της κοινωνίας σχεδόν αποκλειστικά από τα ορυκτά καύσιμα. Λόγω της διεθνής δέσμευσης των κρατών για τη μείωση των εκπομπών αερίων του θερμοκηπίου και για την παροχή επαρκής ενέργειας προς τον αναπτυσσόμενο κόσμο, καταβάλλονται προσπάθειες να συμπληρωθούν οι παραδοσιακές ρυπογόνες τεχνολογίες παραγωγής ενέργειας με ανανεώσιμες πηγές. Αρκετές χώρες έχουν ήδη διατυπώσει πολιτικές που να διασφαλίζουν ότι οι ανανεώσιμες πηγές ενέργειας θα παίξουν κυρίαρχο ρόλο στο μελλοντικό ενεργειακό σενάριο. Για παράδειγμα, η Ευρωπαϊκή Ένωση έχει θέσει ως στόχο να ανεβάσει το ποσοστό της ενέργειας από τις ανανεώσιμες πηγές ενέργειας

3 στο 22 τοις εκατό μέχρι το Ο άνεμος, ως η πιο εμπορικά βιώσιμη και οικονομικά ανταγωνιστική ανανεώσιμη πηγή, θα είναι ο πιο σημαντικός παράγοντας για την επίτευξη αυτού του στόχου. Ως αποτέλεσμα, αναπτύχθηκε μια σειρά από ερευνητικά πρωτότυπα στα μέσα της δεκαετίας του 1980 τόσο με κατακόρυφο όσο με οριζόντιο άξονα. Ωστόσο, αποδείχθηκε ότι μόνο οι ανεμογεννήτριες με οριζόντιο άξονα μπορούσαν να αναδυθούν επιτυχώς σε εμπορική κλίμακα. Ενέργεια Ισχύς Η ενέργεια είναι μια πολύ σημαντική ποσότητα στην σημερινή μοντέρνα κοινωνία η οποία βασίζεται σε αυτή, π.χ. όλοι μας χρησιμοποιούμε ηλεκτρική ενέργεια για όλες τις ηλεκτρικές μας συσκευές, όλοι μας καταναλώνουμε χημική ενέργεια όταν οδηγούμε το αυτοκίνητό μας ή όταν καίμε τον καυστήρα μας για τις ανάγκες θέρμανσης κ.ό.κ. Η μονάδα της ενέργειας στο σύστημα S. I. είναι το Joule το οποίο είναι ίσο με ένα Newton m. Για να αποκτήσουμε μια αίσθηση του μεγέθους αυτής της μονάδας, μπορούμε να δώσουμε διάφορα νούμερα στον τύπο της βαρυτικής δυναμικής ενέργειας που είναι εξαιρετικά απλός: U = mgh Έτσι λοιπόν όλοι μας για παράδειγμα μπορούμε εύκολα να ανυψώσουμε μια φοιτητική τσάντα με βιβλία μάζας 10 kg σε ύψος 1 m πρέπει να ξοδέψουμε ενέργεια (με g 10 m/s 2 ) ίση με τη διαφορά της δυναμικής ενέργειας ΔU 1 = = 100 J Άρα αυτή είναι μια σχετικά μικρή ενέργεια. Αντιθέτως μόνο κάποιοι αρσιβαρίστες μπορούν σχετικά εύκολα να σηκώσουν ένα βάρος 100 kg (το βάρος ενός άντρα) στο ίδιο ύψος ξοδεύοντας ενέργεια ίση με τη διαφορά της δυναμικής ενέργειας ΔU 2 = = 1000 J Επομένως θα λέγαμε ότι το 1 kj είναι μια υπολογίσιμη ποσότητα ενέργειας. Και τέλος κανείς από εμάς δεν μπορεί να ανυψώσει ένα αυτοκίνητο 1000 kg στο 1 m και άρα η αντίστοιχη διαφορά της δυναμικής ενέργειας U 3 = = J είναι αρκετά υψηλή. Μια σχετιζόμενη ποσότητα με την ενέργεια είναι η λεγόμενη "ισχύς" η οποία ορίζεται ως η ενέργεια ή το έργο (που αποδίδει ή που καταναλώνει συνήθως μια μηχανή) ανά μονάδα χρόνου P = W t ΙΣΧΥΣ (1.1) Οι μονάδες της ισχύος είναι το Watt το οποίο ισούται με Joule/s. Για να καταλάβουμε την σημασία της ισχύος, θεωρήστε το έργο που απαιτείται για να μετακινήσουμε ένα πακέτο ζάχαρης 1 kg από ένα

4 σημείο Α, σε ένα άλλο σημείο Β το οποίο είναι κατά 1 m υψηλότερα. Για αυτή τη μετακίνηση απαιτείται έργο ίσο με τη διαφορά της δυναμικής ενέργειας W = ΔU = mgδh = = 10 J Ένας άνθρωπος θα μπορούσε να πραγματοποιήσει αυτή τη μετακίνηση σε χρόνο 1 s οπότε η αντίστοιχη ισχύς ισούται με P = W t = 10 J = 10 W s Φανταστείτε τώρα ότι την ίδια δουλειά την κάνουν μια ομάδα από μυρμήγκια. Τα μυρμήγκια θα πάρουν το ψωμί ψίχουλο- ψίχουλο αλλά το συνολικό έργο είναι το ίδιο θεωρώντας ότι η μάζα παραμένει η ίδια. Ο χρόνος όμως θα είναι σίγουρα μεγαλύτερος, έστω π.χ. ότι τους παίρνει 3 ώρες για την μετακίνηση αυτή. Τότε η αντίστοιχη ισχύς θα είναι ίση με P = W t = 10 J 10 mw s Βλέπετε ότι η ισχύς περιγράφει την αποτελεσματικότητα. Προφανώς ο άνθρωπος είναι πολύ πιο αποτελεσματικός από τα μυρμήγκια γιατί εκτελεί το ίδιο έργο γρηγορότερα. Για αυτό και οι μηχανές αξιολογούνται με βάση την ισχύ που παράγουν σε Watt. Από τον ορισμό του έργου W = Fx μπορούμε να καταλήξουμε και σε ένα διαφορετικό τύπο για την ισχύ P = W/t = Fx/t ή P = Fv ΙΣΧΥΣ (1.2) όπου v είναι η ταχύτητα του κινητού. Στην περίπτωση κυκλικής κίνησης, η παραπάνω εξίσωση παίρνει μια αντίστοιχη μορφή P = τω ΙΣΧΥΣ (1.3) όπου τ είναι η ροπή της δύναμης και ω η γωνιακή ταχύτητα. Για να δούμε και πάλι μερικά αντιπροσωπευτικά νούμερα της ισχύος, θεωρήστε τις τρεις παραπάνω ανυψώσεις που εξετάσαμε παραπάνω, της τσάντας, του βάρους του αρσιβαρίστα και του αυτοκινήτου και έστω ότι οι ανυψώσεις αυτές έγιναν σε χρόνο ενός δευτερολέπτου. Από τον παραπάνω τύπο P = W/t βρίσκουμε αντίστοιχα 100 Watt, 1000 Watt = 1 kwatt και 10 kwatt. Βέβαια ακόμη και ισχυρές πρέσες όπως αυτές που ανυψώνουν ένα αυτοκίνητο για αλλαγή λαδιών, δεν εκτελούν τόσο γρήγορα την λειτουργία της τρίτης περίπτωσης γιατί τα 10 kw είναι μια πολύ υψηλή ισχύ. Για να δείτε πως μπορεί να μειωθεί αισθητά αυτό το νούμερο, θεωρήστε ότι ανυψώνουμε και πάλι το παραπάνω αυτοκίνητο κατά 1 μέτρο με τη βοήθεια ενός γρύλλου (π.χ. για την αλλαγή ενός από τα ελαστικά του) οπότε και μας παίρνει περίπου 50 δευτερόλεπτα για την ενέργεια αυτή. Η ισχύς τότε γίνεται P = W/t = 10000/50 = 250 W

5 Βέβαια στην πραγματικότητα αυτό το νούμερο είναι μικρότερο αφού ο γρύλλος ανυψώνει μόνο την μια μεριά του αυτοκινήτου και η ανύψωση αυτή είναι λιγότερη του ενός μέτρου αλλά εδώ αναζητούμε μια προσεγγιστική τιμή για να έχουμε μια ιδέα για τα μεγέθη που συναντούμε. Η παραπάνω τιμή είναι συγκρίσιμη με αυτή που βρήκαμε παραπάνω για την γρήγορη ανύψωση της τσάντας (100 W) και επομένως είναι μια ισχύς που μπορεί εύκολα να παρέχει ένας μέσος οδηγός. Μια άλλη χρήσιμη μονάδα της ισχύος είναι ο λεγόμενος "ίππος" που συμβολίζεται ως hp και ισοδυναμεί με 1 hp = 742 Watts ΙΠΠΟΔΥΝΑΜΗ (1.4) Μια χρήσιμη προσέγγιση είναι η εξής 1 hp 3/4 kwatt Αποδεικνύεται ότι στον ηλεκτρισμό η ισχύς μιας διάταξης (από μια απλή αντίσταση έως και μια πολύπλοκη συσκευή) είναι ίση με το γινόμενο της ηλεκτρικής τάσης V στα άκρα της διάταξης επί το ρεύμα που τη διαρρέει: P = VI ΗΛΕΚΤΡΙΚΗ ΙΣΧΥΣ (1.4) Έτσι εάν συνδέσετε ένα μικρό πλυντήριο στο δίκτυο της ΔΕΗ (220 Volts) και γνωρίζετε ότι διαρρέεται από ρεύμα 10 Α τότε αυτό καταναλώνει ισχύ = 2200 Watt = 2.2 kw. Στον παρακάτω πίνακα βλέπετε την τυπική ισχύ κατανάλωσης διαφόρων οικιακών συσκευών. Σε αυτόν τον πίνακα δίνεται επίσης και ένας τυπικός χρόνος λειτουργίας της κάθε συσκευής καθώς και το αντίστοιχο κόστος που πληρώνουμε στη ΔΕΗ για αυτό τον χρόνο χρήσης. Μπορείτε να καταλάβετε από τι εξαρτάται αυτό το κόστος; Πίνακας 1: Ισχύς και κόστος κατανάλωσης διαφόρων οικιακών συσκευών (στοιχεία Δ.Ε.Η.) ΣΥΣΚΕΥΗ ΛΕΙΤΟΥΡΓΙΑ ΙΣΧΥΣ ΚΟΣΤΟΣ Ηλεκτρικό σίδερο 1 ώρα ,15 Ηλεκτρική σκούπα 1 ώρα ,15 Φριτέζα 25 λεπτά ,095

6 Καφετιέρα 10 λεπτά 900 0,022 Μίξερ 1 γλυκό (3 λεπτά) 180 0,002 Τηλεόραση (έγχρωμη) 1 ώρα 41 0,005 Αναμονή τηλεόρασης 1 ώρα 8 0,002 Βίντεο 1 ώρα 33 0,005 Αναμονή βίντεο 1 ώρα 8 0,001 Στερεοφωνικό 1 ώρα 30 0,005 Αναμονή στερεοφωνικού 1 ώρα 8 0,001 Η/Υ (PC) 1 ώρα 250 0,035 Aυτόματος τηλεφωνητής 1 ώρα 3 0,001 Αποκωδικοποιητής 1 ώρα 15 0,003 Πλυντήριο πιάτων 65 C 3200 Πλυντήριο ρούχων 95 C / 5κ Ψυγείο 131 λίτρων 24 ώρες 90 0,50 Φούρνος απλός 2700 Ανεμιστήρας οροφής 1 ώρα 150 0,020 Κλιματιστικό 1 ώρα ,14 Αερόθερμο 1 ώρα ,3 Επιστρέφοντας στην παραπάνω ερώτηση, περιμένουμε το κόστος χρήσης μιας συσκευής να εξαρτάται από την ισχύ κατανάλωσης και την ώρα λειτουργίας. Βασικά το κόστος εξαρτάται από το γινόμενο των

7 δυο. Από την εξίσωση P = W/t συνειδητοποιούμε ότι το γινόμενο αυτό είναι στην ουσία το έργο, δηλαδή η ενέργεια που κατανάλωσε η συσκευή και άρα θα περιμέναμε η ΔΕΗ να μας χρεώνει για τα Joules ηλεκτρικής ενέργειας που αντλούμε από το δίκτυό της. Όμως στον ορισμό του Joule υπεισέρχεται το δευτερόλεπτο το οποίο είναι σχετικά μικρή ποσότητα χρόνου ενώ όπως βλέπουμε στον παραπάνω πίνακα οι συσκευές συνήθως χρησιμοποιούνται για κάποιες ώρες. Επίσης οι περισσότερες από αυτές καταναλώνουν ισχύ στην περιοχή των 1000 Watt επομένως είναι λογικό ότι η μονάδα ενέργειας που χρησιμοποιεί η ΔΕΗ να είναι η κιλοβατώρα δηλαδή 1 kwh = 1 kwatt 1 h Έτσι π.χ. ένα κλιματιστικό που απαιτεί 1 kwatt ηλεκτρικής ισχύος σε μια ώρα λειτουργίας καταναλώνει ακριβώς μια κιλοβατώρα. Την χρονική στιγμή που συντάχθηκε το παρόν σύγγραμμα, η τιμή της κιλοβατώρας ήταν κοντά στα 10 λεπτά. Πρόβλημα: Θεωρώντας την παραπάνω τιμή της κιλοβατώρας και τον Πίνακα 1.1., εκτιμήστε το κόστος λειτουργίας ενός πλυντηρίου πιάτων ανά μήνα εάν υποθέσουμε ότι λειτουργεί για 50 λεπτά κάθε τρεις ημέρες. Πρόβλημα: Θεωρώντας την παραπάνω τιμή της κιλοβατώρας και τον Πίνακα 1.1., εκτιμήστε το κόστος λειτουργίας ενός ηλεκτρικού λαμπτήρα 200 W (παλιού τύπου πυρακτώσεως και όχι αλογόνου) ανά μήνα εάν υποθέσουμε ότι λειτουργεί για 5 ώρες κάθε ημέρα. Σημείωση: Η ισχύς που αναγράφεται σε αυτούς του λαμπτήρες είναι ισχύς κατανάλωσης και όχι φωτισμού (μόνο ένα μέρος της ισχύς κατανάλωσης μετατρέπεται σε φωτισμό). Πρόβλημα: Για να δούμε το μέγεθος της κιλοβατώρας θεωρήστε ένα ιδεατό γιγαντιαίο γερανό ο οποίος ανυψώνει το αυτοκίνητο που είδαμε παραπάνω με ρυθμό 1 m ανά s. Εάν ο γερανός έχει καταναλώσει συνολικά μια κιλοβατώρα, υπολογίστε σε πόσο συνολικό ύψος έχει ανυψώσει το αυτοκίνητο (το νούμερο είναι σχετικά μεγάλο για αυτό και ο γερανός χαρακτηρίστηκε ως "ιδεατός"). Πρόβλημα: Πραγματοποιήστε μια απλή τεχνική μελέτη μοντελοποιώντας ένα μέσο διαμέρισμα με ένα αριθμό συσκευών ώστε να καλύπτει τις βασικές ανάγκες μιας μέσης τετραμελής οικογένειας. Αφού αντιστοιχίσετε κάποιες ώρες λειτουργίας στις συσκευές αυτές ανά εβδομάδα), υπολογίστε μέσω του Πίνακα 1.1. την κατανάλωση αυτού του νοικοκυριού σε kwh ανά εβδομάδα. Ακολούθως υπολογίστε την μέση ισχύ αυτού του διαμερίσματος. Εάν πρέπει να τροφοδοτήσετε ένα μικρό χωριό από 100 τέτοια νοικοκυριά με ένα τοπικό υποσταθμό της ΔΕΗ, πόσα MW πρέπει να είναι αυτός ο υποσταθμός; Στη θερμότητα-ψύξη απαντούνται δυο ακόμη μονάδες ενέργειας, οι θερμίδες (calories ή cal) και τα BTU (British Thermal Units). Η θερμίδα είναι εξ ορισμού η ποσότητα θερμικής ενέργειας που απαιτείται για να ανυψωθεί ένα γραμμάριο νερού κατά 1 0 C. Η αντιστοιχία είναι 1 cal = 4.18 Joules Η αντίστοιχη Αγγλική μονάδα είναι το BTU δηλαδή η ποσότητα θερμικής ενέργειας που απαιτείται για να ανυψωθεί μια λίβρα νερού κατά 1 βαθμό Φαρενάιτ. Η αντιστοιχία είναι

8 1 BTU = 1055 Joules Τα BTU ανά ώρα, δηλαδή τα BTU/h χρησιμοποιούνται ευρέως στα κλιματιστικά. Προσοχή όμως, καμιά φορά εν συντομία αυτός ο όρος καταχρηστικά και λανθασμένα γράφεται ως BTU αντί του σωστού BTU/h. Αυτή βέβαια είναι η ισχύς θέρμανσης ή ψύξης του κλιματιστικού δηλαδή πόση ενέργεια παράγει ή αφαιρεί από κάποιο χώρο ανά μονάδα χρόνου. Δεν είναι η ισχύς κατανάλωσης (συνήθως σε kwh που είδαμε παραπάνω και η οποία είναι φυσικά μεγαλύτερη από την ισχύ θέρμανσης ή ψύξης). Πρόβλημα: Να βρεθεί η αναλογία BTU με kwh. Επίσης η αναλογία BTU με κιλο-θερμίδα (kcal).

9 Τρέχουσα κατάσταση και μελλοντικές προοπτικές (Τα σχήματα σε αυτήν την ενότητα είναι από τις σημειώσεις «Αιολική Ενέργεια» του Γεώργιου Λευθεριώτη, ΠΠ) Η αιολική ενέργεια είναι σήμερα η ταχύτερα αναπτυσσόμενη πηγή ενέργειας παγκοσμίως και μάλιστα διατηρεί αυτή τη πρωτιά συνεχόμενα τα τελευταία πέντε χρόνια. Η παγκόσμια παραγωγή της αιολικής ενέργειας έχει αυξηθεί κατά ένα συντελεστή 4.2 κατά τη διάρκεια των τελευταίων πέντε ετών (το σύγγραμμα συντάχτηκε το 2016). Όπως φαίνεται στο παρακάτω διάγραμμα, η συνολική παγκόσμια εγκατεστημένη αιολική ισχύς ξεπέρασε το 2013 τα 318 GW Σχήμα 1.1 Παγκόσμια εγκατεστημένη ισχύς Σχήμα 1.2 Τυπική Ανεμογεννήτρια Κάθετου Άξονα

10 Ας εξετάσουμε τα τεχνικά χαρακτηριστικά μιας ανεμογεννήτριας 2MW. Ρότορας- Πτερύγια Διάμετρος 80-85m Περιστρέφεται με γωνιακή ταχύτητα 6 έως 20 rpm Ζυγίζει t. Άτρακτος Περιλαμβάνει: Ηλεκτρογεννήτρια, Κιβώτιο ταχυτήτων, Σύστημα προσανατολισμού, Φρένο, όργανα μέτρησης. Ζυγίζει t. Πύργος Αποτελείται από εξηλασμένα μεταλλικά φύλλα. Στη βάση του τοποθετείται ο μετασχηματιστής. Ύψος m Ζυγίζει t. Οφέλη αιολικής ενέργειας: Ανανεώσιμη, σε αφθονία και δωρεάν. 1MW αιολικής ενέργειας καλύπτει τις ανάγκες περίπου 350 νοικοκυριών ή 1000 ατόμων και εξοικονομεί περίπου 300 τόνους ισοδύναμου πετρελαίου. Μείωση Εκπομπών CO2. Μία γιγαβατώρα (1 GWh = kwh) αιολικής ενέργειας εξοικονομεί 600 τόνους διοξειδίου του άνθρακα. Ισοζύγιο Εκπομπών CO2. Η ποσότητα CO2 που εκλύεται κατά την κατασκευή και εγκατάσταση μιας ανεμογεννήτριας με χρόνο ζωής τα 20 έτη, "αποσβένεται" μέσα στους πρώτους 3 με 6 μήνες λειτουργίας της. Απασχόληση. Για κάθε MW αιολικής ενέργειας απαιτούνται 17 ανθρωποέτη στη φάση κατασκευής και 5 ανθρωποέτη στη φάση εγκατάστασης. Χρήση Γης. Τα αιολικά πάρκα απαιτούν μικρή επιφάνεια σε σχέση με άλλες μορφές ενέργειας, π.χ. ηλιακή. Παράλληλες δραστηριότητες (όπως βοσκή ή καλλιέργεια) είναι δυνατές. Μειονεκτήματα (όχι σοβαρά) Θόρυβος.

11 Ο θόρυβος των ανεμογεννητριών προέρχεται από τα πτερύγια (αεροδυναμικός θόρυβος), τα ρουλεμάν και τη γεννήτρια. Οι σύγχρονες ανεμογεννήτριες ακολουθούν αυστηρές προδιαγραφές όσον αφορά το θόρυβο: -Σε απόσταση 40 μέτρων από μία ανεμογεννήτρια η στάθμη του θορύβου είναι db(a). -Σε απόσταση 200 μέτρων, μειώνεται στα 44 db(a). Συγκριτικά: Ο θόρυβος στο εσωτερικό αυτοκινήτου είναι: 80 db(a), στο εσωτερικό οικίας: 50 db(a) Ηλεκτρομαγνητικές Παρεμβολές. Τήρηση των αποστάσεων ασφαλείας από κατοικημένες περιοχές. Ορνιθοπανίδα. Τραυματισμοί και θανατώσεις πτηνών από προσκρούσεις. Τα ενδημικά είδη «συνηθίζουν» την παρουσία των μηχανών και τις αποφεύγουν σε αντίθεση με τα αποδημητικά. -Αποφεύγεται η κατασκευή αιολικών πάρκων σε δρόμους μετανάστευσης των αποδημητικών όπου μετακινούνται μεγάλοι πληθυσμοί τη νύκτα. -Η συχνότητα ατυχημάτων πουλιών με αυτοκίνητα στους δρόμους είναι πολύ μεγαλύτερη αυτής των ατυχημάτων σε αιολικά πάρκα. -Οι υπόλοιπες μορφές πανίδας δεν επηρεάζονται από τις ανεμογεννήτριες. Σχήμα 1.3. Μορφές χλωρίδας και πανίδας σε εγγύτητα με τις ανεμογεννήτριες

12 Αιολικά πάρκα, εργασίες εγκατάστασης Οδοποιία. Οι δρόμοι πρόσβασης στο χώρο εγκατάστασης πρέπει να επιτρέπουν τη διέλευση των φορτηγών που μεταφέρουν τα τμήματα των ανεμογεννητριών. Συνήθως, στις ορεινές περιοχές η οδοποιία περιορίζει και το μέγεθος των μηχανών που δεν μπορεί να υπερβεί το 1MW. Επίσης κατασκευάζεται εσωτερική οδοποιία από ανεμογεννήτρια σε ανεμογεννήτρια με τυπικό πλάτος 4 με 5 μέτρα. Σχήμα 1.4. Διέλευση των φορτηγών που μεταφέρουν τα τμήματα των ανεμογεννητριών "Πλατείες". Στη βάση κάθε ανεμογεννήτριας είναι απαραίτητο να δημιουργηθεί μια "πλατεία" (περί το ένα στρέμμα) για τη συναρμολόγηση του ρότορα και την ανέγερση της μηχανής. Ο χώρος της πλατείας αποψιλώνεται και συμπυκνώνεται ώστε να είναι ασφαλής η χρήση των γερανών και των άλλων μηχανημάτων. Μετά την εγκατάσταση, το μεγαλύτερο μέρος της πλατείας μπορεί να αποκατασταθεί με επανατοποθέτηση της φυτικής γης που απομακρύνθηκε, φυτεύσεις κλπ (δείτε Σχήμα 1.3) Ηλεκτρικά Δίκτυα. Για τη σύνδεση των μηχανών με το κέντρο ελέγχου / υποσταθμό ανύψωσης τάσης κατασκευάζεται εσωτερικό δίκτυο μέσης τάσης ( V). Το δίκτυο αυτό είναι υπόγειο και οδεύει κατά μήκος της εσωτερικής οδοποιίας. Για τη μεταφορά της παραγόμενης ηλεκτρικής ενέργειας κατασκευάζεται εξωτερικό δίκτυο μέσης ή (συνήθως) υψηλής τάσης (140 KV) από τον υποσταθμό μέχρι τη γραμμή υψηλής τάσης της ΔΕΗ. Το δίκτυο αυτό είναι εναέριο.

13 Σχήμα 1.5. Διαμόρφωση πλατείας Βέβαια οι ανεμογεννήτριες, όπως όλες οι κατασκευές, καταπονούνται από Φυσική φθορά λόγω τριβής του αέρα με τα πτερύγια αλλά και κίνησης των μηχανικών μερών Ακραίες καιρικές συνθήκες, πάγος, χιόνι, σκόνη, ηλιακή ακτινοβολία, κεραύνια πλήγματα (δείτε Σχήμα 1.6) Αστοχία υλικού Τα υλικά κατασκευής είναι Πτερύγια: Σύνθετο υλικό με πολυμερική μήτρα και νήματα άνθρακα Άτρακτος: Κυρίως ατσάλι και τα ηλεκτρολογικά ως συνήθως, καλωδίωση χαλκού, μετασχηματιστές με πυρήνες φερρίτη Πύργος: Ατσάλι και σκυρόδεμα

14 Σχήμα 1.6. Κεραύνια πλήγματα στα πτερύγια

Αιολική Ενέργεια & Ενέργεια του Νερού

Αιολική Ενέργεια & Ενέργεια του Νερού Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 1: Εισαγωγή στην Αιολική Ενέργεια Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Γνωριμία με την αιολική ενέργεια,

Διαβάστε περισσότερα

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ. Αιολική ενέργεια

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ. Αιολική ενέργεια ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ Αιολική ενέργεια 2o Μάθημα Σημειώσεις: Επ. Καθηγητής Ε. Αμανατίδης Επ. Καθηγητής Δ. Κουζούδης Ένα παράδειγμα - μικρό αιολικό πάρκο Περιοχή Ν. Εύβοια, Δήμος Κατσαρωνίου Τοποθεσία

Διαβάστε περισσότερα

Χρήσιμα στοιχεία του Λογαριασμού της ΔΕΗ

Χρήσιμα στοιχεία του Λογαριασμού της ΔΕΗ Χρήσιμα στοιχεία του Λογαριασμού της ΔΕΗ Μπορείτε να υπολογίσετε και μόνοι σας την κατανάλωση ή την εξοικονόμηση ενέργειας για τις συσκευές που χρησιμοποιείτε στο σπίτι σας ή που προτίθεστε να αγοράσετε,

Διαβάστε περισσότερα

ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΛΟΓΙΑΣ ΜΠΙΤΑΚΗ ΑΡΓΥΡΩ ΑΕΜ 7424 ΕΤΟΣ 2009-2010

ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΛΟΓΙΑΣ ΜΠΙΤΑΚΗ ΑΡΓΥΡΩ ΑΕΜ 7424 ΕΤΟΣ 2009-2010 ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΛΟΓΙΑΣ ΜΠΙΤΑΚΗ ΑΡΓΥΡΩ ΑΕΜ 7424 ΕΤΟΣ 2009-2010 Γενικά αιολική ενέργεια ονομάζεται ηενέργεια που παράγεται από την εκμετάλλευση του πνέοντος ανέμου. Ηενέργεια

Διαβάστε περισσότερα

Άσκηση 20 Γιάννης Γαϊσίδης

Άσκηση 20 Γιάννης Γαϊσίδης 1. Επιλέξτε τη σωστή απάντηση. Η ηλεκτρική ενέργεια: a. Δε μεταφέρεται εύκολα σε μεγάλες αποστάσεις. b. Μεταφέρεται μέσω ανοιχτών ηλεκτρικών κυκλωμάτων. c. Μετατρέπεται σε άλλες μορφές ενέργειας με τη

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 5: Αιολικά Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Αιολική ενέργεια

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Αιολική ενέργεια ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Αιολική ενέργεια Ο άνεμος είναι μια ανανεώσιμη πηγή ενέργειας που μπορεί να αξιοποιηθεί στην παραγωγή ηλεκτρισμού. Οι άνθρωποι έχουν ανακαλύψει την αιολική ενέργεια εδώ και

Διαβάστε περισσότερα

ΚΑΤΑΜΕΤΡΗΣΗ ΤΟΥ ΗΛΕΚΤΡΙΣΜΟΥ!

ΚΑΤΑΜΕΤΡΗΣΗ ΤΟΥ ΗΛΕΚΤΡΙΣΜΟΥ! ΚΑΤΑΜΕΤΡΗΣΗ ΤΟΥ ΗΛΕΚΤΡΙΣΜΟΥ! Στόχος(οι): Ο υπολογισμός των απαιτήσεων σε ενέργεια των ηλεκτρικών συσκευών. Η κατανόηση της έννοιας της kwh και ο τρόπος υπολογισμού της. Η ανάληψη δράσεων για την μείωση

Διαβάστε περισσότερα

Απλοί τρόποι εξοικονόμησης ενέργειας

Απλοί τρόποι εξοικονόμησης ενέργειας 1 ο ΓΕΛ ΕΛΕΥΘΕΡΙΟΥ-ΚΟΡΔΕΛΙΟΥ Ερευνητική εργασία B Τετρ. 2011-2012 Τμήμα PR4 - Α Λυκείου Απλοί τρόποι εξοικονόμησης ενέργειας ΟΜΑΔΑ 2 : Πρασινούληδες Τόρε Χρήστος Ταραμάς Δημήτριος Τσομπάνη Θωμαή Σωτηριάδου

Διαβάστε περισσότερα

Εργασία Πρότζεκτ β. Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι

Εργασία Πρότζεκτ β. Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι Εργασία Πρότζεκτ β Τετραμήνου Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι Λίγα λόγια για την ηλιακή ενέργεια Ηλιακή ενέργεια χαρακτηρίζεται

Διαβάστε περισσότερα

ΧΡΙΣΤΟΣ ΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ ΚΑΝΕΛΛΟΣ ΓΙΩΡΓΟΣ ΔΙΒΑΡΗΣ ΠΑΠΑΧΡΗΣΤΟΥ ΣΤΙΓΚΑ ΠΑΝΑΓΙΩΤΗΣ ΣΩΤΗΡΙΑ ΓΑΛΑΚΟΣ ΚΑΖΑΤΖΙΔΟΥ ΔΕΣΠΟΙΝΑ ΜΠΙΣΚΟΣ ΚΥΡΙΑΚΟΣ ΚΟΡΝΕΖΟΣ

ΧΡΙΣΤΟΣ ΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ ΚΑΝΕΛΛΟΣ ΓΙΩΡΓΟΣ ΔΙΒΑΡΗΣ ΠΑΠΑΧΡΗΣΤΟΥ ΣΤΙΓΚΑ ΠΑΝΑΓΙΩΤΗΣ ΣΩΤΗΡΙΑ ΓΑΛΑΚΟΣ ΚΑΖΑΤΖΙΔΟΥ ΔΕΣΠΟΙΝΑ ΜΠΙΣΚΟΣ ΚΥΡΙΑΚΟΣ ΚΟΡΝΕΖΟΣ ΚΑΡΑΔΗΜΗΤΡΙΟΥΧΡΙΣΤΟΣ ΝΙΚΟΛΑΣΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣΚΑΝΕΛΛΟΣ ΘΑΝΑΣΗΣΔΙΒΑΡΗΣ ΚΩΣΤΑΝΤΙΝΟΣΠΑΠΑΧΡΗΣΤΟΥ ΑΛΕΞΑΝΔΡΟΣΣΤΙΓΚΑ ΠΑΠΑΓΕΩΡΓΙΟΥΠΑΝΑΓΙΩΤΗΣ ΖΗΝΤΡΟΥΣΩΤΗΡΙΑ ΝΙΚΗΦΟΡΟΣΓΑΛΑΚΟΣ ΣΟΦΙΑΚΑΖΑΤΖΙΔΟΥ ΣΠΥΡΟΠΟΥΛΟΥΔΕΣΠΟΙΝΑ

Διαβάστε περισσότερα

Κεφάλαιο 1: Έργο-Ισχύς-Ενέργεια

Κεφάλαιο 1: Έργο-Ισχύς-Ενέργεια Κεφάλαιο 1: Έργο-Ισχύς-Ενέργεια Έργο «Έργο δύναμης ονομάζουμε το γινόμενο της δύναμης F επί τη μετατόπιση Δχ του σημείου εφαρμογής της, κατά τη διεύθυνση της. Αυτό εκφράζει την ενέργεια που μεταφέρεται

Διαβάστε περισσότερα

Συντελεστής ισχύος C p σαν συνάρτηση της ποσοστιαίας μείωσης της ταχύτητας του ανέμου (v 0 -v 1 )/v 0

Συντελεστής ισχύος C p σαν συνάρτηση της ποσοστιαίας μείωσης της ταχύτητας του ανέμου (v 0 -v 1 )/v 0 Συντελεστής ισχύος C p σαν συνάρτηση της ποσοστιαίας μείωσης της ταχύτητας του ανέμου (v 0 -v 1 )/v 0 19 ΠΑΡΑΓΩΓΗ ΕΝΕΡΓΕΙΑΣ ΑΠΟ ΑΝΕΜΟΓΕΝΝΗΤΡΙΕΣ Ταχύτητα έναρξης λειτουργίας: Παραγόμενη ισχύς = 0 Ταχύτητα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 Η

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 Η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 Η τεχνολογία των Α/Γ Βασικά Τεχνικά χαρακτηριστικά και μεγέθη [1] Θεωρητικό Μέρος ΕΡΓΑΣΤΗΡΙΟ Α.Π.Ε Ι Κύρια μέρη της Ανεμογεννήτριας Φτερωτή (η στροφέα) που φέρει δύο η τρία πτερύγια.

Διαβάστε περισσότερα

6 ο Μάθημα Ισχύς Διατήρηση της ενέργειας. Ισχύς Δυναμική ενέργεια Διατήρηση της μηχανικής ενέργειας Διατήρηση της ενέργειας

6 ο Μάθημα Ισχύς Διατήρηση της ενέργειας. Ισχύς Δυναμική ενέργεια Διατήρηση της μηχανικής ενέργειας Διατήρηση της ενέργειας 6 ο Μάθημα Ισχύς Διατήρηση της ενέργειας Ισχύς Δυναμική ενέργεια Διατήρηση της μηχανικής ενέργειας Διατήρηση της ενέργειας Μια δύναμη F δρα σε σώμα στη x-κατεύθυνση και έχει μέτρο που εξαρτάται από το

Διαβάστε περισσότερα

ΓΙΑ ΝΑ ΣΥΝΕΧΙΣΕΙ ΤΟ ΠΕΡΙΒΑΛΛΟΝ ΝΑ ΜΑΣ ΕΠΙΒΡΑΒΕΥΕΙ... ΕΞΟΙΚΟΝΟΜΟΥΜΕ ΕΝΕΡΓΕΙΑ & ΝΕΡΟ ΜΗ ΧΑΝΕΙΣ ΑΛΛΟ ΧΡΟΝΟ!

ΓΙΑ ΝΑ ΣΥΝΕΧΙΣΕΙ ΤΟ ΠΕΡΙΒΑΛΛΟΝ ΝΑ ΜΑΣ ΕΠΙΒΡΑΒΕΥΕΙ... ΕΞΟΙΚΟΝΟΜΟΥΜΕ ΕΝΕΡΓΕΙΑ & ΝΕΡΟ ΜΗ ΧΑΝΕΙΣ ΑΛΛΟ ΧΡΟΝΟ! ΓΙΑ ΝΑ ΣΥΝΕΧΙΣΕΙ ΤΟ ΠΕΡΙΒΑΛΛΟΝ ΝΑ ΜΑΣ ΕΠΙΒΡΑΒΕΥΕΙ... ΕΞΟΙΚΟΝΟΜΟΥΜΕ ΕΝΕΡΓΕΙΑ & ΝΕΡΟ ΜΗ ΧΑΝΕΙΣ ΑΛΛΟ ΧΡΟΝΟ! ΒΙΩΣΙΜΟΤΗΤΑ: Η ΕΤΑΙΡΙΚΗ ΑΞΙΑ ΠΟΥ ΜΟΙΡΑΖΕΤΑΙ - Μια εταιρία δεν μπορεί να θεωρείται «πράσινη» αν δεν

Διαβάστε περισσότερα

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04)

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04) ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη (ΠΕ02) Βασιλική Χατζηκωνσταντίνου (ΠΕ04) Β T C E J O R P Υ Ν Η Μ Α Ρ Τ ΤΕ Α Ν Α Ν Ε Ω ΣΙ Μ ΕΣ Π Η ΓΕ Σ ΕΝ Ε Ρ ΓΕ Ι Α Σ. Δ Ι Ε Ξ Δ Σ Α Π ΤΗ Ν Κ Ρ Ι ΣΗ 2 Να

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ανανεώσιμες Πηγές Ενέργειας Εργασία από παιδιά του Στ 2 2013-2014 Φυσικές Επιστήμες Ηλιακή Ενέργεια Ηλιακή είναι η ενέργεια που προέρχεται από τον ήλιο. Για να μπορέσουμε να την εκμεταλλευτούμε στην παραγωγή

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΚΟΥΙΤΙΜ ΓΚΡΕΜΙ, ΓΙΑΝΝΗΣ ΧΙΜΠΡΟΪ

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΚΟΥΙΤΙΜ ΓΚΡΕΜΙ, ΓΙΑΝΝΗΣ ΧΙΜΠΡΟΪ 21ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΘΗΝΩΝ ΤΑΞΗ Α ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΥΠΕΥΘYΝΟΙ ΚΑΘΗΓΗΤΕΣ: κ. ΠΑΠΑΟΙΚΟΝΟΜΟΥ, κ. ΑΝΔΡΙΤΣΟΣ ΟΜΑΔΑ : ΑΡΝΤΙ ΒΕΪΖΑΪ, ΣΑΜΠΡΙΝΟ ΜΕΜΙΚΟ, ΚΟΥΙΤΙΜ ΓΚΡΕΜΙ, ΓΙΑΝΝΗΣ ΧΙΜΠΡΟΪ ΕΤΟΣ:2011/12

Διαβάστε περισσότερα

Πρακτικός Οδηγός Εφαρμογής Μέτρων

Πρακτικός Οδηγός Εφαρμογής Μέτρων Πρακτικός Οδηγός Εφαρμογής Μέτρων Φ ο ρ έ α ς υ λ ο π ο ί η σ η ς Δ Η Μ Ο Σ Ι Ο Σ Τ Ο Μ Ε Α Σ Άξονες παρέμβασης Α. Κτιριακές υποδομές Β. Μεταφορές Γ. Ύ δρευση και διαχείριση λυμάτων Δ. Διαχείριση αστικών

Διαβάστε περισσότερα

ΓΓ/Μ ΣΥΣΤΗΜΑ ΠΑΙΔΕΙΑΣ ΟΡΟΣΗΜΟ. Τεύχος 3ο: Ηλεκτρική ενέργεια

ΓΓ/Μ ΣΥΣΤΗΜΑ ΠΑΙΔΕΙΑΣ ΟΡΟΣΗΜΟ. Τεύχος 3ο: Ηλεκτρική ενέργεια ΓΓ/Μ3 05-06 ΣΥΣΤΗΜΑ ΠΑΙΔΕΙΑΣ ΟΡΟΣΗΜΟ Τεύχος 3ο: Ηλεκτρική ενέργεια ΕΚΔΟΤΙΚΕΣ ΤΟΜΕΣ ΟΡΟΣΗΜΟ ΠΕΡΙΟΔΙΚΗ ΕΚΔΟΣΗ ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ ΚΑΙ ΤΟ ΛΥΚΕΙΟ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Φυσική για την Γ' Τάξη του Γυμνασίου. Φαινόμενο

Διαβάστε περισσότερα

Το energy condition των κλιματιστικών

Το energy condition των κλιματιστικών Το energy condition των κλιματιστικών Πώς διαβάζουμε τις νέες ενεργειακές ετικέτες των κλιματιστικών και τι πρέπει να γνωρίζουμε πριν την αγορά και τη χρήση της κάθε είδους συσκευής για να πετύχουμε τη

Διαβάστε περισσότερα

α. Όταν από έναν αντιστάτη διέρχεται ηλεκτρικό ρεύμα, η θερμοκρασία του αυξάνεται Η αύξηση αυτή συνδέεται με αύξηση της θερμικής ενέργειας

α. Όταν από έναν αντιστάτη διέρχεται ηλεκτρικό ρεύμα, η θερμοκρασία του αυξάνεται Η αύξηση αυτή συνδέεται με αύξηση της θερμικής ενέργειας 1 3 ο κεφάλαιο : Απαντήσεις των ασκήσεων Χρησιμοποίησε και εφάρμοσε τις έννοιες που έμαθες: 1. Συμπλήρωσε τις λέξεις που λείπουν από το παρακάτω κείμενο, έτσι ώστε οι προτάσεις που προκύπτουν να είναι

Διαβάστε περισσότερα

ΙΣΧΥΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ ΕΝΕΡΓΕΙΑΣ

ΙΣΧΥΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ ΕΝΕΡΓΕΙΑΣ ΙΣΧΥΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ ΕΝΕΡΓΕΙΑΣ Η ισχύς... Η ισχύς (ενός κινητήρα και γενικότερα οποιαδήποτε μηχανής) ισούται με το πηλίκο του έργου το οποίο παράγει ο κινητήρας, προς το χρονικό διάστημα που απαιτείται

Διαβάστε περισσότερα

Έργο= Δύναμη x απόσταση (9)

Έργο= Δύναμη x απόσταση (9) 5. Ενέργεια Η έννοια της ενέργειας είναι ίσως η βασικότερη έννοια σ ολόκληρη τη φυσική επιστήμη. Ο συνδυασμός ενέργειας και ύλης αποτελεί το Σύμπαν. Η ύλη είναι η ουσία και η ενέργεια η κινητήρια δύναμη

Διαβάστε περισσότερα

ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ. Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών

ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ. Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών Παγκόσμια ενεργειακή κατάσταση Συνολική παγκόσμια κατανάλωση ενέργειας 2009: 135.000 ΤWh (Ελλάδα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπουδαστής : Ευάγγελος Μαντζουράνης

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπουδαστής : Ευάγγελος Μαντζουράνης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Σπουδαστής : Ευάγγελος Τμήμα : Μηχανολόγων Μηχανικών Παραγωγής γής Ιδιότητα : Φοιτητής 9 ο εξάμηνο επανεγγραφής Καθηγητής : Τόλης Αθανάσιος Μάθημα : Επιχειρησιακή

Διαβάστε περισσότερα

Ανανεώσιμες πηγές ενέργειας

Ανανεώσιμες πηγές ενέργειας Ανανεώσιμες πηγές ενέργειας Σε αυτή την παρουσίαση δούλεψαν: Ο Ηλίας Μπάμπουλης, που έκανε έρευνα στην υδροηλεκτρική ενέργεια. Ο Δανιήλ Μπαλαμπανίδης, που έκανε έρευνα στην αιολική ενέργεια. Ο Παναγιώτης

Διαβάστε περισσότερα

επιπτώσεις» των αιολικών πάρκων

επιπτώσεις» των αιολικών πάρκων Οι περιβαλλοντικές«επιπτώσεις επιπτώσεις» των αιολικών πάρκων Μύθοι και αλήθειες ηµήτρης Αλ. Κατσαπρακάκης, ηµήτρης Γ. Χρηστάκης Εργαστήριο Αιολικής Ενέργειας και Σύνθεσης Ενεργειακών Συστηµάτων Τεχνολογικό

Διαβάστε περισσότερα

Στο διάγραμμα αποδίδεται γραφικά η ταχύτητα ενός κινητού οε συνάρτηση με το χρόνο. Α. Να περιγράψετε την κίνηση του κινητού έως τη χρονική στιγμή 20s.

Στο διάγραμμα αποδίδεται γραφικά η ταχύτητα ενός κινητού οε συνάρτηση με το χρόνο. Α. Να περιγράψετε την κίνηση του κινητού έως τη χρονική στιγμή 20s. ΣΧΟΛIKO BIBΛIO / ΑΣΚ 19. Στο διάγραμμα αποδίδεται γραφικά η ταχύτητα ενός κινητού οε συνάρτηση με το χρόνο. Α. Να περιγράψετε την κίνηση του κινητού έως τη χρονική στιγμή 0s. υ ( m/sec) Β. Να υπολογίσετε

Διαβάστε περισσότερα

Το energy condition των κλιματιστικών Πώς διαβάζουμε τις νέες ενεργειακές ετικέτες των κλιματιστικών και τι πρέπει να γνωρίζουμε πριν την αγορά και τη χρήση της κάθε είδους συσκευής για να πετύχουμε τη

Διαβάστε περισσότερα

Πρακτικός Οδηγός Εφαρμογής Μέτρων

Πρακτικός Οδηγός Εφαρμογής Μέτρων Πρακτικός Οδηγός Εφαρμογής Μέτρων Φ ο ρ έ α ς υ λ ο π ο ί η σ η ς Ν Ο Ι Κ Ο Κ Υ Ρ Ι Α Άξονες παρέμβασης Α. Κτιριακές υποδομές Β. Μεταφορές Γ. Ύ δρευση και διαχείριση λυμάτων Δ. Δ ιαχείριση αστικών στερεών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης Ισχύς κινητικής ενέργειας φλέβας ανέμου P αν de dt, 1 2 ρdvυ dt P όπου, S, το εμβαδόν του κύκλου της φτερωτής και ρ, η πυκνότητα του αέρα.

Διαβάστε περισσότερα

ΑΥΤΟΝΟΜΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΥΤΟΝΟΜΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΝΟΜΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ HELIOS NATURA HELIOS OIKIA HELIOSRES ΟΔΥΣΣΕΑΣ ΔΙΑΜΑΝΤΗΣ ΚΑΙ ΣΙΑ Ε.Ε. Κολοκοτρώνη 9 & Γκίνη 6 15233 ΧΑΛΑΝΔΡΙ Tel. (+30) 210 6893966 Fax. (+30) 210 6893964 E-Mail : info@heliosres.gr

Διαβάστε περισσότερα

Αυτόνομο Ενεργειακά Κτίριο

Αυτόνομο Ενεργειακά Κτίριο Αυτόνομο Ενεργειακά Κτίριο H τάση για αυτονόμηση και απεξάρτηση από καθετί που σχετίζεται με έξοδα αλλά και απρόσμενες αυξήσεις, χαρακτηρίζει πλέον κάθε πλευρά της ζωής μας. Φυσικά, όταν πρόκειται για

Διαβάστε περισσότερα

ΘΕΜΑ : ΕΝΕΡΓΕΙΑ ΠΗΓΕΣ / ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΔΙΑΡΚΕΙΑ: 1 περίοδος

ΘΕΜΑ : ΕΝΕΡΓΕΙΑ ΠΗΓΕΣ / ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΔΙΑΡΚΕΙΑ: 1 περίοδος ΘΕΜΑ : ΕΝΕΡΓΕΙΑ ΠΗΓΕΣ / ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΡΚΕΙΑ: 1 περίοδος ΤΙ ΕΙΝΑΙ ΕΝΕΡΓΕΙΑ; Η ενέργεια υπάρχει παντού παρόλο που δεν μπορούμε να την δούμε. Αντιλαμβανόμαστε την ύπαρξη της από τα αποτελέσματα της.

Διαβάστε περισσότερα

Οικιακές Ψυκτικές Συσκευές

Οικιακές Ψυκτικές Συσκευές 2010/1060 Οικιακές Ψυκτικές Συσκευές Προτιμήστε οικιακές ψυκτικές συσκευές ενεργειακής κλάσης τουλάχιστον Α+ I II XYZ XYZ L YZ L YZ db Με τη συγχρηματοδότηση του προγράμματος της Ευρωπαϊκής Ένωσης «Ευφυής

Διαβάστε περισσότερα

ενεργειακή επανάσταση ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΑ ΑΠΟ ΤΡΙΑ ΒΗΜΑΤΑ ΕΞΟΙΚΟΝΟΜΗΣΗ ΠΑΡΑΓΩΓΗ ΜΕΤΑΦΟΡΕΣ

ενεργειακή επανάσταση ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΑ ΑΠΟ ΤΡΙΑ ΒΗΜΑΤΑ ΕΞΟΙΚΟΝΟΜΗΣΗ ΠΑΡΑΓΩΓΗ ΜΕΤΑΦΟΡΕΣ ενεργειακή επανάσταση 3 ΜΙΑ ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΑ ΑΠΟ ΤΡΙΑ ΒΗΜΑΤΑ ΕΞΟΙΚΟΝΟΜΗΣΗ ΠΑΡΑΓΩΓΗ ΜΕΤΑΦΟΡΕΣ Ενεργειακή Επανάσταση Τεχνική έκθεση που δείχνει τον τρόπο με τον οποίον εξασφαλίζεται ενεργειακή επάρκεια παγκοσμίως

Διαβάστε περισσότερα

Κεφ.3 Ηλεκτρική ενέργεια

Κεφ.3 Ηλεκτρική ενέργεια Κεφ.3 Ηλεκτρική ενέργεια Είναι αυτή που μεταφέρεται από τα φορτία (ηλεκτρόνια στους μεταλλικούς αγωγούς). Εμφανίζεται στα ηλεκτρικά κυκλώματα. Εύκολα μεταφέρεται από τους τόπου «παραγωγής», στους τόπους

Διαβάστε περισσότερα

Εξοικονόμηση ενέργειας και χρήση συστημάτων ηλιακής ενέργειας στα κτίρια. Εμμανουήλ Σουλιώτης

Εξοικονόμηση ενέργειας και χρήση συστημάτων ηλιακής ενέργειας στα κτίρια. Εμμανουήλ Σουλιώτης Εξοικονόμηση ενέργειας και χρήση συστημάτων ηλιακής ενέργειας στα κτίρια Εμμανουήλ Σουλιώτης Πρόβλεψη για τις ΑΠΕ μέχρι το 2100 ΗΛΙΟΣ ΑΝΕΜΟΣ ΒΙΟΜΑΖΑ ΓΕΩΘΕΡΜΙΑ ΝΕΡΟ ΠΥΡΗΝΙΚΗ ΟΡΥΚΤΑ ΚΑΥΣΙΜΑ Οι προβλέψεις

Διαβάστε περισσότερα

2. Μια μοτοσυκλέτα τρέχει με ταχύτητα 108 km/h. α) Σε πόσο χρόνο διανύει τα 120 m; β) Πόσα μέτρα διανύει σε 5 s;

2. Μια μοτοσυκλέτα τρέχει με ταχύτητα 108 km/h. α) Σε πόσο χρόνο διανύει τα 120 m; β) Πόσα μέτρα διανύει σε 5 s; 1. Αυτοκίνητο κινείται σε ευθύγραμμο δρόμο με σταθερή φορά και το ταχύμετρο του (κοντέρ) δείχνει συνεχώς 36 km/h. α) Τι είδους κίνηση κάνει το αυτοκίνητο; β) Να μετατρέψετε την ταχύτητα του αυτοκινήτου

Διαβάστε περισσότερα

2015 Η ενέργεια είναι δανεική απ τα παιδιά μας

2015 Η ενέργεια είναι δανεική απ τα παιδιά μας Εκπαιδευτικά θεματικά πακέτα (ΚΙΤ) για ευρωπαϊκά θέματα Τ4Ε 2015 Η ενέργεια είναι δανεική απ τα παιδιά μας Teachers4Europe Οδηγιεσ χρησησ Το αρχείο που χρησιμοποιείτε είναι μια διαδραστική ηλεκτρονική

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

α. Η ένδειξη 220 V σημαίνει ότι, για να λειτουργήσει κανονικά ο λαμπτήρας, πρέπει η τάση στα άκρα του να είναι 220 V.

α. Η ένδειξη 220 V σημαίνει ότι, για να λειτουργήσει κανονικά ο λαμπτήρας, πρέπει η τάση στα άκρα του να είναι 220 V. ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 7. Έχουμε ένα λαμπτήρα με τις ενδείξεις 100 W και 220 V. α. Ποια η σημασία αυτών των στοιχείων; β. Να βρεθεί η αντίσταση του λαμπτήρα. γ. Να βρεθεί η ενέργεια που απορροφά ο λαμπτήρας,

Διαβάστε περισσότερα

ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ. Μάθημα: Ενέργεια και επιπτώσεις στο περιβάλλον

ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ. Μάθημα: Ενέργεια και επιπτώσεις στο περιβάλλον ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ Μάθημα: Ενέργεια και επιπτώσεις στο περιβάλλον Ηαιολική ενέργεια χρησιμοποιεί την ενέργεια του ανέμου για την παραγωγή ηλεκτρικής ενέργειας. Ένα σύστημα αιολικής ενέργειας μετατρέπει την

Διαβάστε περισσότερα

ΦΥΣΑ ΑΕΡΑΚΙ ΦΥΣΑ ΜΕ!

ΦΥΣΑ ΑΕΡΑΚΙ ΦΥΣΑ ΜΕ! ΦΥΣΑ ΑΕΡΑΚΙ ΦΥΣΑ ΜΕ! Το 2019 θα το θυμόμαστε ως την χρονιά που κάτι άλλαξε. Τα παιδιά βγήκαν στους δρόμους απαιτώντας από τους μεγάλους να δράσουν κατά της κλιματικής αλλαγής. Αυτό το βιβλίο που κρατάτε

Διαβάστε περισσότερα

Πηγές ενέργειας - Πηγές ζωής

Πηγές ενέργειας - Πηγές ζωής Πηγές ενέργειας - Πηγές ζωής Κέντρο Περιβαλλοντικής Εκπαίδευσης Καστρίου 2014 Παράγει ενέργεια το σώμα μας; Πράγματι, το σώμα μας παράγει ενέργεια! Για να είμαστε πιο ακριβείς, παίρνουμε ενέργεια από τις

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999 Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΣΕΠΤΕΜΒΡΙΟΥ 1999 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Στις ερωτήσεις 1-4, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

1 ΕΠΑΛ Αθηνών. Β` Μηχανολόγοι. Ειδική Θεματική Ενότητα

1 ΕΠΑΛ Αθηνών. Β` Μηχανολόγοι. Ειδική Θεματική Ενότητα 1 ΕΠΑΛ Αθηνών Β` Μηχανολόγοι Ειδική Θεματική Ενότητα ΘΕΜΑ Ανανεώσιμες πήγες ενεργείας ΣΚΟΠΟΣ Η ευαισθητοποίηση των μαθητών για την χρήση ήπιων μορφών ενεργείας. Να αναγνωρίσουν τις βασικές δυνατότητες

Διαβάστε περισσότερα

Από πού προέρχεται η θερμότητα που μεταφέρεται από τον αντιστάτη στο περιβάλλον;

Από πού προέρχεται η θερμότητα που μεταφέρεται από τον αντιστάτη στο περιβάλλον; 3. ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ Ένα ανοικτό ηλεκτρικό κύκλωμα μετατρέπεται σε κλειστό, οπότε διέρχεται από αυτό ηλεκτρικό ρεύμα που μεταφέρει ενέργεια. Τα σπουδαιότερα χαρακτηριστικά της ηλεκτρικής ενέργειας είναι

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ: ΚΕΡΑΤΕΑΣ ΤΑΞΗ:Α2 ΟΝΟΜΑ ΜΑΘΗΤΗ: ΕΥΔΟΞΙΑ ΚΑΡΑΓΙΑΝΝΗ

ΓΥΜΝΑΣΙΟ: ΚΕΡΑΤΕΑΣ ΤΑΞΗ:Α2 ΟΝΟΜΑ ΜΑΘΗΤΗ: ΕΥΔΟΞΙΑ ΚΑΡΑΓΙΑΝΝΗ ΓΥΜΝΑΣΙΟ: ΚΕΡΑΤΕΑΣ ΤΑΞΗ:Α2 ΟΝΟΜΑ ΜΑΘΗΤΗ: ΕΥΔΟΞΙΑ ΚΑΡΑΓΙΑΝΝΗ 1 Ανάλυση τεχνολογικής ενότητας που ανήκει η ανεμογεννήτρια Η ανεμογεννήτρια ανήκει στην ενότητα της ενέργειας και της ισχύος. Η ενέργεια είναι

Διαβάστε περισσότερα

1 ο Λύκειο Ναυπάκτου Έτος: Τμήμα: Α 5 Ομάδα 3 : Σίνης Γιάννης, Τσιλιγιάννη Δήμητρα, Τύπα Ιωάννα, Χριστοφορίδη Αλεξάνδρα, Φράγκος Γιώργος

1 ο Λύκειο Ναυπάκτου Έτος: Τμήμα: Α 5 Ομάδα 3 : Σίνης Γιάννης, Τσιλιγιάννη Δήμητρα, Τύπα Ιωάννα, Χριστοφορίδη Αλεξάνδρα, Φράγκος Γιώργος 1 ο Λύκειο Ναυπάκτου Έτος: 2017-2018 Τμήμα: Α 5 Ομάδα 3 : Σίνης Γιάννης, Τσιλιγιάννη Δήμητρα, Τύπα Ιωάννα, Χριστοφορίδη Αλεξάνδρα, Φράγκος Γιώργος Θέμα : Εξοικονόμηση ενέργειας σε διάφορους τομείς της

Διαβάστε περισσότερα

Πού πηγαίνει η ενέργεια στο νοικοκυριό σας;

Πού πηγαίνει η ενέργεια στο νοικοκυριό σας; Πού πηγαίνει η ενέργεια στο νοικοκυριό σας; Συσκευές καθημερινότητας 4% Standby (Αναμονή) 6% Ζέστη & Δροσιά 22% Ψυγείο/Κατάψυξη 7% Συσκευές Κουζίνας 9% Φώτα 9% Άλλα 3% Πλύσιμο & στέγνωμα 3% Ζεστό νερό

Διαβάστε περισσότερα

ABB drives για τη βελτίωση της ενεργειακής αποδοτικότητας. ABB Group April 1, 2013 Slide 1

ABB drives για τη βελτίωση της ενεργειακής αποδοτικότητας. ABB Group April 1, 2013 Slide 1 ABB drives για τη βελτίωση της ενεργειακής αποδοτικότητας April 1, 2013 Slide 1 Η ενεργειακή πρόκληση σήμερα Αυξανόμενη ζήτηση Ευρώπη και Β. Αμερική 5.4% 26% Κίνα 94% 177% Πρόβλεψη IEA 2007-30 Αύξηση στη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της αρχής λειτουργίας των μηχανών συνεχούς ρεύματος, β) η ανάλυση της κατασκευαστικών

Διαβάστε περισσότερα

Υδροµετεωρολογία Αιολική ενέργεια

Υδροµετεωρολογία Αιολική ενέργεια Υδροµετεωρολογία Αιολική ενέργεια Νίκος Μαµάσης και ηµήτρης Κουτσογιάννης Τοµέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα 6 ΙΑΡΘΡΩΣΗ ΙΣΤΟΡΙΚΗ ΑΝΑ ΡΟΜΗ ΑΙΟΛΙΚΗ ΙΣΧΥΣ ΑΙΟΛΙΚΕΣ ΜΗΧΑΝΕΣ ΧΡΗΣΗ ΑΙΟΛΙΚΗΣ

Διαβάστε περισσότερα

Θέµατα Εξετάσεων 94. δ. R

Θέµατα Εξετάσεων 94. δ. R Θέµατα Εξετάσεων 94 Συνεχές ρεύµα 42) Ο ρόλος µιας ηλεκτρικής πηγής σ' ένα κύκλωµα είναι: α) να δηµιουργεί διαφορά δυναµικού β) να παράγει ηλεκτρικά φορτία γ) να αποθηκεύει ηλεκτρικά φορτία δ) να επιβραδύνει

Διαβάστε περισσότερα

Μια εργασία Διερευνητικής Μάθησης. Κ. Σιακαβάρα Δρ. Βιολόγος 3 ο Γυμνάσιο Ηρακλείου

Μια εργασία Διερευνητικής Μάθησης. Κ. Σιακαβάρα Δρ. Βιολόγος 3 ο Γυμνάσιο Ηρακλείου «ΠΡΑΣΙΝO» ΦΩΣ Μια εργασία Διερευνητικής Μάθησης Κ. Σιακαβάρα Δρ. Βιολόγος 3 ο Γυμνάσιο Ηρακλείου Σ Σκοπός αυτού του Προγράμματος είναι: ό ύ Π ά ί να να μάθουν οι μαθητές περισσότερα για τους συμπαγείς

Διαβάστε περισσότερα

EURECO (2000 2002) (2004)

EURECO (2000 2002) (2004) Ηµερίδα ΚΑΠΕ & ήµου Κερατέας «Τρόποι ενσωµάτωσης Ανανεώσιµων Πηγών και Εξοικονόµησης Ενέργειας σε τοπικό επίπεδο» 30 Ιουνίου 2010 Εξοικονόµησης Ηλεκτρικής Ενέργειας στον Οικιακό Τοµέα Αργυρώ Γιακουµή Φυσικός,

Διαβάστε περισσότερα

ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΑΝΔΡΕΑΔΗ ΣΟΥΤΟΓΛΟΥ ΜΑΡΙΑΛΕΝΑ ΚΑΦΦΕ ΚΥΡΙΑΚΗ

ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΑΝΔΡΕΑΔΗ ΣΟΥΤΟΓΛΟΥ ΜΑΡΙΑΛΕΝΑ ΚΑΦΦΕ ΚΥΡΙΑΚΗ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΑΝΔΡΕΑΔΗ ΣΟΥΤΟΓΛΟΥ ΜΑΡΙΑΛΕΝΑ ΚΑΦΦΕ ΚΥΡΙΑΚΗ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ (ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ) Οι πηγές ενέργειας, όσον αφορά όμως τα αποθέματα ενέργειας (ενεργειακό δυναμικό), διακρίνονται σε συμβατικές

Διαβάστε περισσότερα

Μάθημα 1 Πρώτα Βήματα στη Σχεδίαση μίας Εγκατάστασης: Απαιτούμενες Ηλεκτρικές Γραμμές και Υπολογισμοί

Μάθημα 1 Πρώτα Βήματα στη Σχεδίαση μίας Εγκατάστασης: Απαιτούμενες Ηλεκτρικές Γραμμές και Υπολογισμοί Μάθημα 1 Πρώτα Βήματα στη Σχεδίαση μίας Εγκατάστασης: Απαιτούμενες Ηλεκτρικές Γραμμές και Υπολογισμοί Φορτίων Περίληψη Πως σχεδιάζουμε μία ηλεκτρική εγκατάσταση? Ξεκινώντας από τα αρχιτεκτονικά σχέδια

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ανανεώσιμες Πηγές Ενέργειας Εισηγητές : Βασιλική Σπ. Γεμενή Διπλ. Μηχανολόγος Μηχανικός Δ.Π.Θ Θεόδωρος Γ. Μπιτσόλας Διπλ. Μηχανολόγος Μηχανικός Π.Δ.Μ Λάρισα 2013 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΑΠΕ 2. Ηλιακή ενέργεια

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΣΥΓΧΡΟΝΗ ΖΩΗ. Ιατρού Κωνσταντίνος

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΣΥΓΧΡΟΝΗ ΖΩΗ. Ιατρού Κωνσταντίνος ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΣΥΓΧΡΟΝΗ ΖΩΗ Ιατρού Κωνσταντίνος Οµάδα Μέλη οµάδας 1. 2. 3. 4. Ηµεροµηνία / /20 ΜΕΡΟΣ Α Ενεργειακές µετατροπές που πραγµατοποιούνται

Διαβάστε περισσότερα

Στεφάνου Μ. 1 Φυσικός

Στεφάνου Μ. 1 Φυσικός 1 ΕΡΓΟ ΕΝΕΡΓΕΙΑ Α. ΤΟ ΠΡΟΒΛΗΜΑ Βιομηχανική επανάσταση ατμομηχανές καύσιμα μηχανές απόδοση μιας μηχανής φως θερμότητα ηλεκτρισμός κ.τ.λ Οι δυνάμεις δεν επαρκούν πάντα στη μελέτη των αλληλεπιδράσεων Ανεπαρκείς

Διαβάστε περισσότερα

Έργο. Είναι μονόμετρο φυσικό μέγεθος και μετράται σε Joule = Ν m. Παραγόμενο έργο, καταναλισκόμενο έργο, μηδενικό έργο

Έργο. Είναι μονόμετρο φυσικό μέγεθος και μετράται σε Joule = Ν m. Παραγόμενο έργο, καταναλισκόμενο έργο, μηδενικό έργο Ενέργεια Έργο Ισχύς Ενέργεια Δυναμική ενέργεια Κινητική ενέργεια Θεώρημα έργου-ενέργειας Κινητική ενέργεια και ορμή Διατήρηση της Ενέργειας Μηχανές Απόδοση 1 Έργο Έργο δύναμης ορίζεται ως το γινόμενο της

Διαβάστε περισσότερα

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια (παράγραφοι ά φ 3.1 31& 3.6) 36) Φυσική Γ Γυμνασίου Εισαγωγή Τα σπουδαιότερα χαρακτηριστικά της ηλεκτρικής ενέργειας είναι η εύκολη μεταφορά της σε μεγάλες αποστάσεις και

Διαβάστε περισσότερα

Πράσινο & Κοινωνικό Επιχειρείν

Πράσινο & Κοινωνικό Επιχειρείν Πράσινο & Κοινωνικό Επιχειρείν 1 Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) Eίναι οι ενεργειακές πηγές (ο ήλιος, ο άνεμος, η βιομάζα, κλπ.), οι οποίες υπάρχουν σε αφθονία στο φυσικό μας περιβάλλον Το ενδιαφέρον

Διαβάστε περισσότερα

Σχέδιο Δράσης Αειφόρου Ενέργειας (ΣΔΑΕ) Δήμου Κηφισιάς. Γιώργος Μαρκογιαννάκης Σύμβουλος Μηχανολόγος - Ενεργειακός Μηχανικός, MSc

Σχέδιο Δράσης Αειφόρου Ενέργειας (ΣΔΑΕ) Δήμου Κηφισιάς. Γιώργος Μαρκογιαννάκης Σύμβουλος Μηχανολόγος - Ενεργειακός Μηχανικός, MSc Σχέδιο Δράσης Αειφόρου Ενέργειας (ΣΔΑΕ) Δήμου Κηφισιάς Γιώργος Μαρκογιαννάκης Σύμβουλος Μηχανολόγος - Ενεργειακός Μηχανικός, MSc Κηφισιά 08/09/2017 Τι είναι το ΣΔΑΕ; Ένα Σχέδιο Δράσης το οποίο παρουσιάζει

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2. Μετατροπή ηλεκτρικής ενέργειας σε θερμότητα

ΑΣΚΗΣΗ 2. Μετατροπή ηλεκτρικής ενέργειας σε θερμότητα ΑΣΚΗΣΗ 2 Μετατροπή ηλεκτρικής ενέργειας σε θερμότητα Σκοπός : Να δούμε πως η ηλεκτρική ενέργεια και η θερμότητα είναι δύο μορφές ενέργειας Να υπολογίσουμε τη τιμή του ηλεκτρικού ισοδύναμου της θερμότητας

Διαβάστε περισσότερα

ΑΝΕΜΟΣ: Η ΜΕΓΑΛΗ ΜΑΣ ΚΑΙΝΟΤΟΜΙΑ

ΑΝΕΜΟΣ: Η ΜΕΓΑΛΗ ΜΑΣ ΚΑΙΝΟΤΟΜΙΑ Η AIR-SUN A.E.B.E δραστηριοποιείται στον χώρο της παραγωγής ηλεκτρικής ενέργειας από Αιολικό και Ηλιακό δυναμικό και επεκτείνεται στο χώρο των ενεργειακών και περιβαλλοντικών τεχνολογιών γενικότερα. Το

Διαβάστε περισσότερα

ΔΠΜΣ: «Τεχνοοικονομικά Συστήματα» Διαχείριση Ενεργειακών Πόρων 6. Ενεργειακά Ισοζύγια

ΔΠΜΣ: «Τεχνοοικονομικά Συστήματα» Διαχείριση Ενεργειακών Πόρων 6. Ενεργειακά Ισοζύγια ΔΠΜΣ: «Τεχνοοικονομικά Συστήματα» Διαχείριση Ενεργειακών Πόρων 6. Ενεργειακά Ισοζύγια Καθηγητής Ιωάννης Ψαρράς e-mail: john@epu.ntua.gr Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης - Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: ΑΡΧΩΝ ΜΑΡΚΟΣ-ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ-KΥΡΙΑΚΑΚΗΣ ΓΙΩΡΓΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: ΑΡΧΩΝ ΜΑΡΚΟΣ-ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ-KΥΡΙΑΚΑΚΗΣ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: 19-10-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ-ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ-KΥΡΙΑΚΑΚΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4

Διαβάστε περισσότερα

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΤΜΟΣΤΡΟΒΙΛΟΙ Σημειώσεις Δ. Κουζούδη Εαρινό Εξάμηνο 2017 ΑΤΜΟ-ΣΤΡΟΒΙΛΟΙ (ΑΤΜΟ-ΤΟΥΡΜΠΙΝΕΣ) Που χρησιμοποιούνται; Για παραγωγή ηλεκτρικής ς σε μεγάλη κλίμακα. Εκτός από τα

Διαβάστε περισσότερα

Καύση υλικών Ηλιακή ενέργεια Πυρηνική ενέργεια Από τον πυρήνα της γης Ηλεκτρισμό

Καύση υλικών Ηλιακή ενέργεια Πυρηνική ενέργεια Από τον πυρήνα της γης Ηλεκτρισμό Ενεργειακή Μορφή Θερμότητα Φως Ηλεκτρισμός Ραδιοκύματα Μηχανική Ήχος Τι είναι; Ενέργεια κινούμενων σωματιδίων (άτομα, μόρια) υγρής, αέριας ή στερεάς ύλης Ακτινοβολούμενη ενέργεια με μορφή φωτονίων Ενέργεια

Διαβάστε περισσότερα

4.. Ενεργειακά Ισοζύγια

4.. Ενεργειακά Ισοζύγια ιαχείριση Ενέργειας και Περιβαλλοντική Πολιτική 4.. Ενεργειακά Ισοζύγια Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστηµάτων Αποφάσεων & ιοίκησης Γρ. 0.2.7. Ισόγειο Σχολής Ηλεκτρολόγων Τηλέφωνο: 210-7723551,

Διαβάστε περισσότερα

ΔΙΕΙΣΔΥΣΗ ΑΙΟΛΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΛΑΔΑ

ΔΙΕΙΣΔΥΣΗ ΑΙΟΛΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΛΑΔΑ ΔΙΕΙΣΔΥΣΗ ΑΙΟΛΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΛΑΔΑ Στάθης Παπαχριστόπουλος Διπλ. Χημικός Μηχανικός ΜSc MBA Προϊστάμενος Τμήματος Επιστημονικοτεχνικής Υποστήριξης και Υλοποίησης Προγραμμάτων ΠΤΑ/ΠΔΕ Αναπληρωτής Δ/ντής

Διαβάστε περισσότερα

Έργο - Ενέργεια. Ενέργεια έχει ένα σώμα το οποίο έχει την εσωτερική ικανότητα να. Η ενέργεια εμφανίζεται με διάφορες μορφές όπως Κινητική,

Έργο - Ενέργεια. Ενέργεια έχει ένα σώμα το οποίο έχει την εσωτερική ικανότητα να. Η ενέργεια εμφανίζεται με διάφορες μορφές όπως Κινητική, Κεφάλαιο 5 ο Έργο - Ενέργεια Έργο Ενέργεια έχει ένα σώμα το οποίο έχει την εσωτερική ικανότητα να παράγει έργο. Η ενέργεια εμφανίζεται με διάφορες μορφές όπως Κινητική, Δυναμική, Φωτεινή, Πυρηνική, Ηλεκτρική

Διαβάστε περισσότερα

ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ?

ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ? ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ? Αντώνης Θ. Αλεξανδρίδης Καθηγητής Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Γ Γυμνασίου >> Αρχική σελίδα ΗΛΕΚΤΡΙΙΚΗ ΕΝΕΡΓΕΙΙΑ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. ) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει ιςς

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟΙ ΚΑΙ ΕΝΑΛΛΑΚΤΙΚΟΙ ΤΡΟΠΟΙ ΘΕΡΜΑΝΣΗΣ Βασίλης Γκαβαλιάς, διπλ. μηχανολόγος μηχανικός Α.Π.Θ. Ενεργειακός επιθεωρητής`

ΟΙΚΟΝΟΜΙΚΟΙ ΚΑΙ ΕΝΑΛΛΑΚΤΙΚΟΙ ΤΡΟΠΟΙ ΘΕΡΜΑΝΣΗΣ Βασίλης Γκαβαλιάς, διπλ. μηχανολόγος μηχανικός Α.Π.Θ. Ενεργειακός επιθεωρητής` ΕΝΩΣΗ ΠΡΟΣΚΕΚ ΑΡΙΣΤΟΤΕΛΗΣ ΚΑΤΑΡΤΙΣΗ ΕΝΕΡΓΕΙΑΚΩΝ ΕΠΙΘΕΩΡΗΤΩΝ Εισηγητής: Γκαβαλιάς Βασίλειος,διπλ μηχανολόγος μηχανικός ΟΙΚΟΝΟΜΙΚΟΙ ΚΑΙ ΕΝΑΛΛΑΚΤΙΚΟΙ ΤΡΟΠΟΙ ΘΕΡΜΑΝΣΗΣ Βασίλης Γκαβαλιάς, διπλ. μηχανολόγος

Διαβάστε περισσότερα

Κεφάλαιο 3 Ο Νόμος του Ohm

Κεφάλαιο 3 Ο Νόμος του Ohm Κεφάλαιο 3 Ο Νόμος του Ohm 1 3 Ο Νόμος του Ohm (Ohm s Law) ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Ο Νόμος του Ohm Εφαρμογή του Νόμου του Ohm Ενέργεια και Ισχύς Ισχύς σε ένα Ηλεκτρικό Κύκλωμα Οι Ονομαστικές Τιμές Ισχύος

Διαβάστε περισσότερα

Δ. ΥΠΟΔΕΙΓΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΣΦΟΡΑΣ

Δ. ΥΠΟΔΕΙΓΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΣΦΟΡΑΣ Δ. ΥΠΟΔΕΙΓΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΣΦΟΡΑΣ ΤΙΤΛΟΣ ΠΡΟΣΦΕΡΟΝΤΟΣ : ΔΙΕΥΘΥΝΣΗ : ΤΗΛΕΦΩΝΟ : ΓΙΑ ΤΗΝ «ΠΡΟΜΗΘΕΙΑ ΗΛΕΚΤΡΙΚΩΝ ΣΥΣΚΕΥΩΝ, ΜΗΧΑΝΗΜΑΤΩΝ ΚΛΙΜΑΤΙΣΜΟΥ ΚΑΙ ΗΧΗΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ, ΓΙΑ ΤΗΝ ΚΑΛΥΨΗ ΤΩΝ ΑΝΑΓΚΩΝ ΟΛΩΝ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΟΙ ΤΥΠΟΙ

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΟΙ ΤΥΠΟΙ 91 Α. ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΕΣ ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ 1. Εισαγωγή-Τι είναι ενέργεια; ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΟΙ ΤΥΠΟΙ Ενέργεια ονομάζουμε το φυσικό μέγεθος του οποίου η ύπαρξη και οι μεταβολές αποτελούν το κοινό

Διαβάστε περισσότερα

Εθνικός ενεργειακός σχεδιασμός. Συνοπτικά αποτελέσματα εξέλιξης εγχώριου ενεργειακού συστήματος

Εθνικός ενεργειακός σχεδιασμός. Συνοπτικά αποτελέσματα εξέλιξης εγχώριου ενεργειακού συστήματος Εθνικός ενεργειακός σχεδιασμός Συνοπτικά αποτελέσματα εξέλιξης εγχώριου ενεργειακού συστήματος μείωση εκπομπών αερίων θερμοκηπίου και περιβαλλοντικοί στόχοι αύξηση συμμετοχής ΑΠΕ στην κατανάλωση ενέργειας

Διαβάστε περισσότερα

Κ Ι Ν Η Σ Ε Ι Σ ΑΣΚΗΣΕΙΣ

Κ Ι Ν Η Σ Ε Ι Σ ΑΣΚΗΣΕΙΣ Κ Ι Ν Η Σ Ε Ι Σ ΑΣΚΗΣΕΙΣ 1. Αυτοκίνητο κινείται σε ευθύγραμμο δρόμο με σταθερή φορά και το ταχύμετρο του (κοντέρ) δείχνει συνεχώς 72km/h. α) Τι είδους κίνηση κάνει το αυτοκίνητο; β) Να μετατρέψετε την

Διαβάστε περισσότερα

ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΤΕΧΝΙΑ I

ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΤΕΧΝΙΑ I ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΤΕΧΝΙΑ I ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (Direct Current Circuits-DC ) Κωδ. ΗΝ0131 ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 9/0/06 ΘΕΜΑ Α Στις ερωτήσεις 7 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Mια μικρή σφαίρα προσκρούει

Διαβάστε περισσότερα

ΟΙΚΟΛΟΓΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΝΕΡΓΕΙΑΚΗ ΣΗΜΑΝΣΗ ΙΩΑΝΝΟΥ ΣΑΒΒΑΣ ΛΕΙΤΟΥΡΓΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΟΙΚΟΛΟΓΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΝΕΡΓΕΙΑΚΗ ΣΗΜΑΝΣΗ ΙΩΑΝΝΟΥ ΣΑΒΒΑΣ ΛΕΙΤΟΥΡΓΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΟΙΚΟΛΟΓΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΝΕΡΓΕΙΑΚΗ ΣΗΜΑΝΣΗ ΙΩΑΝΝΟΥ ΣΑΒΒΑΣ ΛΕΙΤΟΥΡΓΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΥΠΗΡΕΣΙΑ ΕΝΕΡΓΕΙΑΣ ΥΠΟΥΡΓΕΙΟ ΕΝΕΡΓΕΙΑΣ, ΕΜΠΟΡΙΟΥ, ΒΙΟΜΗΧΑΝΙΑΣ ΚΑΙ ΤΟΥΡΙΣΜΟΥ 1 2 Πολιτικές για βιώσιμη ανάπτυξη

Διαβάστε περισσότερα

Α/Π 44 MW ΣΤΗ ΘΕΣΗ «ΡΑΧΟΥΛΑ ΠΑΣΧΑΛΙΕΣ» ΜΗ ΤΕΧΝΙΚΗ ΠΕΡΙΛΗΨΗ

Α/Π 44 MW ΣΤΗ ΘΕΣΗ «ΡΑΧΟΥΛΑ ΠΑΣΧΑΛΙΕΣ» ΜΗ ΤΕΧΝΙΚΗ ΠΕΡΙΛΗΨΗ Α/Π 44 MW ΣΤΗ ΘΕΣΗ «ΡΑΧΟΥΛΑ ΠΑΣΧΑΛΙΕΣ» ΜΗ ΤΕΧΝΙΚΗ ΠΕΡΙΛΗΨΗ Το έργο της εταιρείας ΑΙΟΛΙΚΗ ΡΑΧΟΥΛΑΣ ΔΕΡΒΕΝΟΧΩΡΙΩΝ Α.Ε., θυγατρικής της ΤΕΡΝΑ ΕΝΕΡΓΕΙΑΚΗ ΑΒΕΤΕ, στη θέση «ΡΑΧΟΥΛΑ ΠΑΣΧΑΛΙΕΣ» της Δημοτικής Ενότητας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 Ο : ΤΡΙΦΑΣΙΚΑ ΔΙΚΤΥΑ

ΚΕΦΑΛΑΙΟ 8 Ο : ΤΡΙΦΑΣΙΚΑ ΔΙΚΤΥΑ ΚΕΦΑΛΑΙΟ 8 Ο : ΤΡΙΦΑΣΙΚΑ ΔΙΚΤΥΑ 1 Τα τριφασικά δίκτυα χρησιμοποιούνται στην παραγωγή και μεταφορά ηλεκτρικής ενέργειας για τους εξής λόγους: 1. Οικονομία στο αγώγιμο υλικό (25% λιγότερος χαλκός). 2. Η

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ. Γ. Λευθεριώτης, Αναπλ. Καθηγητής Γ. Συρροκώστας, Μεταδιδακτορικός Ερευνητής

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ. Γ. Λευθεριώτης, Αναπλ. Καθηγητής Γ. Συρροκώστας, Μεταδιδακτορικός Ερευνητής ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Γ. Λευθεριώτης, Αναπλ. Καθηγητής Γ. Συρροκώστας, Μεταδιδακτορικός Ερευνητής Τι είναι ενέργεια; (Αφηρημένη έννοια) Στιγμιότυπο από την κίνηση ενός βλήματος καθώς διαπερνά ένα

Διαβάστε περισσότερα

Παραγωγή ηλεκτρικής ενέργειας από Φωτοβολταϊκά και ανεμογεννήτριες

Παραγωγή ηλεκτρικής ενέργειας από Φωτοβολταϊκά και ανεμογεννήτριες Παραγωγή ηλεκτρικής ενέργειας από Φωτοβολταϊκά και ανεμογεννήτριες 1 Παραγωγή ηλεκτρικής ενέργειας από Φωτοβολταϊκά και ανεμογεννήτριες Συντελεστές 1) Γιάννης κουρνιώτης 2) Κων/νος Αντωνάκος 3) Θεόδωρος

Διαβάστε περισσότερα

Κλιματική Αλλαγή: Φυσική διαδικασία ή ανθρώπινη επέμβαση;

Κλιματική Αλλαγή: Φυσική διαδικασία ή ανθρώπινη επέμβαση; Κλιματική Αλλαγή: Φυσική διαδικασία ή ανθρώπινη επέμβαση; TοΦαινόμενοΘερμοκηπίου Ηλιακή ακτινοβολία διαπερνάει την ατμόσφαιρα της Γης Μέρος της ηλιακής ακτινοβολίας ανακλάται από τη Γη και την ατμόσφαιρα

Διαβάστε περισσότερα

Μύλους με κατακόρυφη κίνηση Μύλους με οριζόντια κίνηση Και τα δυο

Μύλους με κατακόρυφη κίνηση Μύλους με οριζόντια κίνηση Και τα δυο 2 ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΛΑΜΙΑΣ ΤΑΞΗ: Α' PROJECT: ΜΕ ΤΗΝ ΠΝΟΗ ΤΟΥ ΑΝΕΜΟΥ... ΣΧΟΛΙΚΟ ΕΤΟΣ: 2011-2012 ΥΠΕΥΘΥΝΟΙ ΚΑΘΗΓΗΤΕΣ: Πλάκας Ηλίας, Γιώτα Ευαγγελία ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ 1. Σε τι μετατρέπουν οι ανεμογεννήτριες την

Διαβάστε περισσότερα

Φωτοβολταϊκά από µονοκρυσταλλικό πυρίτιο

Φωτοβολταϊκά από µονοκρυσταλλικό πυρίτιο 1 ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ Τα φωτοβολταϊκά συστήµατα αποτελούν µια από τις εφαρµογές των Ανανεώσιµων Πηγών Ενέργειας, µε τεράστιο ενδιαφέρον για την Ελλάδα. Εκµεταλλευόµενοι το φωτοβολταϊκό φαινόµενο το

Διαβάστε περισσότερα

Ανανεώσιμες πηγές ενέργειας

Ανανεώσιμες πηγές ενέργειας Ανανεώσιμες πηγές ενέργειας Κέντρο Περιβαλλοντικής Εκπαίδευσης Καστρίου 2013 Ενέργεια & Περιβάλλον Το ενεργειακό πρόβλημα (Ι) Σε τι συνίσταται το ενεργειακό πρόβλημα; 1. Εξάντληση των συμβατικών ενεργειακών

Διαβάστε περισσότερα

ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ

ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΔΟΜΗ ΜΑΘΗΜΑΤΟΣ - ΕΙΣΑΓΩΓΗ 1o Μάθημα Διδάσκων: Επ. Καθηγητής Ε. Αμανατίδης ΤΕΤΑΡΤΗ 11/10/2017 Τμήμα Χημικών Μηχανικών Πανεπιστήμιο Πατρών Στόχος μαθήματος Βασικές αρχές παραγωγής

Διαβάστε περισσότερα

ΠΡΕΣΒΕΙΑ ΤΗΣ ΕΛΛΑΔΟΣ ΓΡΑΦΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ & EΜΠΟΡΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Οι πηγές ανανεώσιμης ενέργειας στην Γερμανία

ΠΡΕΣΒΕΙΑ ΤΗΣ ΕΛΛΑΔΟΣ ΓΡΑΦΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ & EΜΠΟΡΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Οι πηγές ανανεώσιμης ενέργειας στην Γερμανία ΠΡΕΣΒΕΙΑ ΤΗΣ ΕΛΛΑΔΟΣ ΓΡΑΦΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ & EΜΠΟΡΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Βερολίνο, Μάρτιος 2010 Οι πηγές ανανεώσιμης ενέργειας στην Γερμανία Στόχοι της κυβερνητικής πολιτικής Μείωση των εκπομπών ρύπων έως το 2020

Διαβάστε περισσότερα

Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή

Διαβάστε περισσότερα

Προοπτικές των ΑΠΕ στην Ελλάδα σε µεσοπρόθεσµο επίπεδο. Ιωάννης Αγαπητίδης Πρόεδρος.Σ.

Προοπτικές των ΑΠΕ στην Ελλάδα σε µεσοπρόθεσµο επίπεδο. Ιωάννης Αγαπητίδης Πρόεδρος.Σ. Προοπτικές των ΑΠΕ στην Ελλάδα σε µεσοπρόθεσµο επίπεδο Ιωάννης Αγαπητίδης Πρόεδρος.Σ. Πρωτογενής Παραγωγή Ενέργειας από ΑΠΕ 80000 70000 Βιοµάζα Ηλιακή Εν. Υδροηλεκτρική Ενέργεια Φωτοβολταϊκά Γεωθερµία

Διαβάστε περισσότερα