x. x > 1 x 6 x. , 0 b ±a c Ø d 0, 4a. Exercise a x a b. e f b i c d + +

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "x. x > 1 x 6 x. , 0 b ±a c Ø d 0, 4a. Exercise a x a b. e f b i c d + +"

Transcript

1 MATHEMATICS Higher Level (Core) ANSWERS ANSWERS Eercise. 0 0 c d 0 0 e f 0 [] ] [ c ]0] d ] 0] e ][ f ] [ ] [ c + c d + + c + d e f + i - + ii 0 + i + ii + 0 {±} {±0} c Ø d {} e {} f {0} c d 0 0 ] [ ] [ c ][ + Eercise.. c d e f c d e f c d e f 0 c d + e f g 0 h i + c d e f g h 0 i 0 j - k ± l c d 0 e f 0 ± c Ø d 0 ± Eercise.. < c d e f 0 > c < < c > d ( + ) c d e f g h i c d e f g < > h i p < ( + ) ( ) < > > < < > > 0 > < < < > >

2 MATHEMATICS Higher Level (Core) ANSWERS < < c 0 < < < < c Eercise.. c d e c + c c d < < - < < < < / - - / f g h i j k l m n o p q -/ t - - -/ t / - / / + c d 0 c d f() f() f() Note signs! Eercise.. c d 0 e f c 0 0 d e f c. m m 0 c m. + c d 0 e f - + Eercise.. z 0 z c 0 z d z e f t t z t g z 0 h Eercise.. c 0 d e f g h i j 0 c d e f ± ± c ± d - e f c d e - f - ± - ± g ± h - i j no rel solutions k ± ± ± ± + - ± ± f() - ± - ± ±

3 MATHEMATICS Higher Level (Core) ANSWERS - ± ± l no rel solutions m n o p < p < p ± c p < or p > m m < c m > - ± m ± ] [ ] [ c ] [ k ± ] [ ] [ c ] [ 0 Eercise.. Grphs re shown using the ZOOM viewing window: c - ± c ( 0) ( 0) (0 )( 0) ( 0) (0 )(0. 0) ( 0) (0 ) d e f d e f ( 0) ( 0) (0 )(. 0) (. 0) (0 )( 0) ( 0) (0 ) g h i g h i (0. 0) (. 0) (0 )(. 0) ( 0) (0 )( 0) (0. 0) (0 ) j k l j k l ( 0) (0 )( 0) ( 0) (0 )(0. 0) (. 0) (0 ) Grphs re shown using the ZOOM viewing window: ( ) c i ± 0 ii (0 )

4 MATHEMATICS Higher Level (Core) ANSWERS ( ) c i ± 0 ii (0 ) k k < c k k k c k ± < k < c k < k > ( )( ) c ( ) d + 0 c ( + ) d + Eercise.. ] [ ] [ [] c ] 0] [ [ d ] [ e ].] [ [ f ]0..[ ] [ ] [ ][ c ] 0.] [ [ d [] e ] - [ f ] ] [ [ g [ ] h [.] i ] [ ]0. [ j ][ k ]0.[ l Ø m Ø n [.] o ] [ ] [ < k < 0 < k < c n 0. i ] [ ] [ ii [] i ] [ ] [ ii [] c i ][ ii ] ] [ [ d i ] [ ii ] ] [ [ e i ] [ ] [ ii [] f i ] + [ ii ] ] [ + [ ]0[ [0.] ( ) < k > > ( ) + ( + ) i ] [ ] + + [ ii ] ( ) ( + ) \{} iii ] i [- ] ii ll rel vlues {: < } {: > } {: < < } c i {: < 0.} ii {: < < 0} i ]0[ (k ); ]0[ (k ) ii Ø k >. Eercise.. ( ) ( ) ( ) ( ) c d ( ) e f ( ) g - h no rel solutions i - - j ( ) ( ) k no rel solutions ( ) ( ) c (0 ) ( ) d ( ) e Ø f ( ) g Ø h ± m < m > c < m < 0. ( ) ( ) 0. c i ( ) - ii ( ) c i A() B( ) ii sq. units Eercise c + + d + + e f - m ( ) ( + ) ( 0 )

5 MATHEMATICS Higher Level (Core) ANSWERS 0 Eercise...% c % digrm % c 0 Continuous Eercise.. ( )( ) ( )( ) + 0 ( + )( + ) + ( )( + ) + ( + )( + ) + ( )( ) Eercise. c d. e 0 c + Eercise. ( )( )( + ) ( ) c d ( )( + )( + ) e ( )( + ) f g ( ) ( + ) h ( ) i j ( ) + ( + ) ( ) + - ( + + ) ( )( )( + ) ( ) ( )( )( + + ) ( ) ( + )( )( + ) 0 ( + )( + )( ) ( + )( + ) ( )( + + ) ( ) ( )( + ) ( )( + )( ) c ( + ) m ( ) ( + ) m n k ; c ( α + αβ + β ) αβ ( α + β ) Eercise.. c d e f g h ± 0 i ± j ± + + d c d ( )( + )( + ) n k k n ; ( + )( )( + ) 0 ( + )( 0. )( ) 0 c ± c d + ( )( + )( + )

6 MATHEMATICS Higher Level (Core) ANSWERS c 0.0 d No other solutions m n ; Eercise.. ][ ] [ ] ] [] c [] [ [ d ]0 [ \{} e {} [0. [ f ] [ ][ g ] [ ] [\{} h ] ] {} ][ ] [ ] ] [] c [] [ [ d ] [ ] [ e [ [ f ] [ g ] [ h [ 0] [ + 0 [ i ] ] [ + + j ] [ ] [ k ] ] l ] - [ ] - [ Eercise. c 0. ] j k l m n o p q r. d e f / 0. / s t 0. c g h i d e f 000

7 MATHEMATICS Higher Level (Core) ANSWERS g h i j 0. i ii i ii c d ( + ) e 0 ( ) f + + ( + )( ) c ( + )( )( ) 0. ( + ) ( ) ( + ) ( + )( )( ) ( )( ) c c + {( 0 ) ( + )} { : > + } ( ) ( + ) ( )( ) or Eercise. Sum Product Sum Product c Sum Product d Sum Product e Sum Product f Sum Product g Sum Product h Sum Product - i Sum Product Consider the possiilit of zero denomintor! c d e f g h i The cuic cse: c d gives The fctorized version is: ( α )( β )( γ ) 0. The onl simple conclusion is tht the product of the roots is αβγ d. This is relted to the conjugte root theorem. The coefficients must e rel. Eercise.. + c + c + g + g + g c d e f + g h + 0 p q + + q + 0q - p + 0q - p + 0q - p + - 0q p + p r Eercise.. 0 c d 0 e p f 0p q g 0p c 0 d 0 e f % 0 c 0. d 0.% ā - c ā - d i 0 + j + k l + d + d + d m n o - p p + p p 00

8 MATHEMATICS Higher Level (Core) ANSWERS 0 0 n n ± n ± ± Eercise. dom { } rn { } dom { } rn { 0} c dom {0 } rn { } ] [ [0 [ c ] [ d ] ] e [ ] f ] [ g ] 0] h [0 ] i [0 [ j [ ] k ]0 [ l ] ] [ [ r [ [ d [0 [ r { : 0 }\{} d c r [0 [ \{} d [ [ \{0} d r [ 0[ d [ [ e r ] [ d ] ] [ [ f r [] d [0] one to mn mn to one c mn to one d one to one e mn to mn f one to one \{} ] [ c [] d ] ] [ [ e \{0} f g \{} h [ [ i [0 [ \{ } j ] ] [ [ k l \{ } ] [ ]0] c ] ] d [ [ e \{} f ] [ g [ [ h ] 0[ Eercise. Grphs with grphics clcultor output hve stndrd viewing window unless otherwise stted. i (+) + ii c 0 0 c ± c no solution 0 i ii i { } ii { } Window [] [] Rnge: [ ] c d e d e f Window [] [] [0 [ 0 {: > } {:.} 0 onl it is the onl one with identicl rules nd domins [ [ [0] c [ [ d [.[ ] [ i p ( ) + 0< < ii A ( ) 0< < i ii r ][ r ]0] 00

9 MATHEMATICS Higher Level (Core) ANSWERS Eercise.. c d () c d () c d Eercise.. c d e f 0. c d g h i 0 00

10 MATHEMATICS Higher Level (Core) ANSWERS c c d e f d e f g h i g h i c () [ [ [ [ [0 [ d e f ] 0] c d c d 00

11 MATHEMATICS Higher Level (Core) ANSWERS i Ø ii [] iii {±}. 0. { : } { : } hs diltion effect on f () (long the is). c d Eercise.. ( ) ( ) ( 0) ( 0) ( ) ( ) ( ) ( ) c d ( ) ]0 [ ( ) ]0 [ ( ) ]0 [ (.) ]0 [ [] [] c [0.] d [0.] e [0.0.] f [0.0] c d ] [ e ] [ ] e[ ] [ e f g h (.) ]0 [ (.) ]0 [ ( ) ]0 [ ( ) ]0 [. c i f g: ii f > g: < g i j k l ] + e [ [ [ c [ e + e ] ( ) ]0 [ ( /) ]0 [ ( /) ]0 [ ( 0/) ]0 [ 00 f

12 MATHEMATICS Higher Level (Core) ANSWERS 0 c d e f c c d () () ]0[ {} ] ] () c d [ [ [ [ c [0/] ] ] [0 [ c ]0] d e f [[ [ [ ] [ ]0 [ > ]0 [ < ]0 [ {} [0 [ ( ) EXERCISE.. c d ] [ ]0 [ ] [ 00

13 MATHEMATICS Higher Level (Core) ANSWERS e f g h c 0. ]0. [ ] [ ]0 [ 0 ]0 [ ]0 [ \{0} \{0} c ]0 [ 0 ]0 [ d e f ] [ / ]/ [ ] [ ] [ d e f ]0 [ ][ c ]0 [ ] [ ] [ ] [ ]0 [ c e e ]0 [ ]0 [ e ]e [ d e f ( ) ]0 [ \{} e \{0} d e f ] /e[ /e ]0 [ e ]0 [ ii 00 i

14 MATHEMATICS Higher Level (Core) ANSWERS c d /e / / : ā - < < + 0 < < ~. ] 0[ [e [ c d [0 [ ] ] [ [ EXERCISE.. c d / /. c e f g h / / c + ] [ ]e/ [ d e f \{e} e e - ] 0/[ 0 ] [ c d \{e} e 00

15 MATHEMATICS Higher Level (Core) ANSWERS iii f/g: \{} where ( f/g ) - + ( ) fog ( ) + gof ( ) ( + ) ] [ ] [. c i ii d e f / / ii fog ( ) + 0 gof ( ) + [ [ [ [ iii fog ( ) gof ( ) ( + ) [0 [ [ [ iv fog ( ) 0 gof ( ) 0 \{0} \{0} v fog ( ) 0 gof ( ) [0 [ [0 [ vi fog ( ) gof() does not eist. ] [ 0 vii fog ( ) 0 gof ( ) 0 ]0 [ ]0 [ viii fog ( ) gof ( ) [ [ [0 [ i fog ( ) + gof ( ) [ [ [0 [ fog() does not eist gof ( ) ( ) [0 [ i fog ( ) [0[ [0 [ gof ( ) EXERCISE.. i f+ g: [ 0 [ where ( f+ g) ( ) + [0 [ ii f+ g: ]0 [ where ( f+ g) ( ) + ln( ) [ [ iii f + g: [ ] [ ] where ( f+ g) ( ) + [ 0] i fg: [ 0 [ where ( fg )( ) / ii iii fg: [ ] [ ] where ( fg )( ) ( )( ) i f g: ] [ where ( f g) ( ) e ] [ ii f g: ] [ where ( f g) ( ) ( + ) + ]0. [ iii f g: ] [ where ( f g) ( ) + [] i ii fg: ]0 [ where ( fg )( ) f/g: \ { 0 } where ( f/g )( ) ln( ) - e e f/g: ] [ where ( f/g )( ) + ii fog ( ) + + gof ( ) + + [ [ [ 0. [ iii fog ( ) gof ( ) [ [ ]0 [ iv fog() does not eist gof ( ) - \{} + v fog() does not eist gof ( ) + ] [ vi [ [ ]0 [ fog ( ) + gof ( ) + c fof ( ) + g ( ) + fog ( ) + + \{ 0} ] ] [ [ gof() does not eist. fog ( ) 0 gof ( ) 0. ± c gog ( ) ].] [. [ + 00

16 MATHEMATICS Higher Level (Core) ANSWERS 0 + rnge ] [ ( ) hof ( ) ( ) + < r f d g nd r gof d h g ( ) ( + ) fog ( ) ]0 [ rnge ]0 [ gof ( ) ( ln ( e ( ) rnge ] [ ) + ) c fof ( ) e ( e ) rnge ]e [ hok does not eist. koh ( ) log ( ) > S \][; T T { : 0 }; S ] ] [ [ gof does not eist fog ( ) 0 Dom f ]0 [ rn f ]e [ Dom g ]0 [ rn g fog does not eist: r g d f ]0 [ gof eists s r f ]e [ d g ]0 [ c gof: ]0 [ where gof ( ) ( + ) + ln ( fog )( ) ; rnge [0 [ c ( ) fog ( ) 0 fof ( ) dom rn ]0 [ gof ( ) +ln 0 d f \ ( ) in f not g g rnge ] [ c rf \ c rf d fof ( ) f EXERCISE.. ( ) c ( + ) d e > 0 f ( ) g > 0 h ( 0 ) d gof: ] [ where gof ( ) fog*: ] [ where gof ( ) d fog [ ] fog c d gof / / [ ] fog rnge [ 0 ] ( + ) ( ) > c d e f g h + + ( 0 ) ( 0 ) (0) 00 f

17 MATHEMATICS Higher Level (Core) ANSWERS ± - < < c d / e f g h () () f ( ) f ( ) 0 c f ( ) d f ( ) + + e f ( ) / + f f ( ) 0 ( ) f ( ) + + > ( ) dom [ [ rn [ [ 0 f ( ) f ( ) c + f ( ) f ( ) log ( ) > f ( ) log ( + ) c f ( ) d ( log ) > 0 g ( ) + log 0 ( ) e h ( ) log \[0] f g ( ) log + > - + c inverse inverse < > inverse f ( ) ( ) [ [ + \{.} Inverse eists s f is one:one Cse : S ]0 [ Cse : S ] 0[ g ( ) + + g ( ) + d e f ( ) f ( ) ( + ) 0 { : f ( ) f ( )} ( ) inverse inverse inverse 0

18 MATHEMATICS Higher Level (Core) ANSWERS f ( + ) < ( ) f ( ) ln ( ) 0 < e e > e iii iv { 0 } c d f ( ) e + < /f + f ( ) ( ) > 0 < < 0 i tom ( ) e 0 ii mot ( ) e i ( tom ) ( ) ( ln( )) > ii ( mot ) ( ) ln > 0 c i & ii neither eist d Adjusting domins so tht the functions in prt c eist we hve: t om ( ) ( mot ) ( ) nd m ot ( ) ( tom ) ( ) e Yes s rules of composition OK. 0.0 (tom) 0. (mot) gof eists s r f d g. It is one:one so the inverse eists: f : f ( ) + e i ii f is one:one f ( ) ( ) ( ) < ( + ) > fog eists ut is not one:one c i B [ln [ ii iii EXERCISE. even even c neither d neither e even f odd g odd h even i odd Not if 0 is ecluded from the domin. ln f ( ) 0 ln R g ( fog ) : [0 [ where ( fog ) ( ) ln( + ) 0 f f

19 MATHEMATICS Higher Level (Core) ANSWERS EXERCISE. c d e + f + 0 g h ( ) ( + ) + ( ) + i ( + ) j k 0 l + i i ii ii iii iii ( + ) iv iv 0 c () () + c c First function in lck second function in lue c d e f.... g h i 0

20 MATHEMATICS Higher Level (Core) ANSWERS j 0 c d e f g h i j 0 0 Note: coordintes were sked for. We hve lelled most of these with single numers. c d ( ) 0. ( ) k l k m n o h g ( ) f ( ) + g ( ) f ( + ) c g ( ) f ( ) d g ( ) f ( ) + e g ( ) f ( ) + 0 i ii ( ) (0. 0) ( ) e f g h ( ) iii iv ( ) ( ) ( ) i j k l ( ) ( ) i ii 0 / ( ) m n o ( ) ( ) iii iv c i ii 0 0

21 MATHEMATICS Higher Level (Core) ANSWERS iii iv d i ii ( ) ( ) iii iv f ( + ) + f ( + ) + EXERCISE. c d ( ) i i ii ii iii iii iv iv c d 0

22 MATHEMATICS Higher Level (Core) ANSWERS f i ii iii iv f( ) (0 ) ( 0) 0 ( ) f( ) k ( ) i ii iii f ( ) h ( ) if ( + ) if 0 if < 0 if < ( ) iv v vi h ( ) if k ( ) if < ( ) if f ( ) if < if if < ( ) ( + ) if 0 if < 0 i ii ( ) (. ) (0 ) f( ) 0 iii iv f( ) (0 ) ( 0) 0 ( ) f( ) ( ) ( ) ( 0) f( ) ( ) f ( ) ( 0) ( ) (/ ) ( ) f ( 0) f ( ) f( ) + f ( ) f ( ) c f ( ) f d f ( ) f e f ( ) f f f ( ) f( ) + c d ( 0) > 0 ( ) ā - ( ) ā - < 0 0

23 MATHEMATICS Higher Level (Core) ANSWERS EXERCISE. i ii 0 0 d i ii () e i ii ( ) 0 0 i ii 0 0 c i (0 ) ii ( ) ( ) 0 () (0 (0 ) ) ( 0) ( ) () ( ) ( ) ( ) (0 ) ( ) 0 ( ) f i ii ( ) 0 ( ) c d. (0. ) (0. ) f( ) f( ) c f( + ) d f( ) e f( ) c d ( 0) ( 0) ( 0) ( 0) (0. ).. (0. ) (0. ) (0. ). ( ) 0

24 MATHEMATICS Higher Level (Core) ANSWERS e f g h i j k l - m n o p ( ) ( ) c d e f ( ) g h i j ( ) (0 ) ( ) i ii ( ) ( ) ( ) 0 (0. ) (0. ) 0 ā - ( ) ( ) ( ) ( 0) ( ) ( ) ( 0) ( ) ( ) ( ) ( ) ( ) q r ( ) (0 ) ( ) ( ) ( ) i ii c i ii c - - ( ) ( ) ( ) ( ) 0

25 MATHEMATICS Higher Level (Core) ANSWERS d e f ( ) ( ) ( ) EXERCISE. c ( ) 0. ( ) j k l 0. / () d e f / c EXERCISE. i ii d e f / ( ) ( 0.) i ii (0 ) (0 ) g h i 0. c i ii / (0 ) / / (0 ) / 0

26 MATHEMATICS Higher Level (Core) ANSWERS c d c i ii ( ) g i g ii i ii c i ii iii + iv v vi g g c 0. EXERCISE.. - c d e n + - f n + + g n + h ( n + ) i - c) d e f + n + z c d e n n + n + f n g + n n h n n i f f f f

27 MATHEMATICS Higher Level (Core) ANSWERS - m m kg c. rs d W + - c d e f + - c d e f - ( + h) ( + )( ) n c d e f g h mn p + - q pq - / 0.0.% c. m d. m e I 0 I t / n n c n d m n e n f EXERCISE.. c d e f. g h. i c d. e 0. f 0. g h i. EXERCISE.... c d. e. f. g. h i 0 0. c 0 d e f 0 c d e - ± EXERCISE.. i. ii. iii. i. ii. iii. c i. ii. iii. d i. ii. iii c 0. d0. 0 e. f 0 0. EXERCISE.. c 0. d c 0 0 c d e 0 f.. c. d Ø c 0.0 d c 0. 0 e k ln( ) EXERCISE. 000 c 000 d 0 ds + n + i ii iii. rs c 0. rs d c. kg d W e C i 00 C ii 00 C c.0 million rs d T gm c 0 ers d $ million $. mil c 0. ers d 0.0 c 0 d. ers 0 0 cm. cm c 00 ds d ds t 00 Q N 0 t V 0 W t t t 0 t

28 MATHEMATICS Higher Level (Core) ANSWERS i 0 ii c. erl 0 i $. ii $.0. ers c 0.t c T (.0.). C t ~ midnight. c 00 cm cm c. m d m e i.r ii.r iii.r f g t mg/min. min c i. ii. iii min d. mg e f No R A i $ ii $ iii $ c d i $ k ii $. mil iii $. mil f g $. mil & e 00 h Eercise. c d e f g 0 h 0 i j k 0. l log log c log 0 ( + ) d log 0 p e log ( ) f log ( ) t p R A t t c t d 0 z e 0 f c d e f g h i j k l.. c. d. e. f 0. g. h. i 0.0 Eercise. c d e f log log + log c log log + log c c log log c d log log + 0. log c e log log + log c f log log 0. log c c 0.0 z c + d e f c d e f no rel soln g h i j k l log w log c log ( + ) [ ] d ( )( + ) log e log 0 f c d e f ± c d c log -. log log log - + d 0. e log 0 log 0. f. g h. i 0. j no rel solution k log 0. l log 0 0. c d 00 0 e f ( log ) 000 c z c e c d Ø - e ln.0 ln 0.0 c ln. d e ln.0 f ln g 0. e log 0.0 log0 ± log - log -. log log log. 0. log ln 0. ( + ) - log 0. log 0 0

29 MATHEMATICS Higher Level (Core) ANSWERS h. 0. c 00. d 0. e.0.0 f 0. g 0. h i. j Eercise. 0 0 c 0. kg. c. [0[ i. ii. iii 0. rs c As c increses reliilit reduces. d 0 ct e 0.0 λ λ 0 0 k c.% d k Eercise.. i c t n n ii c t n n + iii c t n n + iv 0. c t n 0.n v c t n + n vi c t n n + e.0 i ± e ± 0.0 j Ø k e. l e 0 ln ln c ln ln d 0 e 0 f d e W. I n k L L 0 0 W. 0 0.h h h. W m. L ln ln 0 c d L 0 m 0.0 m λ log λ 0 L 0 L 0 st 0 i ii i ii 0 t n + ( n ) 0 Eercise.. 00 c 0 0 c c 00 c th week 0 0 Eercise d $ weeks 0 $ 0 i m ii 0 m m c Dist d e plers 00 m c 0 c n Eercise.. r u u n n r u - u n n c r d r u u n u u n n e r f r n n nn ( ) u u n u u n n n ( ) n 0 t

30 MATHEMATICS Higher Level (Core) ANSWERS ± ± ± th u n 0 c n times i $0 ii $0.. rs 000 u n - n 0..0 or $ $ Eercise.. c d e. f. 0 0 c d e ; ; c ; 0.00 d ;. e ;. f ;. c d 0 e - ; 0 $0.0. cm n 0. gms; 0 weeks V n V 0 0. n r. 0 0 $0.. 0 or out 00 illion tonnes. Eercise.. Term AP 0 GP. Sum to terms AP 0 GP weeks Ken $0 & Bo-Youn $) week week. [~00 depends on rounding errors] Eercise.. c 000 d fish. [NB: t <. If we use n then ns is 0 fish]; fish. Overfishing mens tht fewer fish re cught in the long run. or c 0 cm 0 Eercise.. 0. c ( t ) n + t ( t ) - n + t t - t n n - + t

31 MATHEMATICS Higher Level (Core) ANSWERS ± ( ) ( 0 0) c n m Eercise. $.0 $. $. $ $. $0. $00.0 $. $. $. 0 $. $. interest $.. Flt interest $000 $. $0. 0.0% /month (or.% p..) Eercise. cm cm c cm A B C ( + ) c d ( + ) e ( + ) f 0 0 ( + ) Eercise. i 00 T ii 0 T iii T iv 00 T i N E ii S iii S0 W iv N0 W.m.m ' m/s N W. km. m 0. m. m 0. km. m.0 km N. km E. km E 0. km S c. km E. km N d. km T m Eercise. ' '. cm. cm c ' d 0. cm e 0 ' ' ' c '.. m 0. m. c.. c. m d. m. m ( c) h h + tn c d ( + c) h + + c ( ) + h 0.0 m 0. m. m 0. cm ' c '. m ' c ' h tn c Eercise.. cm. cm c. cm d 0. cm e.0 cm f. cm g. cm h. cm i. cm j. cm k. cm 0

32 MATHEMATICS Higher Level (Core) ANSWERS l. cm m.0 cm n. cm o. cm m 00 cm. cm.sq units.0 sq units c. sq units. cm ' ( + tn θ ) tn θ Are of ΔACD 0. cm Are of ΔABC. cm Eercise.. cm cm c cm A B C Eercise.. c A B C c* B* C* d no tringles eist. Eercise.. 0. km. m. m 0 'T. m.0 m. m.000 m c. m. min hr. min c.0 km $ 0 0 m Eercise.. cm cm c cm A B C

33 MATHEMATICS Higher Level (Core) ANSWERS Eercise.. 0. km T '. cm. m. m. km W ' S Eercise...0 m. m 0. m 0 T. 0. cm cm left. km 0 m. cm m 0. cm. cm 0 m m c 0 d 0.0. m c. m m m c 0 m Eercise.. cm. m m 0. m.. min. ~0: m d sin φ sin( φ θ) d sin θ sin( φ θ) d sin φtn α i ii or c d - sin( φ θ) d sin θtn β sin( φ θ) sin φcos θ sin( φ θ) Eercise. - cm 0. c cm + cm d m. e f - cm. g.m +.cm h cm 00. i j cm. k cm + cm l - cm m n - cm. o cm c 0.0 m. c cm + - cm + - cm + - cm + - cm cm. cm. m 0. m c. c 0. c 0. c i.0 cm ii. cm c 0. cm.. cm 0. cm. cm cm cm c c tnα + cm 0. α 0. α. cm - cm - cm. + - cm + - m cm + - cm cm. + - cm cm cm + - cm 0

34 MATHEMATICS Higher Level (Core) ANSWERS Eercise c d 0 c c c c d - c c d e f g h i j - k l m n o p q 0 r s 0 t undefined 0 c 0 d e f g h i j k l m n o p q r s t - c d e f g h - c d e f g h - i j k l c d c - d + 0 c c k c k k c - - c c k k c k - k c k sin θ cot θ c d e cot θ f tn θ c d e f Eercise k k k c ( ) + ( ) 0 d e + + i ii i ii - c 0 d 0 i ii c ± + k k or i ii i ii + k ( k ) + k i ii k - k + - k i ii iii i ii iii ± + k k ( - ) + ( - ) - 0

35 MATHEMATICS Higher Level (Core) ANSWERS Eercise 0.. sin αcos φ+ cos αsin φ cos α cos β sin α sin β c sin cos cos sin d cos φ cos α+ sin φsin α e tn θ tn α f - tn φ tn ω + tn θtn α + tn φ tn ω sin ( α β ) cos ( α + β ) c sin ( + ) d cos( ) e tn ( α β) f tn g h i c c c d c d c d c d + + tn φ c 0 α ± α α α 0 R + tn α 0 R + tn α Eercise ( + ) sin + α+ β sin c d e f c d 0. c d e f g h i j tn - c d e f g h / c d / / 0. / 0. e f g h / / / c d.. / 0

36 MATHEMATICS Higher Level (Core) ANSWERS e f g h / / / c sec cot cosec c d e f g h i j k l m n Eercise 0. c d e f g.0 c h 0. c i 0.0 c j. c k 0. c l. c m undefined n. c o.0 c c - c d e f c d undefined e f g h - k - k + k 0 0. [ ] c d [ 0 ] [ ] 0. 00

37 MATHEMATICS Higher Level (Core) ANSWERS i ii c Cos Sin / tn - n + Eercise 0. c d - e f c - d e - f c d tn e - f c 0 0 d e - - f 0 g h c d ' e f g h. c.0 c i j k l ' ' m n o Ø ± c d e f g h - + tn - c 0 ± cos tn + tn( ) c / - - tn ± - ( ) - d 0 sin + 0 sin - - sin - + sin - sin - + sin - ii 0 ii 0 i { k + α( ) k k } ii { k + α ( k + ) α k } c 0 c ± ± ± 0 '0 ' ( '0 ') tn tn( ) Eercise 0. T sin t + c.. ( k + ) k cos cos + tn tn( ) { k } k k k - cos ( ) k + k L sin - t +. ( ) k k + k 0

38 MATHEMATICS Higher Level (Core) ANSWERS V c. m. m. sec. sec c mid-april to end of August 000 months c R d months m c m P S. t sin + sin ( t ) + P 0. sin ( t ) + D 0. t sin + sin - ( t. ) +. t F(t) G(t) c d.% d months d i ii [ 0 ] [ ] [ ] c. m Eercise. i ii iii iv 0 v vi i ii iii iv v vi c i i ii i iii + i iv v vi + i i c i d i e f + i i c + i d i e f ( + i ) c d e f + i i c i d ( + i ) e i f c c 0 i i i i ii i i i i ii i iii iv 0 or 0 or oth i i i c i ( + i ) ± ( + i ) i ( + ) ( + i ) ( uv ) ( + ) ( ) i i + i 0 + i + i i + i + i ( + i ) ( + i ) 0 t t

39 MATHEMATICS Higher Level (Core) ANSWERS cos ( θ+ α) + i sin( θ + α) cos ( θ α) + i sin( θ α) c r r ( cos ( θ+ α) + i sin( θ + α) ) d cos( θ ) + e + sin ( α ) + + i c ( + ) z cos ( θ ) + i sin( θ ) cos ( θ ) + i sin( θ ) α 0 α i 0 0 c α d 0 β 0 β 0 i β sin( θ ) + i cos( θ ) d cos ( θ ) i sin( θ ) Eercise. The points to plot re: () (0) () () ()()(0.0.)(). i i ii ( + i) iii i iv + i; Anticlockwise rottion of 0. i Reflection out the Re(z) is. ii Results will lws e rel numer so the point will lws lie on Re(z) is. iii Point will lws lie on the Im ( z ) is. + i c d e i f i g ( + i ) h ( i ) ; ; c ; d ; e ; f ; g ; 0 h ; rctn ; ; i or ii 0 or + ± ( i ) + i + i rctn ( ) Tringle propert; the sum of the lengths of two sides of tringle is lrger thn the third side. 0 c 0 + i ;. ; c ; 0 α n 0 0 β n ; θ ; θ c ; θ sec α α (for Principl rgument) otherwise α + k where k is n integer. sec α α + (for Principl rgument) otherwise α + k is n integer. + k θ cos θ c (for Principl rgument) otherwise + k k is n integer. i ii - + i sin θ i ii θ θ - Im(z) θ Eercise. cis cis c cis c d e f cis ' g h i i c d e f c 0 i i c ( ) + ( + )i c d e f ( + i ) c + i d i e f ( + i ) c d e ( + i ) f ( + i ) 0 i c d e f ( i ) i c i d e f - i ii iii i i ( + i ) c + + i O sin θ cis cis cis Re(z) ( ) cis cis + i i i + i ( + i ) ( + i ) i cis ( ' ) cis ( ' ) - 0cis ( ' ) ( + i ) -i ( + i ) i i ( + i ) 0 i i ( + i ) 0

40 MATHEMATICS Higher Level (Core) ANSWERS ; ( + i ) i ii c ( cis ( θ )) ( cos θ + cos α )( cos ( θ α) i sin( θ α) ) [or cos( α θ) ] cosec θ θ Eercise.. ( + i )( i ) ( + + i )( + i ) c ( + i )( i ) d ( z + + i )( z + i ) e z ( + i ) z ( + i ) f ( z + + i )( z + i ) g w i w + i i h ( w + i )( w i ) i w - i w + - i ± i c d e f ± i g ± i h ± i i ±i ± ± i ± ± i c ± ± i ( z i )( z + i ) ( z i ) z i c d ( z + + i )( z + i ) e z i f Eercise.. ( z + )( z + i) ( z i) ( z )( z + i) ( z i) c ( z )( z + i )( z i ) ( w + i )( w + + i )( w ) ( z )( z + i )( z i ) c ( z )( z + + i )( z + i ) d ( + )( )( + i) ( i) e ( w + )( w + i )( w i ) f ( z + )( z )( z + i )( z i ) ± i ± i c ± i d ± i e f - ( + i ) ± i - (( ) + ( + )i ) ± i ( z i )( z + i )( z )( z + ) - ± i ± i ( z )( z + i )( z i ) ± i ± i + - ± ( + ) z + + i ( + ) ± i ( )( z + i) ( )( z+ i )( z )( z + ) - ( ) ± i ± i ( z )( z + i) z i ± i 0 ± i ± i ( z )( z + i )( z i ) ( z )( z + i )( z i ) ± i ± i ± i ± i c ± ± i d ± ± i c d i ± ± i ( ± ) Eercise.. ± i + i i c i d e ( + + i ) f ± i ± i ± i ; ( z i )( z + i )( z + i )( z + + i ) ± + i i c ± cis cis cis cis cis c f ( ) ( z + )( z )( z + i )( z i ) ± ± i i + i i + i ( + i ) - ( + i ) cis cis cis cis cis cis cis ( + i ) ( + + i ) ± ± i - ( + i ) - cis cis cis c cis cis - i ± - i d cis cis cis e ( ± + i ) i ± cis (( + ) + ( )i ) - 0

41 MATHEMATICS Higher Level (Core) ANSWERS n n + n c d e f g h n + n + n + n c n n d e Eercise.. - n ( n + n + ) n ( n + ) c d n n ( n ) e f ± -i ± i Eercise.. - n ( n + n + ) nn ( + ) 0 ( n ) n n - + n + nn ( + )( n + ) n n + n n n + n n + n n + n n + nn ( + ) nn ( + ) n + - ( + ) nn - n n n n - + n n + n + n n Eercise. i 00 ii (0.) Smple size is lrge ut m e issed fctors such s the loction of the ctch. Popultion estimte is 000. i 00 ii 0 00 c 000 c numericl; d e ctegoricl d discrete; c e continuous Eercise. 0 0 Set A Mode. Men. Medin. Set B Mode Men. Medin. Set B is much more spred out thn set A nd lthough the two sets hve similr men the hve ver different mode nd medin. Eercise. Mode g; Men g; Medin g Mode.. g; Men. g; Medin.0 g Set A Mode.; Men.; Medin. Set B Mode ; Men.; Medin. $ $0 c Medin $00 $000 c Medin.. A:. hr B:. hr c Tpe B. crds 0 00 Eercise. Smple A Men. kg; Smple B Men.00 kg Smple A Smple std 0.0 kg; Smple B Smple std 0. kg c Smple A Popultion std 0.0 kg; Smple B Popultion std 0. kg.. Men.; Std. $. $.. $ $ c 0 i 0. ii. c

42 MATHEMATICS Higher Level (Core) ANSWERS Eercise. Med Q Q IQR Med. Q. Q. IQR. c Med. Q Q IQR d Med.0 Q 0. Q. IQR. e Med. Q 0 Q IQR 0 Med Q Q IQR Med Q Q IQR c Med Q Q. IQR 0. d Med 0 Q 0 Q 0 IQR 0 e Med 0 Q Q. IQR Eercise. Smple00 rndoml selected ptients popultion ll suffering from AIDS Smple000 working ged people in N.S.W popultion ll working ged people in N.S.W. c Smple John s I.B Higher Mths clss popultion ll seniors t Npp Vlle High School. Discrete: d; Continuous: c e f g. Frequenc score Cumultive frequenc score suggested nswers onl: 00; ; 0;... 00; 0; c 0; 0; Mke use of our grphics clcultor. grphics clcultor c. d. 0 grphics clcultor c 0. d.0. c. d.0 sec.. 0 Q~ Q~ ~ 0 c % d. rnge s..;.0.;... Eercise c 0 0!! c i! ii! 0 00 Eercise Eercise. 0 s n. s n. s n. s n. 0

43 MATHEMATICS Higher Level (Core) ANSWERS ; c n n C C c ; Eercise. c {HH HT TH TT} {HHHHHTHTHTHHTTTTTHTHTHTT} c c d c 0 0 c d {GGG GGB. GBG BGG BBB BBG BGB GBB} c 0 c c d {( H)( H)( H)(H)( H)( H)( T)( T)( T)( T)( T)(T)} - c Eercise. c c d.0 0. c c c 0.0 c c d e 0 c d 0. i 0. ii 0. c d Eercise c 0.0 d c 0.0 d 0.0 {TTTTTHTHTHTTHHHHHTHTHTHH} i ii iii iv 0

44 MATHEMATICS Higher Level (Core) ANSWERS c d c 0. T c c / / H F /0 /0 / c 0. d c 0. d c c c 0. d c 0. Eercise i ii 0. 0 R R _ / / 0 0 / / / / / / / / / H T H T H T Y B G / / / / Y B G Y B G R R _ R R _ i ii - N m c 0.0 d c c M 0. Eercise. - c - c d 0 c - - c N m N c ( ) N m - 0 m m+ ( N m) n 0

45 MATHEMATICS Higher Level (Core) ANSWERS Eercise i 0. ii 0. p0 ( ) p( ) p ( ) p ( ) c { 0 } 0 p() c d p() 0 H p() c p0 ( ) H T / i ii c i 0.0 ii p ( 0 ) p ( ) p ( ) i ii n 0 T p0 ( ) p ( ) p ( ) n P(N n) P(S s) T H T p( ) p ( ) H T H T H T 0 / 0 p ( ) p ( ) p ( ) p() 0 p() P(N n) s 0

46 MATHEMATICS Higher Level (Core) ANSWERS Eercise... i ii c i ii 0. i. ii. iii 0. i 0. ii. c i ii 0. σ 0. μ. np.. c. 0. i 0. ii c i 0 ii iii p ( 0 ) p ( ) - p ( ) - p ( ) i 0. ii 0. c W N E(W) 0. $.00 oth the sme 0 c c E(X) p Vr(X) p( p) i n( p) ii np( p) n 0 P(N n) W. 0 E ( X ) + - Vr( X ) ( + ) E(X) Vr(X) 0 EXERCISE c c 0.0 d c c 0. d c c 0.0 d c 0.00 d 0. e c 0. d c 0. d c c $0 d 0.0 i. ii iii.0 iv 0.0 v 0.00 i.0 ii iii. iv 0.0 v 0.0. i 0.0 ii. 0 iii 0. t lest 0 c d i ii. i ii $. $ $ c 0 p c. np np ( p ) - n 0 < p < ( p ) n np ( p ) n EXERCISE c c p 00

47 MATHEMATICS Higher Level (Core) ANSWERS P(X ) c 0 0 hpergeometric c P(X ) i 0. ii 0.00 c 0. 0 c 0 ds eforehnd (plce order on Jul) reminder ~ 0 P(X ) ~ 0% P(Accept) EXERCISE. e - 0! PX ( ) i 0. ii 0.0 iii 0.0 iv c c 0. 0.; 0. No c 0. i p ii pln p iii p + pln p c 0. EXERCISE c 0. d 0. e 0. f 0.00 g 0.0 h 0.0 i 0.00 j 0. k 0. l c 0.0 d 0.0 e 0.0 f 0.0 g 0. h 0.0 i 0.0 j 0.0 k 0.0 l 0. m 0.00 n 0. o 0.0 p 0.0 q 0. r 0. EXERCISE c 0.0 d 0. e 0.0 f c 0. d 0. e 0. f c c c c c c c c.0..0 % c 0. % 0. 0

48 MATHEMATICS Higher Level (Core) ANSWERS 0 % % % i 0.00 ii 0.0 iii $. $ i 0. ii 0.0 c $ μ. σ 0. $0.S μ. σ. 0 (.) i 0. ii 0. i 0. ii 0. c 0. Eercise. c d e f 0 0. c 0.0 d 0. e 0.0 f. g. h 0 m/s 0 m/s c + h + h m/s m/s + h.ºc/sec cm /cm i. cm /cm ii. cm /cm iii cm /cm..ºc/min t to t 0 m m/s c verge speed d m e m/s $0 $. $0.0 $0. $ 00. $0.0 per er Eercise. h t h t h c h t d h e f h t Eercise. h + + h c d h +h - + h c d + h ( + h) c ( + ) + h d + + h + h e ( + h + h ) f + ( )h + h g ( + h ) h i ( )( + h ) + h+ ; + h ; c + h + h ; d + h + h + h ; (t) i ms ii ms iii. ms d Find (limit) s h 0 e t t 0 s(t) i 0 cm ii. cm iii. iv. cm /d c 0 ( 0.h ) cm /d d i. cm /d ii. m /d t t h h t t t 0

49 MATHEMATICS Higher Level (Core) ANSWERS Eercise. c d. e f. m. ( h + h ) m c. m/s 0 c d e f 0 c + d e ( + ) f 0. / ms ( ) ms (t) i ms ms ii ms c t t ms d sec Eercise. c d e f g h 0 + i + j k l c d e f g h i 0 j - k l c d e f g l - Eercise.. m PQ + h ; lim m PQ h 0 P ( ) Q + h - ; ; + h m PQ - lim + h h 0 m PQ c d e f g h t h i j k ± c ( ) + 0 c ( ± ± ) ±- (0 0) : - < < 0 0 f ' ( + ) ( + ) + 0 Eercise.. c ' 0 > 0 ' : > - d e f ' ' g h i ' ' ' ' ' c d 0

50 MATHEMATICS Higher Level (Core) ANSWERS Eercise.. t - n c d t n n r + θ r r θ + e 0 L f 00 - g h i v l + + h n - + n c s / d + e f t r 0 r Eercise c d + + c - ( ) ( d + + ) e f ( ) + ( + ) ( ) ( sin + cos )e ln + c e ( ) d e sin + cos f tn + ( + )sec g ( cos sin ) h e ( cos + sin + sin ) i ( ln + + ln )e sin cos [ sin ( + ) + cos ] e c d e sin - cos sin ( + ) - ( e + ) ( f - + ) ln e g + h i ( + ) ( + ) ( sin cos ) e + cos + sin c ( + ) s + ( + ) d cos + e e sec + e f sin ( ) + e g cos sin cos( ) h 0 i j k l - t e - t t - + θ + - / m m + ln ( + ln ) + sin cos sin + - ln ( ln ) cos + sin cos sec θ cosθ c d e sin θ cos θ f e e cos( ) g sec h i ( log e ) - sin cos θ sin( sin θ ) cos j sin θ sec θ k cos csc ( ) l csc ( ) e e c e d e e f e e g e + h - i e ( )e + j cos ( θ )e sin θ k sin ( θ )e cos θ l m e n ( e + ) ( e + e )( e e ) o e p + )e + ( cos θ + e c + e d e f + g h sin cos i j k + cot l ln( + ) + sin c + sin cos - sin θ cos θ + θ d ( )e + e ( ln + ) sin( ln ) f ln ( ) sin( g ) cos ( )( ) 0 - h - ( ln ( 0 + ) ) ( sin ) [ ln( 0 + )] i ( cos sin )e j ln ( sin ) + cot k ( cos sin ) e l ( sin + cos ) sin( sin ) m + ( 0 ) n ( ) o - + p q r ( + ) + + ( + ) / s t u v w n n ln( n ) ( ) + sin θ + θ - ln( + ) ( + ) e e ( + ) sin θ cos + n + n n cos ( ln ) sin - ln + tn e cos θ + sin θln( sin θ) sinθcos θ ( + ) e + 0

51 MATHEMATICS Higher Level (Core) ANSWERS e - cos 0 cos sin c - sin 0 i sincos + cos - sin ii e ( cos ln cos sin ln cos sin tn ) i ( ln ) ii - i ii e cos( e ) cos e sin k m n + m+ n 0 { θ:n tn θ m tn θ n mθ m n } csc( ) sec ( ) tn ( ) c cot ( ) csc ( ) d sin( ) e csc f sec ( ) tn( ) sec ( ) tn ( ) sec c tn d cot csc e cos + sin f cot csc g csc ( ) cot ( ) csc( ) h cot sec ( ) csc tn( ) i - sec tn sin cos + sec e sec sec tn e sec ( e ) tn ( e ) c e sec ( ) + e sec ( ) tn( ) d csc ( log ) e csc( ) sec( ) f cot( ) csc ( ) log g cos cot( sin ) csc ( sin ) h cos( csc ) cot csc i 0 Eercise. c d e + - c d - f - g - h i ( + ) j - k l sin cos - ( ) + + if sin > 0 if sin < 0 e e f g h i j k l ( + )[ tn ( )] ( sin ( )) / m n o Tn sin c i Sin - d tn + tn e - log + sin ( ) ( + ) f - cos g e tn ( e ) e h 0 k k / - Sin f ' ( ) > nd ; () ] f ' ( ) - ; dom ( f ' ) > c f ' ( ) ( ) < < ; dom () f [ ] - Cos d f ' ( ) > 0 nd ; ] [ + e f ' ( ) ; < + e dom () f f f ' ( ) nd f ' ( ) - - < < - or - < < ; dom () f [ ] e + cos ( cos ) - e rcsin ( cos ( )) + + e tn + < dom f dom () f - Sin < 0 dom () f + - < <- [ ] [ 0

52 MATHEMATICS Higher Level (Core) ANSWERS g f ' ( ) > 0 nd ; ] [ h f ' ( ) < nd ; ] [ n 0 c d e f ( + ) 0 Eercise. ( ln ) ( ln ) c ( ln ) d ( ln ) e f g ( ln ) h ( ln ) + i ( ln ) ( ln ) + cos ( ) + ln ( ) sin( ) c ln ( ) e d ( ) ( + ) ( + ) ln( ) ln e - f sin + ln c d e n n + n ( ln ) + + < 0 dom () f + > dom () f ( rctn ) n + - > 0 ( + ) - ( ln0 ) ( ln ) ( + ) ( ln )( + ) f g log h log i ( ln ) log ( ln ) ( ) ( ln ) log ( ln( 0 )) log 0 ( + ) j - k l ( ln )( log ) ln ( 0 )( log 0 ( + )) ln 0 ln - ln + ln ln 0 ( ln ) cos( ) c d 0 + ( ln ) ln 0 ln0 + ( ln ) ( )( ) ( ln ) ( ln 0 )0 ( ln )( + ) e ( ln( )) log - ln ( )( log ) ( ) cos + ( ln ) 0 + ln ( ) ln c 0 ( ) ln 0 d ln e ( ) + f cos ln sin g cos ln h sin cos ln i ( ln + ) sin sin c d cos ln + ( ln ) ln ( ) ln Eercise. 0 c d e f g h i j k l cos sin m cos + sin sin n 0 o p q ( + ) e + e + e r cos ( sin s + ) 0 t c d e ( + ) ( ) / ( ) / ( + ) f g h + / i ( + ) ln cos ln sin - cos - cot c d ln sec ( ) ln ( 0 ) ln 0 ln ( tn ) e f g sin ln ( ( ) + ) tn ( ) ln ( ) ln h i - ( ) ln ( ) ln 0 ( + ) tn ( + ) ( ) sin θ - rctn ( ) - / ( ) / ln n ln + n ( ) ln n - n + ( + ) ( + ) Sin - ( ) + - ( + ) - ( ) sin cos e e ( + e ) ( e ) e ( ) ( ) / 0

53 MATHEMATICS Higher Level (Core) ANSWERS c f ' ( ) f (v) ( ) f ( ) 0 [0.0[ ].] Eercise.. sin c d e f g h i j k l () c d e Hperol Dom Rn [] c d smll ( ) e Dom Rn [kk] f ν pγ ( + ) f '' ( ) ( + ) f (iii) ( ) ( + ) f (iv) ( ) 0 ( + ) f (n) ( ) ( ) n n! ( + ) n n f '' ( ) n e ( ) n n n! ( + ) n + n k : n k : n ( n + ) + ( ) - n ( n ) ( ) ( ) k k sin ( + ) k ( + ) ( n ) ( ) ( ) k + k cos ( + ) k ± 0 - cos + sin nm ( ) m mn ( + ) n d d - + d d + n n e - + e ± 0-0 ( + )( tn ) undefined At (0.0 0.) grd.; t (0.0 0.) grd. Eercise.. f d cos d - sin g d cos d - cos tn cos + - cos h d + d i d + d ( + ) c d c 0 d Dom [0] Rn [] Eercise. 0 c d cos ( ) + sin( ) e ( + ) f ( + ) g e h l e cos ( ) + 0e sin( ) sin ( ) cos( ) cos( ) c sin( ) d tn ( ) + tn ( ) + 0 ( ln( )) ln( ) c d d d d d - d 0 c d - ( ln( )) d - d d d d d d d - + ( + ) e - + d - d d - d d - d d d e + t 0 ( ) ln ln( ) ( ) [ + ln( ) ] ( + ) d d d - d ( + ) - - ln( ) d - d

54 MATHEMATICS Higher Level (Core) ANSWERS Eercise c + d + e + f + g h + 0 c + d e f + g + h e e e c d e f g e h + e + e + c d e + f ( e ) e+ e e + g e h + A: B: Isosceles. sq. units 0 log e ( + ) ; ( + ) + + A: + B: + Tngents: tngent nd norml meet t (0. 0.) m n + 0 c + d e At ( ) ; At ( ) l : + l : + l : l : c l : + l : + Q ( ) z ( 0 ) e e + + ( ) e ( ) + e ( ) Eercise 0. c d ( ) ( ) ( 0) (0 ) m t ( ) min t c min t ( ) m ( ) d m t (0 ) min t ( -) e m t ( ) min t ( ) f min t + m t g min t ( ) 0 - h m t (0 ) min t ( 0) min t ( 0) i min t ( 0) m t j min t k min t ( ) m t ( ) l min t ( ) min t ( ) ( 0) c d (..) ( ). e f g h ( ) ( 0) (..0) ( ) (..0) ( 0) (0 ) 0

55 MATHEMATICS Higher Level (Core) ANSWERS i j - 0 () min t ( ) m t ( ) non-sttionr infl ( ) d ¼/ ¼/ i ( )e ii ( )e i ii c St. pt. ( e ) Inf. pt. ( e ) ( e ) ( e ) ( ) ( ) i (cos - sin)e ii cos.e i ii c Inf. e e d i e (sin + cos) ii e cos i ii c St. pts. -e Infl. pts. - e e d i e (cos sin) ii sin.e i ii 0 c St.pts. -e Inf. pts. (0 ) ( e ) ( e ) - e / / e 0 0 c d min vlue m vlue pt A: i Yes ii non-sttionr pt of inflect; pt B: i Yes ii Sttionr point (locl/ glol min); pt C: i Yes ii non-sttionr pt of inflect. pt A: i No ii. Locl/glol m; pt B: i No ii Locl/glol min; pt C: i Yes ii Sttionr point (locl m) c pt A: i Yes ii Sttionr point (locl/glol m); pt B: i Yes ii Sttionr point (locl min); pt C i Yes ii non-sttionr pt of inflect. d pt A: i Yes ii Sttionr pt (locl/glol m); pt B: i No ii Locl min; pt C: i Yes ii Sttionr point (locl m) e pt A: i No ii Cusp (locl min); pt B: i Yes ii Sttionr pt of inflect; pt C: i Yes ii Sttionr point (locl m) f pt A: i Yes ii Sttionr point (locl/glol m); pt B: i Yes ii Sttionr point (locl/glol min); pt C: i No ii Tngent prllel to is. i A ii B iii C i C ii B iii A c f ' ( ) f'' ( ) f ' ( ). f'' ( ) f ' ( ) f'' ( ) 0

56 MATHEMATICS Higher Level (Core) ANSWERS f ( ) m 0. n. f ( ) 0 ln ( ) i ii i ii c 0 Sttionr points: locl min t ( 0) nd locl m t ( e ). Inflection pts re: ( + ( + )e ( + ) ) nd ( ( )e ( ) ) + Asolute min t ~ -. locl m t ~ Inflection pts t ~ (0..) nd (. 0.) re left s questions for clssroom discussion c d c - d f ( ) 0... Use grphics clcultor to verif our sketch. Eecise 0. Locl min. t locl m t Locl m. t 0 locl min. t ± c Locl m. t 0. d Locl m. t e none f Locl m. t 0. locl min. t 0 g Locl m. t locl min. t h none m. 0 min. m. min. c m. 0. min. 0 d m. min. 0.. (.) (/) (//) (//) ¼ ( 0) -e - ( ) - 00

57 MATHEMATICS Higher Level (Core) ANSWERS Sttionr points occur where tn Glol min. t ( c ); c ( ) Locl min. t ( ); infl. pt. t + Locl min. t ( ); locl m. t ( ) c none ( ) ( e /.e ) 0 e / e Glol m. t ( e 0. 0.e ); infl. pt. t e / e. Verif our grphs with grphics clcultor. Glol min. t (0 0); locl m. t ( e ) Infl. pts. ( ( )e ( ) ) ( + ( + )e ( + ) ) Glol m. t ( 0 e ) infl. pt. t ± - e. c Locl m. t e Glol m. t ( e e ). Infl. pt. t e..e. ( ) Glol min. t - + ln c Glol min. t ( + ln); Infl. pt. t ( + ln) d none 0 Glol min. t f ' ( ) ( ) ( + ) (( + ) + ( ) ) i f ( ) - ; none + ii f ( ) ( ) ( + ); locl m. t - ; locl min. t ( 0) iii f ( ) ( ) ( + ) ; locl min. t (± 0) locl m. t (0 ). Locl min. t ( c c + c ) c Eercise 0. c d e 0 f c c 0. - d e f /

58 MATHEMATICS Higher Level (Core) ANSWERS Asmptotes: c d + 0 i (0 ) ( 0) ii ( ) i (0 ) ( 0) ii iii iv d \{} ( ) 0. f : \{-} where f ( ) ( ) c ( + ) c dom \{0} rn \{} 0. f( ) Asmptotes: 0 0 c 0 d 0 0 Asmptotes: 0 0 c 0 d 0 Rnge \{} dom \{0.0} rn \{0.} g( ) ( ) Eercise. i < 0 ii > iii 0 i < < ii < < < iii c i < < ii < iii d i 0 < < ii < < iii < 0 < e i ii < < iii f i < < < < ii < < < < iii Eercise.. ( deer per er to nerest integer) 00 cm. cm /d 0

59 MATHEMATICS Higher Level (Core) ANSWERS No $0. $ 0. per er c $. per er.0. c.0 0 < < 0 ppro. i 0 < < 000 ii 000 < < 0000 to nerest integer to nerest integer. d. e 0 < < ( + ) D' ( ) -. items/dollr ( ) i ii ( + ) 0 i 0 mm/s ii ~ 0. mm/s 0. sec. cm/s never c never e ms This question is est done using grphics clcultor: From the grph the prticles pss ech other three times c 0 s; s; s d i v ms ii ms A 0.e 0.t v B 0e t ( t ) e Yes on two occssions. m in positive direction i s ii never c 00 ms 0 A B Eercise. i v t > ii t > i v ( e t e t ) t 0 ( t ) ( t ) ii e t e t ( + ) t 0 c i v - 0 t < ii t t d i v ii ( t + ) ln 0 t + log 0 ( + ) t 0 ln0 e i v te t t 0 ii e t ( t ) t 0 f i v ( ln ) t + ( ln ) t t 0 ii v ms never t rest c i m from O in negtive direction ii ms d 0 m e s ms never c t or t d 0 ms t v t + ; t ~ sec c once d use grphics clcultor m in positive direction i m ii m c ms e oscilltion out origin with mplitude m nd period seconds 00 m in negtive direction times c i 0 ms ii ms d m m. units min. unit s c i cos( t ) ii ( ) 0 m ove i v.e 0.t ii 0.e 0.t c 0 m d 0. ( v + ) 0 0 < t < 0 or t > t > 0 c t or t - ( t + ) ( ln ) t t ( t ) 0 t < + t 0 t + + ( ln ) t t 0 window: [0 ] [0 ] i ms ii 0 ms c s d m window: [0 ] [ ] Eercise. r cm s cms cm s da - dt cm s ( side length) cms. cm h 0 cm h c 0. g cm h ~ 0. cms 0. cm min 0.0 ms 0.0 ms cm min kmh 0 rd s V h + h m min c 0. m min 0 m min 00 0 /

60 MATHEMATICS Higher Level (Core) ANSWERS 0 cm s 0. ms. ms 0 0.t [0 00] c i cm s ii.0 cm s d V 0 units c At infl. pts. when. cos ¼ ~. ms ~0.0 ms 0 + 0t t ~0. ms 0.0 cms 0. cm s i 0t ii 0t 0t c 0 kmh d. kmh 0. ms 0.0 ms. ms 0.0 m min. per sec rd per second % per second % per second per er % per second 0. rd per second Eercise.. m. mh $. per km 00 $00000 $. $0.0. m 0. m m m r dim of rect. i.e. prro.00 m.00 m θ m A (00 ) 0 < < 0 c < < 0 cm 00 mls 0 s c R.. c d 0 00 $000 0 & 0 ~. cm rdius 0 cm height 0 cm cm (0 00) 00 C (0.) 0 t 0 t

61 MATHEMATICS Higher Level (Core) ANSWERS h r r c r h r r : h : 0 ~ (0..). m where XP : PY : km r : h : cm : km from P r h r ltitude height of cone ~.0 m wide nd.00 m high when θ rcsin i.e. ppro..00 km from P. tnθ l k + kl + kl ( + k) c if k < c swimmer should row directl to Q. i r h + r ii c r : h : r + rh ( / + / ) / km long the ech c row directl to destintion R First integer greter thn α βeln - lnα β ln R S lnα - β ln 0 0 m isosceles tringle isoscles right-ngled tringle r + sq. units k + k sq. units k( k+ ) c r Eercise. c d e f g + c h + c + c c 0 + c d + c e + c f + c g + c h + c c d e f g h i c f + c + c + c + c / + + c + c + + c / + + c + c d e c / / + + / + c + c u u + c + c + c c d e f + c t + t + c t + + c + + c c + + z + z + c d e t t + c f z z c u ( + ) + c + + c c + c + + c + c + c t + t+ c ( ) + c / / + c - + c + + c + c u + u + u+ c βln α lnα - β ln S 0

62 MATHEMATICS Higher Level (Core) ANSWERS Eercise. + + c d e f g h $.0. cm + P ( ) N + + Vol ~ 0 cm 0 cm Eercise. c d e f g 0.e 0. + c h e + c i e + + c j e + c k e / + c l e + c t t 0 + ( + + ) f ( ) 0 e + c + 0 e + c log + c > 0 log + c > 0 c e + + e + c 0e 0. + c d log e ( + ) + c > e log f e + c > 0 log e g h + log e + c > 0 ln ( + ) + c c d cos ( ) + c e sin ( ) + c log e + c > 0 tn ( ) + c cos ( ) + c ( + ) e + c e + c + c > 0 c d e e f e + log g e + c > 0 h cos + log + c > 0 i j k l m n cos + o c c d e f + c g h i ( + ) j k + c ln ( + ) + c > ln ( + ) + c > l ln( ) + c m ln ( ) + c < n + c o i cos( ) ( ) e ( ) + c d 0 tn ( 0. ) + c e ln ( + ) + e +c f g + ln ( + ) ln ( + ) + c h ln ( + ).ms or.ms 0. cm e sin( ) + + c sin( ) + c cos + c e e + c ( ) + c ln ( + ) + c sin e + + c + e + < > - e ( + ) + c 0 + cos ( ) + c e + e + + c ( ) + c tn ( ) c cos + c sin c + ln + ( + ) + c f ( ) ( + ) f ( ) ln ( ) + c f ( ) sin ( + ) + d f ( ) e + c + / + c > 0 log e e cos( + ) + c sin ( ) + c ( ) + c ( + ) + c + + sin ln( ) ( + ) + c + ln + e e ln ( + ) + c ( ) + c ( + ) + c e < + c 0

63 MATHEMATICS Higher Level (Core) ANSWERS p + q g V' () t..% c ~. litres 0. m noon pm pm m V' () t B 000 c. d d ds Eercise. + c d c d 0 e f g 0 h i j 0 k l 0 e e ( e ) c 0 d e ( e ) e e + e f g e h e i / e ( ) ( e e ) ln ln c + ln d e f ln g h ln i ln A e ( sin cos ) + c c d e f 0 g 0 h i 0 j - c 0 d e f ln g t t ln - ( e e ) h i ( e + ) / ( e / ) 0 ln sin + cos ; 0 m n m + c n d m ( ) e n e e 0. ; 0e 0. 00e 0. + c i ccidents ii N t + 0te 0.t 00e 0.t + suscriers 0 ~ flies Eercise. sq.units sq.units c sq.units d sq.units e sq.units e sq.units ( e sq.units c sq.units e ) ( e+ e ) d ( e e ) sq.units ln sq.units ln sq.units c ln sq.units d 0. sq.units sq.units sq.units c sq.units d sq. units e sq.units sq. units sq.units. ln +. sq.units. sq.units. 0 sq. units 0. sq. units sq. unit c ( ) sq. units tn; ln sq.units sq. units sq. units sq.unit 0 sq. units ln + c sq. unit sq. units + 0 /

64 MATHEMATICS Higher Level (Core) ANSWERS sq. units sq. units i sq. units ii sq. units 0 sq. units i e + e sq. units ii sq. unit iii ln() sq. units.0 sq. units sq. units e sq. units e sq. units c e e e ~ 0.00 sq. units Eercise. t + t + 0 t 0 sin t + cos t t 0 c t e + t + t 0 t t t 0 00 c 00 m ( + t ) + t +. m - m - s;. m s m 0. m st () t 0. m c. m d. m v + k - t > 0 k c. m m Eercise.. k 0. k ln k t cos t t 0. c.% d c 0. d 0. 0 Eercise.. Both 0. Vrince ; SD 0. Mode ; Men 0.; Medin 0. Vr. 0.0; SD 0. All g Vr. 0.; SD 0. c [.0.] Mode Men Medin. SD 0. c Men 0. s c s d s e s All. Men. cm Vr... 0 k c. ds d. ds ( ) / i. ii / 0. ; 0 iii 0. Eercise. All vlues re in cuic units. ln 0 ln.0 Ft () e c Use grphics clcultor. t 0 t 0 c mode. ( e 0 e ) 0 - ln - ( ) ( sin ) / /

65 MATHEMATICS Higher Level (Core) ANSWERS 0 k 0 k - i ii + ( + ) Two possile solutions: solving ; solving 0 then c - Eercise.. c d ( + ) / + c ( + ) / + c ( + c + ) e f g h ( + e ) / + c i j k l m n ( e ) + c o p ( + ) + c q r s ( + sin ) / + c t u v cos w + sin + c ( ) + c ( + + ) + c + + c + c ( + ) ( + ) / + c e + + c + c ( + ) / c + c ( + tn ) c e + + c e + c c d e + sin + c ( / + ) / + c ( + cos ) / + c ( + / ) + c - ( ) + c e tn + c e ( + ) + c e ( + ) + c cos + c f e ( + ) + c g cos ( e ) + c h + i ln e j ln ( + e ) + c k ( + e ) / + c l cos ( + ) + c 0 cos + c c sin + d + c e log ( cos ) + c f log ( + tn ) + c g ( tn ( ) + ) h sin ( ln ) + c i ( + cos ) / c j k ln sin l + c m sec + c n o + c e Sin f + c Tn + c Sin c + c Sin + c d e Sin + c f g h i j k l + + e c ln ( + ) d Tn e n Tn ( ) o Tn p Sin q Sin r Tn s t u Tn Tn - v w + c ( e c ) ( ln( + e )) + c - + c ( + ) + c ( cos ) / + c + sin ( e ) + c e ( + ) + c [ ln( + e )] + c Tn Tn c Tn d Tn + c Cos Sin Tn + c + c + c Sin - + c -Tn + c Sin Sin + c tn + c + c + c Tn f cos g h i j k 0 l m / 0 e e ln -Sin sin + c e sin( e ) 0

66 MATHEMATICS Higher Level (Core) ANSWERS Eercise.. c + d ln e - f g h ( + ) + c e ( + ) + c ln ( z + z ) + c i e sin + c j ln [ e + ] + c k l c d + e ln ( ) + c f g ( ln ) h i + c ln ( + e ) + c ln ( ln ) + c 0 c d e f g h i c d e f g h i c d e ln f 0 c d e f + ln Tn ( + ) + c c d e sin f sin g h ( rccos ) + c i A B Tn k i ii c 0 ( + ) / + c 0 ( + ) / + c ( ) / + ( ) / + c sin + c ( ) / + ( ) / + c e tn c - ln ( + e ) / ( e / ) ln ln ( cos ) Sin c ln( + ) ln k ln -Tn ln 0 - ln ( ). c ( ) / + c Sin + c ( rcsin ) + c ( + ) + c ( t ) / + c ( + ) / ( + ) / + c ( ) / + ( ) / + c ( e e ) + c + c + c ( rcsin ) + c c d e f g Tn Eercise.. sin cos + c cos + sin + c c sin cos + c d e ( + ) + c e e + f g + c ln + c h ( cos + sin ) + c i cos sin j + c ln cos + tn + c k ( )( + ) / + c c Cos + c Tn ln ( + ) + c c Sin Cos + c c ( )Sin + + c c d e f - + sin ( ln ) + c c Sin ln ln + + c ( e + ) [ + ln( + ) ] cos( ln ) ( e ) ( )( + ) + c Sin ( ) ( + )( ) / + c Eercise.. e ( + ) + c cos + sin c + c e d ( cos sin ) + c e cos + sin + c cos( ln ) ( + )Tn + c + sin ( ln ) + c ln + c ( + )( + ) / + c log + + c + c 00

67 MATHEMATICS Higher Level (Core) ANSWERS e f ( cos sin ) + c g cos sin cos + sin + c h + i ln ( ) + ( ln( )) + c j ( ln ) c k l e + e cos + sin + c m n sin ln + c o ( + ln( + )) + c p ln q Tn c ( e e / ) d ln e + e f + e + c e cos Eercise. ln. m m c. m c i sq. units ii sq. units Cos / Sin cos + c c ( + ) + c ( ln ) + c vector sclr sclr Eercise. c d d cuic units d c {egu}; {df} {df}; {c}; {e} c {g}{cg} d {df} {e} e {df} {e} {cg} c d e f g -/ ( e + e + e ) ( e ) cuic units 0. Eercise. vector sclr sclr vector vector 0 AC AB c AD d BA e 0 Y N c Y d Y e N 0

68 MATHEMATICS Higher Level (Core) ANSWERS. N E N N long river 0 i 00 kph N ii. kph N W i 00 ii. Eercise. c c c c d 0 PS c AY d OC ( + ) ( + ) c c c+ c + c m n m Eercise. i + j k i + j + k c i j k d i j + k i + j + k c i j d 0 c d i i c i C A N W E S km 0 B C 0 km A 0 km 0 0 km B 0 0 m/s 0 0 m/s ii iv 0 ( cos 0 ) v 0 cos 0 ( + ) ( + ) ( + + c ) + i k + k i + j + k i j k i j k c i + j + k d 0i + j 0k 0 c d A B ( ) ( ) c ( ) 0 Depends on sis used. Here we used: Est s i North j nd verticll up k D 00i 00j + 0k A 00i 00j + 0k c 00i 00j Eercise. 0 c 0 d e f g h - ( i+ j) ( i + j ) c - ( i j ) d ( i + j k ) e - ( i + k ) f ( i j k ) g h Depends on the sis: i + j+ k or i j ( i j + k ) Eercise.. c c d f g h i j 0 0 c d 0 e f g 0 h 0. c Not possile d e Not possile f 0 c d Not possile 0. ( ) 0 ± ± ( i + j + k ) ( i j+ k ) k 0

69 MATHEMATICS Higher Level (Core) ANSWERS λ ( i 0j + k ) e.g. i+ j+ k c if c or c θ vˆ û i û ( i j ) ii vˆ - ( i + j ) 0 c. 0 ( i + j + k ) Use i s km estwrd vector nd j s km northwrd vector. WD i + j WS i+ j nd DS i j c ( i + j ) 0 d d ( i + j ) e i + j 0 Eercise.. i r i + j ii r i + j iii r i j line joins ( ) nd ( ) r i + j + λ ( i j ) r i + j + λ ( i + j ) c r j + λ ( i + j ) d r i j + λ ( i + j ) e r or + λ r i j + λ ( i + 0j ) 0 f r or + λ r i + j + λ ( i + j) r i + j + λ ( i + j ) r i + j + λ ( i j ) c r i j + λ ( i+ j) r i + j + λ ( i j ) r i j + t( i j ) c r i + j + λ ( i + j ) d r i + j + μ i + μ μ +.μ c d 0 + μ μ + 0.μ j 0. 0.t t c d e f r j + t ( i + j ) r i + t ( i+ j) c r i + t ( i+ j) i + j i j r i + j + t ( i + j ) ( ) ( ) ( ) d r i j + λ ( i + j ) e i M L ii + ii nd iii ( ) Eercise.. r i+ j+ k + t ( i j + k ) r i j k + t ( i + k ) r i + k + t ( i + j + k ) r i j + k + t ( i + j k ) c r i + j + k + t ( i + k ) c r k ( i + 0j ) + t t c t d 0 ( 0) Ø c Lines re coincident ll points re common. t + t z t 0 + t r z + 0.t - + z + t t z t z + z z + z t z + t z z z + t + t z + 0.t 0. M L 0

70 MATHEMATICS Higher Level (Core) ANSWERS + t t z z 0 r 0. t. +. Line psses through ( 0. ) nd is prllel to the vector i j + k.. c. ( 0. ) Does not intersect. L: M: Ø c. d i ( 00 ) ii 0 0 k 0 or z z z plne z i + j k (or n multiple thereof) Not prllel. Do not intersect. Lines re skew. Eercise.. c 0 d e 0 + t z 0 z + t z plne c Eercise.. i + k 0i j k c i j d e i + j + k f 0i j k 0 i + j k i 0 ii 0 i + j k 0. The must e prllel. Eercise.. c. 0 sq. units λk λ ( i j + k ) ( i j + k ) i + j k 0 0

71 MATHEMATICS Higher Level (Core) ANSWERS OA cos αi + sin αj cuic units k 0. OB βi Eercise.. r i+ k+ λ ( i + j+ k) + μ( i j + k ) r i + j + k + λ ( i j + k ) + μ( i j + k ) c r i+ j+ k + λ ( i + j k) + μ( i j+ k ) d r i j k + λ ( i + j k ) + μ i j + k + z z c d + 0z i r λ μ + + ii + z i r λ μ + + ii z i r λ μ + + ii r λ i + z ii + z 0 c d Coefficients re the negtive of those in prt. Eercise.. + z + z c d + + z 0 c nd d + z c + z. 0 c 0 d 0 c z + z + z cos + sin βj z + 0 r i + j + k + t ( i + j + k ) i + j+ k c z + μ i j + k + z 0 Eercise.. + z ; r ; 0 r z 0 c d Eercise.. ( ) Lines tht intersect re nd c; ( 0);. ( ) ( 0 ) Eercise.. i ( ) ii. i ( ) ii 0. c i ( ) ii. d i ( ) ii. (0 ) Plne is prllel to the z-is slicing the - plne on the line +. forms plne. z is in this plne prllel to the -z plne. ( ) Eercise z or - z ; or ; c plnes prllel + z + z + z 0-0z d z ; Eercise.. e.g. the fces of tringulr prism. z or - z or z 0 z z

72 MATHEMATICS Higher Level (Core) ANSWERS No solution Unique solution ( ) c Unique solution ( ) d Intersect on plne C D z E( 0) + None of these plnes is prllel ut the lines of intersection of pirs of plnes re skew. 0 k ; r. t. + or r i j + k c i iii not r t ( + c + c + + c) c 0 c For k Revision Eercises Set A i ] [ ii f ( ) ln( + ) c 0 i 0 ii c 0 F z B G(0 ) t s (.) O H. 0. t z t s z s c + z d e. 0 + λ z c ā c c f Asolute m. t ± - ; locl min. t (0 0); -intercept t (± 0) Locl min. t ± - ; smptotes t 0. ± ( ) ( ) nd ( 0) S [0 [ rnge [ [ c f : [ [ f () (ln) ( ) ( ) c d ( ) f() g() ( 0) ( ) ( ) ( 0) ( ) (0 ) ( ) ( 0) ( 0) ( ) 0 f

73 MATHEMATICS Higher Level (Core) ANSWERS i ii i h + h + h ii + h + h 0 i or ii i \{ } ii 0. iii 0 e i or ii ( e ) i 0 < < ii iii log 0. iv gf ( ( )) \{ ± } P ( ) i ii + c i fg ( ( )) ii []\{0} ln ln 0. + Cuic through ( 0) ( 0) ( + 0) with locl m. t ( ) nd locl min. t ( ) c i k < ii k ± iii < k < c ( 0) (0 ) ( 0) k 0 or ( )( + )( + ) c 0 < < 0 < < 0 c i P ( ) ( + )( )( ) ii < < i ii { > } 0 ± + c < < 0 or > < < c + e gf ( ( )) 0 ii p + p p p c < < or > ( ) e e 0. ( ) 0 c P ( ) ( + )( + + ) ( + ) d nd or nd ( ) ( ) c { < } { < < } < k < p q 0 c i { < < } { < < } ii { < } - n 0 ii {±} i ( ) ii 0 c ] ] c ] [ sq units d 0 c d c d c c d 0 c d c c c i & ii i ii $00 iii $ iv t f ( ) + - f ( ) g f g ( ) e + e 00 e 00 c d t 0

74 MATHEMATICS Higher Level (Core) ANSWERS i ]0 [ ii c ( log d e e ) 00 c 0 d 000 e t > f Bt () t 0 0 Bt At h ( ) 0 rnge ] ] Use grphics clcultor. f ( ) log e ( ) < c Use grphics clcultor. 0 0 λ λ z λ λ r g d f fog eists; r f d g gof doesn t eist. < or > λ λ z + λλ λ λ λ z - λ c S ][ f ( ) ( ) < r g d f f og does not eist; r f d g gof eists. c F ( ) t or t c + λ λ z λ λ i 0 ii 0e. c d i 0 ii. 00 Q(t) P(t) 0 0 cm cm c hrs d [0 ] e f Use grphics clcultor. g. hrs z ]0 ] c No ( 0). 0 c r f d g i.e. does not eist g ( ) + t h ( ) g( ). t - 0. g ( ) f Incresing t decresing rte g ~ 0 wsps h ii t 0 nd Revision Eercises Set B c d km c d km e 0 i A: $000; B: $00; C: $00 ii A: $000; B: $000; C: $00 % c i months ii C never reches its trget ( i) c r 0 cm or c i ii iii ( k + )( k )! - i ii + i or i cis ( θ ) c i ii 0 R α t 0 log e 0

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Hrold s AP Clculus BC Rectngulr Polr Prmetric Chet Sheet 15 Octoer 2017 Point Line Rectngulr Polr Prmetric f(x) = y (x, y) (, ) Slope-Intercept Form: y = mx + Point-Slope Form: y y 0 = m (x x 0 ) Generl

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2 SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Leaving Certificate Applied Maths Higher Level Answers

Leaving Certificate Applied Maths Higher Level Answers 0 Leavin Certificate Applied Maths Hiher Level Answers ) (a) (b) (i) r (ii) d (iii) m ) (a) 0 m s - 9 N of E ) (b) (i) km h - 0 S of E (ii) (iii) 90 km ) (a) (i) 0 6 (ii) h 0h s s ) (a) (i) 8 m N (ii)

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

4.5 SUMMARY OF CURVE SKETCHING. Click here for answers. Click here for solutions. y cos x sin x. x 2 x 3 4. x 1 x y x 3 x

4.5 SUMMARY OF CURVE SKETCHING. Click here for answers. Click here for solutions. y cos x sin x. x 2 x 3 4. x 1 x y x 3 x SECTION.5 SUMMARY OF CURVE SKETCHING.5 SUMMARY OF CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. 8 Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7. cot..

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Review Exercises for Chapter 7

Review Exercises for Chapter 7 8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Principles of Mathematics 12 Answer Key, Contents 185

Principles of Mathematics 12 Answer Key, Contents 185 Principles of Mathematics Answer Ke, Contents 85 Module : Section Trigonometr Trigonometric Functions Lesson The Trigonometric Values for θ, 0 θ 60 86 Lesson Solving Trigonometric Equations for 0 θ 60

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1 SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-8 PAPER II VERSION B [MATHEMATICS]. Ans: ( i) It is (cs5 isin5 ) ( i). Ans: i z. Ans: i i i The epressin ( i) ( ). Ans: cs i sin cs i sin

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα