On Pseudo-Differential Operator Associated with Bessel Operator
|
|
- Αἴολος Ανδρέου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Int. J. Contemp. Math. Sciences, Vol. 6, 2, no. 25, On Pseudo-Differential Operator Associated with Bessel Operator Akhilesh Prasad and Vishal Kumar Singh Department of Applied Mathematics Indian School of Mines Dhanbad-8264, India apr vks Abstract In this paper pseudo-differential operator(p.d.o) P (x, D) in terms of a symbol is defined and inverse Hankel transform of this symbol is also defined. It is shown that the p.d.o is bounded in certain Sobolev type space associated with Hankel transform. A special case is discussed. Mathematics Subject Classification: 46F2; 46F5; 47G3 Keywords: Pseudo-differential operator; Hankel transform; Hankel convolution Introduction The Hankel-type transformation of φ L (I), I (, ) is defined by (H μ φ)(x) (xy) μ J μ (xy)φ(y)y 2μ+ dy, x I (.) where (xy) μ J μ (xy)y 2μ+ represents the kernel of this transformation, as usual, J μ is the Bessel function of the first kind and order μ. We shall assume that through out this paper that μ /2. Since x μ J μ (x) is bounded on I, the Hankel-type transformation H μ (φ)(x) is bounded on I, provided x 2μ+ φ(x) dx < (.2)
2 238 A. Prasad and V. K. Singh clearly (H μ φ)() 2 μ Γ(μ +) The inversion formula for (.) is given by φ(x) φ(y)y 2μ+ dy. (.3) (xy) μ J μ (xy)h μ φ(y)y 2μ+ dy, x I. (.4) The above transformation has been used [2, 6]. Altenburg [] introduced the space H consisting of all infinitely- differentiable functions φ defined on I (, ), such that for all m, k N the quantites γ m,k (φ) sup( + x 2 ) m (x d/dx) k φ(x) <. (.5) x I Zaidman [8] studied a class of pseudo-differential operators (p.d.o s) using Swartz s. theory of Fourier transformation. Pseudo -differential operators associated to a numerical valued symbol a(x, y) were discussed by Pathak and Prasad [6]. Moreover the Hankel transformation (.) finds wide applications in the Hankel convolution theory [2, 4, 5]. Therefore, it is natural to develop a theory of pseudo-differential operators depending on the transformation (.). In the investigation of the pseudo-differential operator P (x, D) depending on the transformation H μ, it assume that the symbol a(x, y) posses derivatives which satisfy certain growth conditions. One formula for such an operator appears as follows: where (H μ,a φ)(x) (H μ φ)(x) (xy) μ J μ (xy)a(x, y)h μ φ(y)y 2μ+ dy, x I (.6) (xy) μ J μ (xy)φ(y)y 2μ+ dy, x I. (.7) From [7] the symbol a(x, y) is defined to be the complex valued infinitely differentiable function on I I which satisfy (x d/dx) α (y d/dy) β a(x, y) C α+β+ α!β!( + y) m β (.8) α, β N where m is a fixed real number. The class of all such symbols is defined by H m. From [6] we know that for any φ, ψ H: (x d/dx) k (φ, ψ) k ( k υ )(x d/dx) υ φ(x d/dx) k υ ψ. (.9) υ The theory of Hankel convolution studied by Belhadj and Betancor [2]. In this paper we have used the Hankel transformation defined by (.) to develop a theory of pseudo-differential operator associated with Bessel operator corresponding to [5].
3 Pseudo-differential operator associated with Bessel operator The Hankel Convolution From Zemanian [9] we recall that the following results on Hankel convolution in the sequel Δ(x, y, z) be the area of the triangle with sides x, y, z if such a triangle exists. For μ>, set D(x, y, z) 2 3μ /2 (π) /2 [Γ(μ + )] 2 (Γ(μ +/2)) (xyz) 2μ [ Δ(x, y, z) 2μ ] (2.) if Δ exists and zero otherwise. We note that D(x, y, z) and that D(x, y, z) is symmetric in x, y, z and we have where and From [5] we know that j(zt)d(x, y, z)dμ(z) j(xt)j(yt) (2.2) dμ(z) [2 μ Γ(μ + )] z 2μ+ dz (2.3) j(x) 2 μ Γ(μ +)x μ J μ (x). (2.4) J μ (xξ)j μ (xλ) (xλξ) μ z μ J 2 μ μ (zx)d(ξ, λ, z)dμ(z). (2.5) Γ(μ +) Next we define the space L p μ (I), p< as the space of all real measurable function on satisfying [ /p f p f(x) dμ(x)] p < (2.6) Lemma 2. Let f L μ (I) then the associated function f(x, y) is defined by f(x, y) f(z)d(x, y, z)dμ(z), < x,y <. (2.7) Lemma 2.2 Let f and g be functions of L μ (I) and the Hankel convolution of f and g be defined by (f#g)(x) f(x, y)g(y)dμ(y), <x<. (2.8) Then the integral defining (f#g)(x) converses for all x, < x <, and and (f#g)(x) (g#f)(x) almost everywhere. (f#g)(x) f g (2.9)
4 24 A. Prasad and V. K. Singh 3 Pseudo-Differential Operator P (x, D) Definition 3. Let us define the pseudo-differential operator P (x, D) by (P (x, D)φ)(x) (xξ) μ J μ (xξ)a(x, ξ)h μ φ(ξ)ξ 2μ+ dξ, x I (3.) where φ H(I),I (, ),μ /2 and we assume that the symbol a(x, ξ) is defined as the Hankel-type transformation: a(x, ξ) with condition that for all λ I, ξ I and (xλ) μ J μ (xλ)(h μ a)(λ, ξ)λ 2μ+ dλ, x I (3.2) (H μ a)(λ, ξ) k(λ), λ I,ξ I (3.3) where k(λ) L μ(i), μ /2. Now we prove a boundedness result P (x, D) for which we need the following Sobolev type space. Definition 3.2 For s, μ R and p<, the space G s μ,p set of all those elements φ H (I), which satisfy is defined to the φ G s µ,p η s H μ φ p (3.4) we usually call G s μ,p the Sobolev type space. Theorem 3. Let μ /2, then P (x, D)φ G µ, k φ G µ,, φ H(I) (3.5) Proof: We have (P (x, D)φ)(x) where a(x, ξ) (xξ) μ J μ (xξ)a(x, ξ)h μ φ(ξ)ξ 2μ+ dξ, x I (3.6) (xλ) μ J μ (xλ)(h μ a)(λ, ξ)λ 2μ+ dλ, x I. (3.7)
5 Pseudo-differential operator associated with Bessel operator 24 Therefore by changing the order of integration using Fubini s theorem, we have (P (x, D)φ)(x) (xξ) μ J μ (xξ) (xλ) μ J μ (xλ)(h μ a)(λ, ξ)λ 2μ+ dλ H μ φ(ξ)ξ 2μ+ dξ, x I 2 μ Γ(μ +) (xξ) μ (xλ) μ (H μ a)(λ, ξ)(λξ) 2μ+ H μ φ(ξ) (xλξ) μ z μ J μ (zx)d(ξ, λ, z)dμ(z)dλdξ (xξ) μ (xλ) μ (H μ a)(λ, ξ)(λ, ξ) 2μ+ H μ φ(ξ) (xλξ) μ z μ J 2 μ μ (zx)d(ξ, λ, z) Γ(μ +) 2 μ Γ(μ +) z2μ+ dzdλdξ (xz) μ J (2 μ Γ(μ + )) 2 μ (zx) [ ] (λξ) 2μ+ (H μ a)(λ, ξ)h μ φ(ξ)d(ξ, λ, z) z 2μ+ dzdλdξ. (3.8) An application of the inverse Hankel transform yields (xz) μ J μ (xz)(p (x, D)φ)(x)x 2μ+ dx In other wards, we have (2 μ Γ(μ + )) 2 ξ 2μ+ H μ φ(ξ)λ 2μ+ (H μ a)(λ, ξ)d(ξ, λ, z)dλdξ. (3.9) H μ (P (x, D)φ(x))(z) using the inequality (3.3) we have H μ (P (x, D)φ(x))(z) (H μ a)(λ, ξ)d(ξ, λ, z) (H μ φ)(ξ)dμ(λ)dμ(ξ), (3.) k(λ)d(ξ, λ, z) (H μ φ)(ξ)dμ(λ)dμ(ξ) (3.) (k#h μ φ)(z). (3.2)
6 242 A. Prasad and V. K. Singh Hence H μ (P (x, D)φ(x))(z) dμ(z) (k#h μ φ)(z)dμ(z). (3.3) Now applying the definition (3.4) and (2.9) P (x, D)φ G k µ, φ G,φ H(I). (3.4) µ, 4 Property of Symbol Let us now consider the special case when symbol a(x, ξ) is separable in the form a(x, ξ) a(x)c(ξ) (4.) where H μ (a(x))(λ) L μ(i) and c(ξ) is a bounded measurable function on I (c(ξ)) M, for all ξ I. Since a(x) and [H μ a(x)] (λ) L μ (I), therefore (xλ) μ J μ (xλ)[(h μ a(x))] (λ)λ 2μ+ dλ, x I (4.2) a(x, ξ) (xλ) μ J μ (xλ)(h μ a(x, ξ))(λ)λ 2μ+ dλ, (xλ) μ J μ (xλ)(h μ a(x))(λ)c(ξ)λ 2μ+ dλ x I (xλ) μ J μ (xλ)(h μ a(x))(λ)λ 2μ+ dλc(ξ). (4.3) Thus (H μ a(x, ξ))(λ) H μ (a(x))(λ)c(ξ), which is measurable function on I I for all ξ I, since c(ξ) M and (H μ a)(λ, ξ) MH μ (a(x))(λ) L μ (I). Thus Therefore, by the preceding theorem k(λ) H μ (a(x))(λ). (4.4) P (x, D)φ G µ, k φ G µ,,φ H(I). (4.5) Acknowledgement: This work is supported by University Grants Commission, Govt. of India, under grant no.f.no.34-45/28(sr).
7 Pseudo-differential operator associated with Bessel operator 243 References [] G. Altenburg, Bessel Transformation in Roümen von Grund funktionen uber dem intervall Ω (, ) and derem Dual-raumen, Math Nachr. 8(982): [2] M. Belhadj and J. J. Betancor., Hankel transformation and Hankel convolution of tempered Beurling distributions, Rocky Mountain J. Math., 3(4)(2): [3] J. J. Betancor and I. Merrero., Some properties of Hankel convolution operators, Canad. Math. Bull., 36(4),(993): [4] J. N. Pandey., An extension of Haimo s form Hankel convolution, Pacific J. Math, 96(969): [5] R. S. Pathak and S. Pathak., Certain pseudo-differential operators associated with Bessel operator, Indian. J. pure. appl. Math, 3(2): [6] R. S. Pathak and A.Prasad., Continuity of pseudo-differential operators associated with Bessel operator in some Gevrey spaces, appl. anal., 8(3)(22): [7] L. Rodino., Linear Partial Differential Operators in Gevrey spaces, World Scientific, Singapore (993) [8] S. Zaidman., Distributions and Pseudo-differential Operators, Longmann Esex, England (99). [9] A. H. Zemanian., Generalised Integral Transformations, Interscience, New York (962). Received: December, 2
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
The semiclassical Garding inequality
The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,
PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)
GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk
Boundedness of Some Pseudodifferential Operators on Bessel-Sobolev Space 1
M a t h e m a t i c a B a l k a n i c a New Series Vol. 2, 26, Fasc. 3-4 Boundedness of Some Pseudodifferential Operators on Bessel-Sobolev Space 1 Miloud Assal a, Douadi Drihem b, Madani Moussai b Presented
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
n=2 In the present paper, we introduce and investigate the following two more generalized
MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Intuitionistic Fuzzy Ideals of Near Rings
International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
On the k-bessel Functions
International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
SOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
GAUGES OF BAIRE CLASS ONE FUNCTIONS
GAUGES OF BAIRE CLASS ONE FUNCTIONS ZULIJANTO ATOK, WEE-KEE TANG, AND DONGSHENG ZHAO Abstract. Let K be a compact metric space and f : K R be a bounded Baire class one function. We proved that for any
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras
Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product
Iterated trilinear fourier integrals with arbitrary symbols
Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
The k-bessel Function of the First Kind
International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.
Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary
Homomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions
Pure Mathematical Sciences, Vol. 1, 01, no. 4, 187-196 The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions Goh Jiun Shyan School of Science and Technology Universiti Malaysia Sabah Jalan
Generating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points
Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points
Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
Memoirs on Differential Equations and Mathematical Physics
Memoirs on Differential Equations and Mathematical Physics Volume 31, 2004, 83 97 T. Tadumadze and L. Alkhazishvili FORMULAS OF VARIATION OF SOLUTION FOR NON-LINEAR CONTROLLED DELAY DIFFERENTIAL EQUATIONS
On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points
Global Journal of Pure Applied Mathematics. ISSN 0973-768 Volume, Number 3 06, pp. 849 865 Research India Publications http://www.ripublication.com/gjpam.htm On New Subclasses of Analytic Functions with
12. Radon-Nikodym Theorem
Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!
Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano
235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp
Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.
On a Subclass of k-uniformly Convex Functions with Negative Coefficients
International Mathematical Forum, 1, 2006, no. 34, 1677-1689 On a Subclass of k-uniformly Convex Functions with Negative Coefficients T. N. SHANMUGAM Department of Mathematics Anna University, Chennai-600
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)
IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
Empirical best prediction under area-level Poisson mixed models
Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test