דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות
|
|
- Ολυμπία Κορνάρος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג) r).(p (q r)) (q פתרון: נבנה את טבלת האמת של הפסוק: p q r p (q r) q r F F F T T T F F T T T F F T F T T F F T T T T T T F F F T T T F T F F F T T F F F F T T T T T T לכן הפסוק הדיסיונקטיבי הנורמלי הקנוני השקול לוגית הוא: r) ( p q שורה מס' 1 r) ( p q שורה מס' 2 r) ( p q שורה מס' 3 r) ( p q שורה מס' 4 r) (p q שורה מס' 5 r). (p q שורה מס' 8 2. ידוע ש {,, } היא מערכת קשרים שלמה. הוכיחו ש (א) {, } היא מערכת קשרים שלמה. פתרון: קודם ניתן הסבר אינטואיטיבי ואחר כך נוכיח כמו צריך באינדוקציה (במבחן הוכיחו באינדוקציה). אנו יודעים ש {,, } היא מערכת קשרים שלמה, לכן מספיק להביע את הקשר באמצעות {, }. קל לבדוק (ע''י טבלת אמת למשל) ש (p q) (( p) ( q)) לכן אם } F f : {T, F } n {T, פונקציה כלשהי, אז יודעים שקיים פסוק ψ הכתוב רק באמצעות המערכת {,, } שטבלת האמת שלו שווה לפונקציה f. אז נחליף כל תת פסוק שצורתו (q p) (כאשר p ו q משתנים פסוקיים) בפסוק השקול לוגית לו ((q ) (p )) ונקבל פסוק ϕ הכתוב רק באמצעות המערכת {, } ושקול לוגית ל ψ. 1
2 ההוכחה: נוכיח באינדוקציה על אורך הפסוק שלכל פסוק ϕ במערכת (שאנו יודעים שהיא שלמה) }, {, קיים פסוק ϕ במערכת } {, ששקול לוגית ל.ϕ אם ϕ משתנה פסוקי אז נקח ϕ, = ϕ ברור שהוא שקול לוגית ל ϕ ושהוא במערכת }.{, יהי ϕ פסוק שאורכו גדול מ 1 במערכת {,, }, נניח שהטענה נכונה עבור כל פסוק במערכת {,, } שאורכו קטן ממש מהאורך של ϕ. נוכיח שהטענה נכונה עבור ϕ: i. אם (ψ ) ϕ, = אז מכוון שהאורך של ψ קטן ממש מהאורך של ϕ, ע''פ הנחת האינדוקציה קיים פסוק ψ במערכת {, } ששקול לוגית ל ψ. נקח ) ( ψ,ϕ = ברור שהוא שקול לוגית ל ϕ ושהוא במערכת }.{,.ii אם (χ ϕ, = ψ) אז מכוון שהאורך של ψ ושל χ קטן ממש מהאורך של,ϕ ע''פ הנחת האינדוקציה קיימים פסוקים χ ψ, במערכת } {, ששקולים לוגית ל ψ, χ בהתאמה. אז נקח ) χ,ϕ = (ψ ברור שהוא שקול לוגית ל ϕ ושהוא במערכת {, }..iii אם (χ ϕ, = ψ) אז מכוון שהאורך של ψ ושל χ קטן ממש מהאורך של,ϕ ע''פ הנחת האינדוקציה קיימים פסוקים χ ψ, במערכת } {, ששקולים לוגית ל,ψ χ בהתאמה. אז נקח ϕ = (( ψ ) ( χ )), ברור שהוא שקול לוגית ל ϕ ושהוא במערכת {, }. לכן הטענה נכונה עבור ϕ, ז''א {, } מערכת קשרים שלמה. (ב) {, } היא מערכת קשרים שלמה. פתרון: כאן נביע את הקשרים ו באמצעות {, } נשים לב לטבלה: p q p q ( p) q F F T T F T T T T F F F T T T T לכן,( p) q p q ז''א,( p) q ( p) q לכן כמו כן (p q) ( p) q (p q) (( p) ( q)) (p ( q)). ההוכחה: נוכיח באינדוקציה על אורך הפסוק שלכל פסוק ϕ במערכת (שאנו יודעים שהיא שלמה) }, {, קיים פסוק ϕ במערכת } {, ששקול לוגית ל.ϕ אם ϕ משתנה פסוקי אז נקח ϕ, = ϕ ברור שהוא שקול לוגית ל ϕ ושהוא במערכת }.{, יהי ϕ פסוק שאורכו גדול מ 1 במערכת {,, }, נניח שהטענה נכונה עבור כל פסוק במערכת {,, } שאורכו קטן ממש מהאורך של ϕ. נוכיח שהטענה נכונה עבור ϕ: 2
3 i. אם (ψ ) ϕ, = אז מכוון שהאורך של ψ קטן ממש מהאורך של ϕ, ע''פ הנחת האינדוקציה קיים פסוק ψ במערכת {, } ששקול לוגית ל ψ. נקח ) ( ψ,ϕ = ברור שהוא שקול לוגית ל ϕ ושהוא במערכת }.{,.ii אם (χ ϕ, = ψ) אז מכוון שהאורך של ψ ושל χ קטן ממש מהאורך של,ϕ ע''פ הנחת האינדוקציה קיימים פסוקים χ ψ, במערכת } {, ששקולים לוגית ל,ψ χ בהתאמה. אז נקח ϕ = (ψ ( χ )), ברור שהוא שקול לוגית ל ϕ ושהוא במערכת {, }..iii אם (χ ϕ, = ψ) אז מכוון שהאורך של ψ ושל χ קטן ממש מהאורך של,ϕ ע''פ הנחת האינדוקציה קיימים פסוקים χ ψ, במערכת } {, ששקולים לוגית ל,ψ χ בהתאמה. אז נקח ϕ = (( ψ ) χ ), ברור שהוא שקול לוגית ל ϕ ושהוא במערכת {, }. לכן הטענה נכונה עבור ϕ, ז''א {, } מערכת קשרים שלמה. p q p q F F T הוכיחו כי { } היא מערכת F T T (א) נגדיר קשר ע''י הטבלה: 3. T F T T T F קשרים שלמה. פתרון: אנו יודעים ש {, } היא מערכת קשרים שלמה, לכן נביע את ואת p p p לכן. p p p נשים לב ש F T באמצעות. נתבונן בטבלה: T F (p q) p q לכן q).p q (p q) (p ז''א { } מערכת קשרים שלמה (צריכים להוכיח באינדוקציה, כמו בשאלה הקודמת). (ב) נסחו פסוק במערכת { } ששקול לוגית לפסוק p). (q r פתרון: נשים לב ש p q p ( q), (p q) r (p q) ( r) (p q) ( r) ((p q) (p q)) (r r). לכן 4. הוכיחו ש 3
4 (א) { } היא לא מערכת קשרים שלמה. פתרון: נתבונן בהשמה g שנותנת ערך F לכל משתנה פסוקי, ונוכיח באינדוקציה שלמה על אורך הפסוק שלכל פסוק ϕ הכתוב רק באמצעות מתקיים: val(ϕ, g) = F. אם ϕ = p הוא משתנה פסוקי, אז.val(p, g) = g(p) = F אם (χ ϕ, = ψ) אז לפי הנחת האינדוקציה (האורך של ψ ו χ קטן ממש מהאורך של (ϕ יש val(ψ, g) = F ו,val(χ, g) = F לכן val(ϕ, g) = t (val(ψ, g), val(χ, g)) = t (F, F ) = F. ז''א הטענה נכונה עבור ϕ, לכן היא נכונה. לכן לא קיים פסוק במערכת { } ששקול לוגית לפסוק שהוא טאוטולוגיה, ז''א { } לא מערכת קשרים שלמה. (ב) {, } היא לא מערכת קשרים שלמה. פתרון: נתבונן בהשמה g שנותנת ערך F לכל משתנה פסוקי, ונוכיח באינדוקציה שלמה על אורך הפסוק שלכל פסוק ϕ הכתוב רק באמצעות, מתקיים: val(ϕ, g) = F. אם ϕ = p הוא משתנה פסוקי, אז.val(p, g) = g(p) = F אם (χ ϕ, = ψ) אז לפי הנחת האינדוקציה (האורך של ψ ו χ קטן ממש מהאורך של (ϕ יש val(ψ, g) = F ו,val(χ, g) = F לכן val(ϕ, g) = t (val(ψ, g), val(χ, g)) = t (F, F ) = F. אם (χ ϕ, = ψ) אז לפי הנחת האינדוקציה (האורך של ψ ו χ קטן ממש מהאורך של (ϕ יש val(ψ, g) = F ו,val(χ, g) = F לכן val(ϕ, g) = t (val(ψ, g), val(χ, g)) = t (F, F ) = F. ז''א הטענה נכונה עבור ϕ, לכן היא נכונה. לכן לא קיים פסוק במערכת {, } ששקול לוגית לפסוק שהוא טאוטולוגיה, ז''א {, } לא מערכת קשרים שלמה. 5. קבוצת פסוקים Σ נקראת עקבית אם קיימת השמה g כך ש val(α, (g = T לכל α. Σ האם הקבוצות הבאות עקביות? הוכיחו או הפריכו: (א) p}.σ = {(p q) r, r פתרון: Σ עקבית, כי קיימת השמה למשל )} F g = {(p, F ), (q, F ), (r, כך ש.α Σ לכל val(α, g) = T (ב) ( p)}.σ = {p, p q, q r, r פתרון: Σ לא עקבית. נניח בשלילה ש Σ עקבית, אז יש השמה g כך ש val(α, g) = T לכל.α Σ בפרט,val(p, g) = T ומכוון ש,val(p q, g) = T חייב להיות.val(q, g) = T מכוון ש,val(p r, g) = T חייב להיות,val( p, g) = T חייב להיות,val(r ( p), g) = T ומכוון ש,val(r, g) = T כלומר.val(p, (g = F סתירה! לכן Σ לא עקבית. 4
5 x y x y F F F F T T T F T T T F.6 נתונה הפעולה } F {T, F } 2 {T, : המוגדרת ע''י הטבלה: (א) הוכיחו שהפעולה קומוטטיבית, כלומר לכל x, y יש.x y = y x פתרון: רואים זאת מיד מהטבלה. x y x y y x F F F F F T T T T F T T T T F F (ב) הוכיחו שהפעולה אסוציאטיבית, כלומר לכל,x,y z יש.x (y z) = (x y) z פתרון: גם כאן רואים זאת מהטבלה. x y z (x y) z x (y z) F F F F F F F T T T F T F T T F T T F F T F F T T T F T F F T T F F F T T T T T 7. נגדיר סדר קווי על הקבוצה } T,F} ע''י F. T ע''פ סדר זה נגדיר סדר חלקי, שגם אותו נסמן ע''י, על הקבוצה {T, F } 2 = {(F, F ), (F, T ), (T, F ), (T, T )} כך: ) 2 (x 1, y 1 ) (x 2, y אם x 1 x 2 וגם.y 1 y 2 ראו איור.1 פעולה דו מקומית } F f : {T, F } 2 {T, נקראת מונוטונית אם היא שומרת על הסדר, כלומר לכל } 2 T (x 1, y 1 ), (x 2, y 2 ) {F, מתקיים (x 1, y 1 ) (x 2, y 2 ) f(x 1, y 1 ) f(x 2, y 2 ) (א) מי מבין הקשרים הלוגיים הדו מקומיים שאתם מכירים, כלומר },, {, הוא פעולה מונוטונית? פתרון: מבין הקשרים הנ''ל רק ו הם פעולות מונוטוניות. (ב) מיצאו את כל הפעולות הדו מקומיות המונוטוניות. פתרון: פעולה דו מקומית מונוטונית f מתקבלת מאיור 1 ע''י החלפת הזוגות (F, F ), (F, T ), (T, F ), (T, T ) 5
6 איור 1: שאלה (7) הסדר החלקי על טבלת אמת של 2 משתנים שבאיור ב,F T כך שהסדר F T נשמר. למשל, החלפת ) F,F) ב F פירושה.f((F, F (( = F כל הפעולות הדו מקומיות המונוטוניות מופיעות באיור 2. למשל הסדר החלקי (4) למעלה משמאל באיור 2 מתאים לפעולה הבאה x y f(x, y) F F F F T T T F F T T T (ג) הוכיחו שכל פעולה דו מקומית מונוטונית היא אסוציאטיבית, כלומר לכל,x,y z יש.x (y z) = (x y) z פתרון: נתבונן בפעולות שבאיור 2, אז פעולה (2) היא, פעולה (5) היא, לכן הן אסוציאטיביות. פעולות (1) ו (6) הן קבועות לכן הן אסוציאטיביות. נשאר לבדוק את פעולות (3) ו (4). פעולה (3) היא x y x 3 y F F F F T F T F T T T T שימו לב ש,x 3 y = x לכן (x 3 y) 3 z = x 3 y = x וגם x 3 (y 3 z) = x לכן הפעולה אסוציאטיבית. אסוציאטיבית. אפשר גם לראות ע''פ הטבלה הבאה שהפעולה 6
7 איור 2: שאלה (7) סעיף (ב) יש 6 פעולות דו מקומיות מונוטוניות. 7
8 x y z (x 3 y) 3 z x 3 (y 3 z) F F F F F F F T F F F T F F F F T T F F T F F T T T F T T T T T F T T T T T T T פעולה (4) היא x y x 4 y F F F F T T T F F T T T שימו לב ש,x 4 y = y לכן (x 4 y) 4 z = z וגם x 4 (y 4 z) = y 4 z = z לכן הפעולה אסוציאטיבית. אסוציאטיבית. אפשר לראות גם ע''פ הטבלה הבאה שהפעולה x y z (x 4 y) 4 z x 4 (y 4 z) F F F F F F F T T T F T F F F F T T T T T F F F F T F T T T T T F F F T T T T T (ד) הוכיחו שאם (y,g(x, (y,f(x, ו (y h(x, הן פעולות דו מקומיות מונוטוניות, אז גם הפעולה y) k(x, המוגדרת ע''י y)) k(x, y) = h(f(x, y), g(x, היא מונוטונית. פתרון: יהיו } 2 T,(x 1, y 1 ), (x 2, y 2 ) {F, ונניח ש ) 2.(x 1, y 1 ) (x 2, y אז צריך להוכיח ש k(x 1, y 1 ) k(x 2, y 2 ) כלומר צ''ל ש ((.h(f(x 1, y 1 ), g(x 1, y 1 )) h(f(x 2, y 2 ), g(x 2, y 2 מכוון ש ) 2 (x 1, y 1 ) (x 2, y ו f ו g מונוטוניות נקבל f(x 1, y 1 ) f(x 2, y 2 ) g(x 1, y 1 ) g(x 2, y 2 ) ומכוון ש h מונוטונית נקבל h(f(x 1, y 1 ), g(x 1, y 1 )) h(f(x 2, y 2 ), g(x 2, y 2 )). 8
9 לכן k מונוטונית. 8. תהי Σ קבוצת פסוקים. הוכיחו את הטענות הבאות (א) Σ עקבית אם ורק אם ( p).σ p פתרון: נניח Σ עקבית. ונניח בשלילה ש (p ) Σ. p מכוון ש Σ עקבית, קיימת השמה g כך ש val(α, g) = T לכל.α Σ לכן,val(p ( p), g) = T ז''א val(p, g) = T וגם.Σ p ( p) סתירה! לכן,val(p, g) = F נניח (p ) Σ. p אז קיימת השמה g כך ש val(α, g) = T לכל α Σ (וכך ש,(val(p ( p), g) = F לכן Σ עקבית. הערה: אם Σ לא גוררת לוגית פסוק כלשהו, אז מהגדרת גרירה לוגית נובע ש Σ עקבית. (ב) Σ אינה עקבית אם ורק אם Σ גוררת כל פסוק, כלומר לכל פסוק ϕ יש Σ. ϕ פתרון: מ (א) נובע שאם Σ לא עקבית אז (p ) Σ, p בתרגיל 10 (ג) בדף 6 ראינו שקבוצה המכילה פסוק שיקרי גוררת כל פסוק, לכן {(p ) p} גוררת כל פסוק, ז''א Σ גוררת כל פסוק. נניח Σ גוררת כל פסוק, אז בפרט (p ) Σ, p לכן לפי (א) Σ אינה עקבית. 9. נניח ϕ פסוק הכתוב באמצעות בלבד. הוכיחו כי קיים משתנה פסוקי p ב ϕ כך ש ϕ). אינדוקציה על האורך של (רמז: p. ϕ פתרון: באינדוקציה על אורך ϕ. אם האורך של ϕ הוא 1, אז ϕ הוא משתנה פסוקי, למשל ϕ. = p אז קיים משתנה פסוקי שגורר לוגית את p. p ϕ: נניח הטענה נכונה לכל פסוק שאורכו קטן מ > 1 n. יהי ϕ פסוק שאורכו n. אז ϕ = α β האורך של β קטן מהאורך של ϕ, לכן לפי הנחת האינדוקציה קיים משתנה פסוקי p כך ש.p β אז עבור השמה g כך ש val(p, g) = T נקבל,val(β, g) = T וזה גורר ש,val(α β, g) = T כלומר p (α β) ז''א p. ϕ לכן הטענה נכונה גם עבור n, לכן היא נכונה לכל פסוק ϕ במערכת.{ } הערה: בשאלות כאלה, כלומר אינדוקציה על אורך הפסוק, במבט ראשון ההוכחה באינדוקציה לא ממש מסתדרת עם מה שלמדנו בפרק על האינדוקציה. וזה בגלל שלא לכל n N קיים פסוק שאורכו n (למשל אין פסוק שאורכו 3, האורך של (p ) הוא 4). מתגברים על בעיה זו כך: נניח רוצים להוכיח טענה P לגבי פסוקים. נגדיר את הקבוצה A כך: {קיים פסוק באורך n וכל פסוק באורך n מקיים את A = {n N : P.{לא קיים פסוק באורך {n N : n ואז מוכיחים ע''י אקסיומת האינדוקציה (השלמה) ש A. = N 9
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר
לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת
הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (
לוגיקה ותורת הקבוצות אביבתשס ז מבחןסופי מועדב בהצלחה!
הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב 24/10/2007 מרצה: פרופ אורנה גרימברג מתרגלים: גבי סקלוסוב,קרן צנזור,רותם אושמן,אורלי יהלום לוגיקה ותורת הקבוצות 234293 אביבתשס ז מבחןסופי מועדב הנחיות: משךהבחינה:
מתמטיקה בדידה תרגול מס' 2
מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
i שאלות 8,9 בתרגיל 2 ( A, F) אלגברת יצירה Α היא זוג כאשר i F = { f קבוצה של פונקציות {I קבוצה לא ריקה ו A A n i n i מקומית מ ל. A נרשה גם פונקציות 0 f i היא פונקציה n i טבעי כך ש כך שלכל i קיים B נוצר
פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז
פתרון תרגיל בית 6 מבוא לתורת החבורות 88-211 סמסטר א תשע ז הוראות בהגשת הפתרון יש לרשום שם מלא, מספר ת ז ומספר קבוצת תרגול. תאריך הגשת התרגיל הוא בתרגול בשבוע המתחיל בתאריך ג טבת ה תשע ז, 1.1.2017. שאלות
מתמטיקה בדידה תרגול מס' 5
מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון
אלגברה ליניארית (1) - תרגיל 6
אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,
אלגברה ליניארית 1 א' פתרון 2
אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק
brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק
יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
לוגיקה למדעי המחשב תרגולים
לוגיקה למדעי המחשב תרגולים ניצן פומרנץ 17 ביוני 2015 אתר הקורס: במודל בשבוע הראשון התרגילים ייועלו גם ל www.cs.tau.ac.il/~shpilka/teaching לירון כהן: liron.cohen@math.tau.ac.il (לא לשלוח שאלות על החומר
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
{ : Halts on every input}
אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
"שקר". במקום המילים "אמת" או "שקר" משתמשים באותיות T ו- F (באנגלית truth אמת, false שקר (
. חלק : 1 תחשיב הפסוקים. 1) פסוקים. משתנים פסוקיים. ערכי האמת. בדיבור יום-יומי אנו משתמשים במשפטים שונים. לדוגמא: " יורם סטודנט ", "בישראל בקיץ חם.", "מה השעה?", "דג כרפיון עף בשמיים.", "לך הביתה!", "פרות
אלגברה לינארית (1) - פתרון תרגיל 11
אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
אלגברה מודרנית פתרון שיעורי בית 6
אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
הגדרה 0.1 טיעון הוא תקף אם בכל פעם שההנחות נכונות גם המסקנה נכונה.
1 לוגיקה סיכום הגדרות משפטים ודברים חשובים אחרים תודה רבה לניצן פומרנץ על הסיכום הכולל של החומר הקדמה הגדרה 0.1 טיעון הוא תקף אם בכל פעם שההנחות נכונות גם המסקנה נכונה. הערה 0.2 נשים לב שלכל שפה יש רובד
מודלים חישוביים תרגולמס 5
מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך
x a x n D f (iii) x n a ,Cauchy
גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת
תורת הקבוצות תרגיל בית 2 פתרונות
תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.
פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך
משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ
משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת
תורת הקבוצות מושגי יסוד בתורת הקבוצות קבוצה אוסף של אלמנטים הנקראים אברי הקבוצה. אין חשיבות לסדר האיברים בקבוצה. אין חשיבות לחזרות.
תורת הקבוצות מושגי יסוד בתורת הקבוצות קבוצה אוסף של אלמנטים הנקראים אברי הקבוצה. אין חשיבות לסדר האיברים בקבוצה. אין חשיבות לחזרות. A = 1,4,7,17,20 B = 1, a, b, c 2 נאמר ש x שייך ל A ונסמן x A אם x הוא
אינפי - 1 תרגול בינואר 2012
אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,
logn) = nlog. log(2n
תכנוןוניתוחאלגוריתמים סיכוםהתרגולים n log O( g( n)) = Ω( g( n)) = θ ( g( n)) = תרגול.3.04 סיבוכיות { f ( n) c> 0, n0 > 0 n> n0 0 f ( n) c g( n) } { f ( n) c> 0, n0 > 0 n> n0 0 c g( n) f ( n) } { f ( n)
לוגיקה למדעי המחשב ניצן פומרנץ 25 ביוני 2015
לוגיקה למדעי המחשב ניצן פומרנץ 25 ביוני 2015 רשימות בקורס לוגיקה למדעי המחשב, סמסטר אביב תשע"ה, אוניברסיטת תל אביב. טעויות קורות אשמח שתעדכנו אותי עליהן ושאתקנן. אמיר שפילקה shpilka@post.tau.ac.il שרייבר
מבוא ללוגיקה מתמטית 80423
מבוא ללוגיקה מתמטית 80423 24 במרץ 2012 איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה או המתרגל קשורים לסיכום זה בשום דרך. הערות יתקבלו בברכה.noga.rotman@gmail.com אהבתם? יש עוד! www.cs.huji.ac.il/
אלגברה ליניארית 1 א' פתרון 8
אלגברה ליניארית 1 א' פתרון 8.1 נניח כי (R) A M n מקיימת = 0 t.aa הוכיחו כי = 0.A הוכחה: נביט באיברי האלכסון של.AA t.(aa t ) ii = n k=1 (A) ik(a t ) ki = n k=1 a ika ik = n k=1 a2 ik = 0 מדובר במספרים ממשיים,
הרצאות לוגיקה ותורת הקבוצות. מרצה: אורנה גרימברג מתרגל: שקד פלור זכויות יוצרים: יאנה גרינברג (תורת הקבוצות)
הרצאות לוגיקה ותורת הקבוצות 234293 http://webcourse.cs.technion.ac.il/234293 מרצה: אורנה גרימברג מתרגל: שקד פלור זכויות יוצרים: יאנה גרינברג (תורת הקבוצות) אנטון וולקוב (לוגיקה) גרסה 1 24/06/11 תיקון שגיאות
טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.
1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח
חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה.
חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. מרצה: למברג דן תוכן העניינים 3 מספרים ממשיים 1 3.................................. סימונים 1. 1 3..................................
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד סמסטר: א' מועד: א' תאריך: יום ה' 0100004 שעה: 04:00 משך הבחינה: שלוש שעות חומר עזר: אין בבחינה שני פרקים בפרק הראשון 8 שאלות אמריקאיות ולכל אחת מהן מוצעות
פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.
בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית
אלגברה ליניארית 1 א' פתרון 11
אלגברה ליניארית 1 א' פתרון 11.1 K α : F איזומורפיזם של שדות. א. טענה 1 :.α(0 F ) = 0 K עלינו להוכיח כי לכל,b K מתקיים.b + α(0 F ) = α(0 F ) + b = b עבור b K (כיוון ש α חח"ע ועל), קיים ויחיד x F כך ש.α(x)
מתמטיקה בדידה תרגול מס' 13
מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.
1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )
הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y
חשבון אינפיניטסימלי 1
חשבון אינפיניטסימלי 1 יובל קפלן סיכום הרצאות פרופ צליל סלע בקורס "חשבון אינפיניטסימלי 1" (80131) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו.
רשימת משפטים והגדרות
רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F
הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות
אלגוריתמים חמדניים אלגוריתם חמדן, הוא כזה שבכל צעד עושה את הבחירה הטובה ביותר האפשרית, ולא מתחרט בהמשך גישה זו נראית פשטנית מדי, וכמובן שלא תמיד היא נכונה, אך במקרים רבים היא מוצאת פתרון אופטימאלי בתרגול
c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )
הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה
תרגול מס' 1 3 בנובמבר 2012
תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),
הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי
הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב 2011 2010 פרופ' יעקב ורשבסקי אסף כץ 15//11 1 סמל לזנדר יהי מספר שלם קבוע, ו K שדה גלובלי המכיל את חבורת שורשי היחידה מסדר µ. תהי S קבוצת הראשוניים הארכימדיים
לוגיקה מתמטית הוא התחום במתמטיקה שחוקר בצורה מדויקת מושגים כמו טענה ו- הוכחה. על מנת לספק מוטיבציה, נתבונן בשתי דוגמאות היסטוריות.
לוגיקה מתמטית משה קמנסקי 1. מבוא לוגיקה מתמטית הוא התחום במתמטיקה שחוקר בצורה מדויקת מושגים כמו טענה ו- הוכחה. על מנת לספק מוטיבציה, נתבונן בשתי דוגמאות היסטוריות. 1.1. גאומטריית המישור. אוקלידס רצה לדעת
תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית,
תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו. סודר באמצעות L
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
קיום ויחידות פתרונות למשוואות דיפרנציאליות
קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית
תרגול מס' 6 פתרון מערכת משוואות ליניארית
אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית
פתרונות מלאים אלגברה 1 מ בחן אמצע חורף תשס"ג מטריצה הפיכה ב- הפיכה סקלרית, לכן A = αi
פתרונות מלאים אלגברה מ - 4 - בחן אמצע חורף תשס"ג -.. משך הבחינה :.5 שעות. שאלה מס' היא שאלת תרגילי בית. אין להשתמש בחומר עזר או מחשבונים. יש לענות על כל שאלה בדף נפרד ולנמק את התשובות. נא לרשום את השם
s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=
את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim
תורת הקבוצות בפברואר 2012 תקציר סיכום הרצאות של פרופסור רון לבנה בשנת לימודים 2012
תורת הקבוצות 80200 אור דגמי, ÓÖ Ñ ºÓÖ 11 בפברואר 2012 אתר אינטרנט: ØØÔ»» Ñ ºÓÖ תקציר סיכום הרצאות של פרופסור רון לבנה בשנת לימודים 2012 1 תוכן עניינים תוכן עניינים תוכן עניינים מבוא.............................................
אוטומטים- תרגול 8 שפות חסרות הקשר
אוטומטים- תרגול 8 שפות חסרות הקשר דקדוק חסר הקשר דקדוק חסר הקשר הנו רביעיה > S
אלגברה ליניארית 1 א' פתרון 7
אלגברה ליניארית 1 א' פתרון 7 2 1 1 1 0 1 1 0 1 0 2 1 1 0 1 0 2 1 2 1 1 0 2 1 0 1 1 3 1 2 3 1 2 0 1 5 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 4 0 0 0.1 עבור :A לכן = 3.rkA עבור B: נבצע פעולות עמודה אלמנטריות
אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט
467 אלגברה א', סמסטר חורף תשס"ט, פתרונות לשיעורי הבית, עמוד מתוך 6 467 אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט תוכן עניינים : גליון שדות... גליון מרוכבים 7... גליון מטריצות... גליון 4 דירוג,
קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.
א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.
השאלות..h(k) = k mod m
מבני נתונים פתרונות לסט שאלות דומה לשאלות מתרגיל 5 השאלות 2. נתונה טבלת ערבול שבה התנגשויות נפתרות בשיטת.Open Addressing הכניסו לטבלה את המפתחות הבאים: 59 88, 17, 28, 15, 4, 31, 22, 10, (מימין לשמאל),
אלגברה לינארית מטריצות מטריצות הפיכות
מטריצות + [( αij+ β ij ] m λ [ λα ij ] m λ [ αijλ ] m + + ( + +C + ( + C i C m q m q ( + C C + C C( + C + C λ( ( λ λ( ( λ (C (C ( ( λ ( + + ( λi ( ( ( k k i חיבור מכפלה בסקלר מכפלה בסקלר קומוטטיב אסוציאטיב
אי שלמות ואי כריעות בשפות פורמליות ד ר אסף חסון, אוניברסיטת בן גוריון בנגב
אי שלמות ואי כריעות בשפות פורמליות ד ר אסף חסון, אוניברסיטת בן גוריון בנגב יובל אדם Young man, in mathematics you don t understand things. You just get used to them. - John von Neumann תוכן עניינים 2 פרולוג....................................
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן
.. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j
מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1
1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n
מבני נתונים מבחן מועד ב' סמסטר חורף תשס"ו
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון - מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצים: רן אל-יניב, נאדר בשותי מבני נתונים 234218-1 מבחן מועד ב' סמסטר חורף תשס"ו
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
אלגברה לינארית 1 יובל קפלן
אלגברה לינארית 1 יובל קפלן מחברת סיכום הרצאות ד"ר אלי בגנו בקורס "אלגברה לינארית 1" (80134) באוניברסיטה העברית, 7 2006 תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן אין המרצה אחראי לכל טעות שנפלה בו סודר
(ספר לימוד שאלון )
- 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:
מבוא ללוגיקה מתמטית מבוסס על הרצאותיו של פרופ' איליה ריפס נכתב ונערך ע"י דינה זליגר סמסטר א' תשס"ו
מבוא ללוגיקה מתמטית נכתב ונערך ע"י דינה זליגר מבוסס על הרצאותיו של פרופ' איליה ריפס סמסטר א' תשס"ו מבוא ללוגיקה, דינה זליגר תנאי שימוש Please read the followg mportat legal formato before readg or usg
מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות
מינימיזציה של DFA L. הוא אוטמומט מינימלי עבור L של שפה רגולרית A ראינו בסוף הסעיף הקודם שהאוטומט הקנוני קיים A DFA בכך הוכחנו שלכל שפה רגולרית קיים אוטומט מינמלי המזהה אותה. זה אומר שלכל נקרא A A לאוטומט
מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015)
מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מרצה: פרופ' בני שור מתרגלים: אורית מוסקוביץ' וגל רותם 28.1.2015 הנחיות: 1. מומלץ לקרוא את כל ההנחיות והשאלות בתחילת המבחן, לפני כתיבת התשובות. 2. משך
תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t.
תכנון אלגוריתמים 2016 עבודה 1 פתרון שאלה 1 נזכר כי בגרף (E G, =,V) עבור שני קודקודים d(u, (v,u, v הוא אורך מסלול קצר ביותר מ u ל v. אם אין מסלול מ u ל.d(u, v) =,v נתונות שתי בעיות. בעיה א' מופע: גרף מכוון
לוגיקה מתמטית משה קמנסקי 23 בינואר 2018
לוגיקה מתמטית משה קמנסקי 23 בינואר 2018 1 מבוא לוגיקה מתמטית הוא התחום במתמטיקה שחוקר בצורה מדויקת מושגים כמו טענה ו- הוכחה. על מנת לספק מוטיבציה, נתבונן בשתי דוגמאות היסטוריות. 1.1 גאומטריית המישור אוקלידס
פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z.
פרק 5 טורי חזקות 5.5 טור לורן הגדרה 5. טורלורןסביבקוטב z מסדרm שלפונקציה( f(z הואמהצורה n m a n(z z m. למשל,טורלורן שלהפונקציה e z /z 2 סביב הוא + 2./z 2 +/z+/2+/3!z+/4!z משפט 5. תהי f פונקציה אנליטית
C.C Ωשרשרת. Eחסומה. E אם לכל x Rb x E
של הלמה של צורן י י י י שומים של צורן הל מה תזכרת יהי R יחס טרנזיטיבי מעל קבוצה Ω 1 הג הג a< Rb ( arb bra), a Rb ( arb a= א לכל, ab Ωנגדיר (b R >סדר R קדם-סדר קהה מעל Ω (=טרנזיטיבי ורפלקסיבי מעל Ω) ו לא
אוסף שאלות מס. 3 פתרונות
אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,
תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות
תורת המספרים סיכום הגדרות טענות ומשפטים אביב 017 1 פירוק לגורמים ראשוניים 1.1 הגדרות חוג A C נקראת חוג אם: היא מכילה את 0 ואת 1 סגורה תחת חיבור, חיסור, וכפל הפיך A חוג. a A נקרא הפיך אם 0,a.a 1 A קבוצת
c ארזים 15 במרץ 2017
הסתברות למתמטיקאים c ארזים 15 במרץ 2017 הקורס הוא המשך של מבוא להסתברות שם דיברנו על מרחבים לכל היותר בני מניה. למשל, סדרת הטלות מטבע בלתי תלויות היא דבר שאי אפשר לממש במרחב בן מניה נסמן את התוצאה של ההטלה
מבנים אלגבריים למדעי המחשב מערכי תרגול קורס פברואר 2017, גרסה 1.5
מבנים אלגבריים למדעי המחשב מערכי תרגול קורס 89-214 פברואר 2017, גרסה 1.5 אוניברסיטת בר אילן סמסטר א תשע ז תוכן העניינים 3 מבוא.............................. 4 מבוא לתורת המספרים................... 1 8
מבנים אלגבריים II 27 במרץ 2012
מבנים אלגבריים 80446 II אור דגמי, or@digmi.org 27 במרץ 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ אלכס לובוצקי בשנת לימודים 2012 1 תוכן עניינים 1 שדות 3 1.1 תזכורת מהעבר....................................................
הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-
מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות
מבנים אלגבריים למדעי המחשב מערכי תרגול קורס אבי אלון, תומר באואר וגיא בלשר ינואר 2016, גרסה 0.22
מבנים אלגבריים למדעי המחשב מערכי תרגול קורס 89-214 אבי אלון, תומר באואר וגיא בלשר ינואר 2016, גרסה 0.22 אוניברסיטת בר אילן סמסטר א תשע ו תוכן העניינים 3 מבוא.............................. 3 מבוא לתורת
הסיכום סמסטר ב' תשס"ז
הסיכום סוכם, עובד והוקלד ע"י דינה זליגר מבוסס על הרצאותיו של שמואל ברגר ותרגוליו של איתי קפלן סמסטר ב' תשס"ז תנאי שימוש Please read the ollowg mportat legal ormato beore readg or usg these otes The use
סיכום לינארית 1 28 בינואר 2010 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך.
סיכום לינארית 28 בינואר 2 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך הערות יתקבלו בברכה nogarotman@gmailcom תוכן עניינים 3 מבוא והגדרות בסיסיות 6 שדות 7 המציין של