Investigating Non-Periodic Solids Using First Principles Calculations and Machine Learning Algorithms
|
|
- Ἰωακείμ Κορνάρος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Investigating Non-Periodic Solids Using First Principles Calculations and Machine Learning Algorithms The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable Link Terms of Use Çubuk, Ekin Dou Investigating Non-Periodic Solids Using First Principles Calculations and Machine Learning Algorithms. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. October 17, :39:11 AM EDT This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at (Article begins on next page)
2
3
4
5
6
7
8 x Y x
9 χ D =0 χ D χ T χ O
10 D 2 d =2 D 2 σ AA C
11 D 2 D 2 d AA T T =0.1, 0.2, d =2 d =3 T =0.4, D 2 D 2 D 2 D 2 T =0.4 D 2 T g AB g BA
12 G A B (i; rab ) r AB rab g AB g BA Ψ B AB (i;2.07σ AA, 1, 2) i T = 0.47 ρ = 1.20 p p T =0.47 p p T =
13 p c T = 0.47 ρ = 1.20 p =0.2 p c p c = T = 0.47 ρ =1.20 S > 0
14 P R (S) T = P R (S) dq(s, t)/dt T =0.47 T =0.58 P R (S) 1/T S 3 S 3 P R /P 0 E/T E Σ P R (S) =exp(σ E/T ) S T 0 T m 0 ρ =1.15, 1.20, 1.25, 1.30 T 0 = T m 0 T = P R (S)
15 S 0 3 t =0 t = 1000τ S 0 3 S 0 3 r
16 q(s, t) T =0.47 T = T =0.45 T =0.70 γ E(S) S T = 0.47 ρ =1.20 f rrev T =0.47 T =
17 N T N O ξ =1.2 ξ =1.1 i r i S i r S P (cos θ) r S g AA (r) g AB (r)
18
19
20
21
22
23 1
24 3 N at N at
25
26
27 H = i i,i I 2 2 2m i + 1 e 2 e 2 i j i j Z I e 2 I i 2 2 2M I + 1 Z I Z J e 2 I 2 I J I J M I Z I I I m e i i e HΨ( I, i )=EΨ( I, i ), Ψ( I, i ) ( )
28 10 23 Ψ( I, i ) m e
29 H = i i 2 2 2m i + 1 e 2 e 2 i j i j i,i 2 2 2m i + 1 e 2 e 2 i j i i j Z I e 2 I i V ion ( i ) Ψ( i )=Ψ( 1, 2,... N ) 3 N
30 Ψ( i ) n ( ) n ( ) =N Ψ ( 1, 2,... N )Ψ( 1, 2,... N )d 2 d 3...d N V( ) n ( ) V 1 ( ) V 2 ( ) n ( ) H 1 H 2 Ψ 1 Ψ 2 V 1 ( ) V 2 ( ) E 1 E 2 E 1 = Ψ 1 H 1 Ψ 1 E 2 = Ψ 2 H 2 Ψ 2 E 1 < Ψ 2 H 1 Ψ 2 = Ψ 2 H 2 V 2 +V 1 Ψ 2 = Ψ 2 H 2 Ψ 2 + Ψ 2 V 1 V 2 Ψ 2 = E 2 + Ψ 2 V 1 V 2 Ψ 2
31 E 2 < Ψ 1 H 2 Ψ 1 = Ψ 1 H 1 V 1 +V 2 Ψ 1 = Ψ 1 H 1 Ψ 1 + Ψ 1 V 2 V 1 Ψ 1 = E 1 + Ψ 1 V 2 V 1 Ψ 1 E 1 + E 2 <E 1 + E 2 + Ψ 1 V 2 V 1 Ψ 1 + Ψ 2 V 1 V 2 Ψ 2 n ( ) Ψ 1 V 2 V 1 Ψ 1 = Ψ 2 V 2 V 1 Ψ 2 = n ( )[V 2 ( ) V 1 ( )] d E 1 + E 2 <E 1 + E 2 n ( ) R 3 n ( )
32 H = F [n( )] + V( )n( )d F [n( )] F [n( )] n( ) V( ) F [n( )] n ( ) Ψ( i ) Ψ( i ) n( ) = i φ i ( ) 2 φ i ( ) F [n( )] F [n( )] = T s [n( )] + E H [n( )] + E xc [n( )], T s [n( )] E H [n( )] E xc [n( )]
33 E xc [n( )] F [n( )] T s [n( )] T s [n( )] E xc [n( )] ] [ 2 2 +V eff (,n( )) φ i = ϵ i φ i ( ), 2m e V eff (,n( )) = V( )+e 2 n( ) d + δe xc[n( )], δn( ) φ i ( ) n( ) V eff
34 E xc [n( )] R 3Nat F [n( )]
35
36
37 2
38 x x 2
39 1 x 2.5 x 2.5 x x 2.5 x =3.75 x x x
40 x x = x x x =4.25 x x x 2 ζ
41 (a) (b) Volume expansion pure a Si Formation energy (ev/si atom) Li concentration x Li concentration x 3 4 6B;m`2 kxr, U V _2T`2b2Mi ibp2 mmbi +2HHb Q7 i?2 bi`m+im`2b M Hvx2/ Uv2HHQr bt?2`2b `2 ab iqkb M/ Tm`TH2 bt?2`2b GB iqkbvx U#V p2` ;2 7Q`K ibqm 2M2`;v b 7mM+iBQM Q7 GB +QM+2Mi` ibqmx 6BHH2/ +B`+H2b +Q``2bTQM/ iq i?2 +QM+2Mi` ibqmb i r?b+? i?2 bi`m+im`2b `2 b?qrm BM U VX h?2 BMb2i BM U#V b?qrb i?2 pqhmk2 `2H ibp2 iq i?2 BMBiB H pqhmk2 h?2 `2bmHib `2 p2` ;2 p Hm2b Qp2` Ry bi`m+im`2b i 2 +? p Hm2 Q7 xx h?2 bi M/ `/ /2pB ibqm 7Q` 2 +? TQBMi Bb bk HH2` i? M i?2 K `F2` bbx2x i?2b2 TQbBiBQMb- r2 B/2MiB7v ab iqkb rbi? i?2?b;?2bi MmK#2` Q7 ab M2B;?#Q`b i 2 +? GB +QM+2Mi` ibqmx q2 i?2m TB+F QM2 Q7 i?2b2 ab iqkb M/ QM2 Q7 Bib ab M2B;?#Q`b ` M@ /QKHv M/ BMb2`i i?2 GB iqk HQM; i?2 2ti2MbBQM Q7 i?2 +?Qb2M ab@ab #QM/ i /Bb@ i M+2 TT`QtBK i2hv 2[m H iq i?2 #QM/- M/ `2H t i?2 bi`m+im`2 b /2b+`B#2/X i 2 +? x p Hm2- r2 +QMbi`m+i2/ Ry /Bz2`2Mi bi`m+im`2b # b2/ QM bi`m+im`2b i i?2 T`2pBQmb x p Hm2- rbi? i?2 TQbBiBQM Q7 2 +? GB iqk +?Qb2M ` M/QKHv KQM; i?2 p BH #H2 TQbB@ ibqmb /2}M2/ #Qp2X h?2`2 `2 K Mv bm+? TQbBiBQMb BM i?2 M2irQ`F- r?b+? ;Bp2b #`Q / ` M;2 Q7 BMBiB H bi`m+im`2b 7Q` i?2 }`bi HBi?B ibqm bi2tx q2 b?qr }p2 Q7 i?2 bi`m+im`2b 7`QK Qm` + H+mH ibqmb BM 6B;X kxru VX h?2 KQmMi Q7 GB r b BM+`2 b2/ BM bi2tb Q7 x = 0.125X q2 ``Bp2/ i i?2 p Hm2 Q7 x 7i2` 2tT2`BK2MiBM; iq /2i2`@ KBM2 i? i i?bb +?QB+2 /Q2b MQi z2+i i?2 `2bmHiBM; bi`m+im`2x 6Q` bk HH p Hm2b Q7 x- RN
42 E f (x) x E f (x) =(E Lix Si E Li N Li E Si N Si )/N Si E Lix Si E Li E Si N Li N Si N Si = 64 E f (x) x x x =3.75 x 15 4 V E f (x 1 ),E f (x 2 ) x 1,x 2 V = 1 e E f (x 2 ) E f (x 1 ) x 2 x 1 e
43 E f (0) E f (3.75) V E f (3.75) E f (2) V E f V Number of neighbors (a) Li tot Si Si Si tot Li Si Si Li Li Li Rings per atom (b) 6 Si(x4) Li Li concentration x Li concentration x Y x
44 x x =4.25 x =2 x 2 x =2.2 x =2.2 x
45 x x =0 x 0.5 x 2 x x x 4.25 x 2
46 χ D χ D χ D =0 Shape measures (a) Li concentration x D O T Tetrahedricity n=1 n=2 (b) Li concentration x Fraction of Si χ D =0 x = 0 χ D χ D x x
47 x χ D χ D χ T χ O χ D χ T χ O χ I = 1 ( ei N p e 2 e ) 2 j λ i λ j i<j I = e i,j e N p λ i,j = 1 λ i,j = 2 i j χ D x χ O χ T χ D χ T χ O x 2 2 x 4.25 χ T χ O x
48 χ T χ O x x x x = O D T χ D χ T χ O 15 4 χ T χ T =0.020 χ T χ T =0.020 χ T χ T
49 x 2.25 x = 3.75 χ T χ T x 3.25 x = χ T χ T < x =
50 x 2 x = x 2 x 2 2 x 4.25
51 3
52
53 Atomic&coordinates Symmetry&functions Input& layer Hidden& layer Output& layer E 1 E T E 2
54 β
55 (23, ) 1.5 E i N n N n E i
56 N n N n N n = 60 N n =
57 β
58 β 11.7 β β β β
59 3 N a N a 3 43) = n th n th
60 β
61 β
62 β β β
63
64 4
65
66 i G X Y (i; µ) = j e (R ij µ) 2 /L 2 Ψ X YZ(i; ξ,λ,ζ) = j e (R2 ij +R2 ik +R2 jk )/ξ2 (1 + λ cos θ ijk ) ζ k R ij i j θ ijk i j k L µ ξ λ ζ X Y Z i X j Y k Z
67 µ ξ λ ζ G Ψ R S c R S c µ, ξ, ζ, λ G X A GX B µ ΨX AA ΨX AB, Ψ X BB (ξ,λ,ζ) µ 0.3σ AA 5.0σ AA 0.1σ AA ξ,ζ, λ G X Y (i; µ) ΨX YZ (i; ξ,λ,ζ) N M G X Y ΨX YZ µ ξ λ ζ M = 160 {F 1,, F N } F i i t i R M n
68 Structure"function"parameters"for"Ψ YZ ξ"(σ AA ) ζ λ t i t i + t R M
69 C C C C>0.1 i D 2 (i) min Λ 1 (R ij (t + t) ΛR ij (t)) 2 z, j t j R D c i R ij i j z R D c Λ D 2 RD c t R D c t D 2 D2 D % D,0 2 D 2 D 2 D 2 T = 0.4 d = 2 D 2 D2 = 0.3σ2 AA D 2 = 0.28σ2 AA D 2
70 rdered cles to is dehe two e consented titutes icle i, dom a nd catrrange etween d time d. ng set, cheme se the h conft pars been rticles ssified em on no exdapted ct; the where ations. nsensim was 2 6B;m`2 9XR, U+QHQ` QMHBM2V am Tb?Qi +QM};m` ibqmb Q7 i?2 irq bvbi2kb bim/b2/x S `ib+h2b `2 +QH@ 2 Q`2/ ;` v `2/ ++Q`/BM;online) iq i?2b` DKBM p Hm2X S `ib+h2b B/2MiB}2/ b bq7i #v i?2 aojof `2 the QmiHBM2/two FIG. 1. iq (color Snapshot configurations BM #H +FX U V bm Tb?Qi Q7 i?2 TBHH ` bvbi2kx *QKT`2bbBQM Q++m`b BM i?2 /B`2+iBQM BM/B+ i2/x U#V systems Particles are colored bm Tb?Qi Q7studied. i?2 d = 2 b?2 `2/i?2`K H G2MM `/@CQM2b bvbi2kx gray to red according 2 to their Dmin value. Particles identified as soft by the SVM 2 2 p Hm2 Q7 = 0.28σ(a) iq MQM@ {M2 /BbTH +2K2Mi Q`@ arei?`2b?qh/ outlined indkbm-y black. A snapshot of the pillar Q7system. AA +Q``2bTQM/b 2 2 Compression occurs in the direction indicated. (b) A snapshot /2` DKBM-y = 0.53σ AA X h?2 DKBM-y 7Q` Qi?2` i2kt2` im`2b r2`2 b+ H2/ HBM2 `Hv rbi? of i2kt2` im`2the d = 2iQ sheared, thermal Lennard-Jones system. ;Bp2 D2 (T ) 0.7T σ 2 X KBM-y AA. / h?2 i` BMBM; b2i Bb ;Bp2M #v {(F1, y1 ),..., (FN, yn )}- r?2`2 Fi 4 Fi1,..., FiM `2 i?2 p Hm2b Q7 i?2 bi`m+im`2 7mM+iBQMb i? i /2b+`B#2 i?2 HQ+ H M2B;?#Q`?QQ/ Q7 T `ib+h2 ix plate fixed and ithe toprbi?bm plate is M/ driven the yi = 1is B7 i?2 M2B;?#Q`?QQ/ `2 `` M;2b ibk2 tyi = 1 into Qi?2`rBb2X q2 pillar BKatiQ a}m/constant speed v0 b2t ` i2b = mm/s. The yipillars?vt2`th M2 w F b =of 0 i? i i?2 TQBMib rbi? /Bz2`2Mi X ReN X.m2 iq i?2 are h?2 composed ofr ba BKTH2K2Mi2/ bidisperse mixture of approximately aoj H;Q`Bi?K mbbm; i?2 GA"aoJ T +F ; rigid grains with size ratio and`2 `` M;2 the large partibiq+? bib+ M im`2 Q7 `2 `` M;2K2Mib UBX2X MQi HH bq7i3:4 T `ib+h2b i 2p2`v ibk2 cles having a radius daa = particles BMi2`p HV i?2`2 /Q2b MQi 2tBbi of?vt2`th M2 i? i0.3175cm. T2`72+iHv b2t ` i2bthese i?2 irq /Bz2`2Mi have elastic interactions with +H bb2bx 6Q` i?bb and `2 bqm-frictional T2M Hiv T ` K2i2` C Bb BMi`Q/m+2/ M/ r2each }M/ i?2other, QTiBK H as well as frictional interactions with the substrate, making the identification of flow defects using vibrational modes 93 impossible. A camera is mounted above and captures images at 7 Hz throughout the compression. We construct our training set from compression experiments performed on ten di erent pillars. We select
71 0.75 Avg. accuracy D 2 min,0 D 2 σ AA 1 2 wt w + C N ξ i, i=1 y i (w T φ(f i )+b ) 1 ξ i ξ i 0 φ(f i ) K(F i, F j )=φ(f i ) φ(f j ) K(F i, F j )= F i F j K(F i, F j )= { γ F i F j 2} γ C
72 C C > 0.1 C =1 C hard particles Fraction soft particles C value used in this study C C d =3
73 Accuracy training set test set Size of training set 10 4 d = 2 v 0 =0.085 d AA =0.3175
74 D 2 R D c =1.5 d AA D 2 =0.25d2 AA y y + δy v 0.04 d =2 d =3 σ AA =1.0 σ AB =0.88 σ BB =0.8 ϵ AA =1.0 ϵ AB =1.5 ϵ BB = σ AA σ AA ϵ AA τ = mσaa 2 /ϵ AA τ ρ =1.2 τ ϵ AA /k B k B d = 2 T =0.1, 0.2, 0.3, 0.4 γ = 10 4 /τ d =3 T =0.4, 0.5, 0.6 T G =0.33 d =2 T G =0.58 d =3
75 (a) (b) (c) (d) 0.6 P D 2 min/(d 2 AA) D 2 min/(t 2 AA) D 2 min/(t 2 AA) D 2 min/(t 2 AA) D 2 D 2 d AA T T = 0.1, 0.2, d =2 d =3 T =0.4, d =2 t =2τ D 2 R D c = 2.5σ AA t =2τ d =3 D 2 d = 2 d = P (D 2 ) D2 d =3
76 P (D 2 ) D2 d =2 d =3 P (D 2 ) T D 2 Tσ2 AA D 2 v2 T d =2 T =0 T =0.1 T =0.4
77 14% 76% 62% 1.0 D min,0 0.8 P Dmin 2 /(T AA 2 ) D 2 D 2
78 T =0.4 P D 2 d = 2 T = 0.1 G X Y (i; µ) g XY (r) = lim L 0 G X Y (i; r) /2πr g(r) g(r) L =0.1σ AA
79 P D /(σ 2 AA 2 ) D /(Tσ 2 AA 2 ) D 2 D 2 T = 0.4 D 2 T g(r) G X Y (i; µ) G B A (i; rab ) r AB g BA(r) G B A (i; rab )/r < 1/2 H 0 G B A (i; rab )/r > 1/2 H 1 H 1 H 0 Ψ B AB (i;2.07σ AA, 1, 2)
80 1.0 B AB (i; 2.07 AA, 1, 2) P for soft hard particles (blue), and H1 gaa (r) gba (r) shown in Fig. 3(c). Physically is large when there are many 0.5 the central particle that lie wi small angles between them, suc A and one is of species B. The a single category (one peak, r 0.0 H1 -type hard particles defined above have very di erent distri gab (r) gbb (r) peaks). Unlike before, here th H0 hard particles have very di e 0.25 soft particles and H1 hard part butions. Bond-angle information between soft particles and H0 not between soft particles and 0.0 To fully distinguish between s both radial and bond-angle info r/ AA r/ AA particles have environments th fewer particles in their nearest n FIG. 3. (color online) Radial distribution functions averaged 6B;m`2 9X3, U+QHQ` QMHBM2V _ /B H /Bbi`B#miBQM 7mM+iBQMb p2` ;2/ Qp2`? `/ U#H +F HBM2bV Q` bq7ibetween adjacent particle angles over hard (black lines) or soft (red lines) particles. gab and U`2/ HBM2bV T `ib+h2bx ggba M/ gba Q7 bq7i T `ib+h2b `2 MQito2[m H 2 +?since Qi?2`they bbm+2 i?2v In `272` iq AB of soft particles are not equal each iq other summary, we have presented /Bz2`2Mi FBM/b Q7 `2;BQMb, M2B;?#Q`b bq7i T `ib+h2b 7`QK bt2+b2b of M/ T `ib+h2b refer to di erentq7kinds of regions: neighbors softm2b;?#q`b particles Q7 bq7i identifying flow defects in disorde 7`QK bt2+b2b "- `2bT2+iBp2HvX from species A and neighbors of soft particles from species B, we have focused on the short-ti respectively. ture with particle rearrangement 1.0 M/ H1? `/ T `ib+h2b U;`22MV- b?qrm BM 6B;X ju+vx should H0? `/ T `ib+h2b U#Hm2VS?vb@ shed light on the connect tural evolution and the correlati BA, 1, 2) Bb H `;2 r?2m i?2`2 `2 K Mv T B`b Q7 M2B;?#Q`b time and space [31] over longer t B+ HHv- ΨB Q7 i? AB (i; 2.07rT2 F ing liquids. We also note that +2Mi` H T `ib+h2 i? i 0.5 HB2 rbi?bm /Bbi M+2 ξ rbi? bk HH M;H2b #2ir22M i?2k- specific bm+? i? i particles that will partic at a later time; rather, we ident QM2 Bb Q7 bt2+b2b M/ QM2 Bb Q7 bt2+b2b "X h?2 bq7i T `ib+h2b 7 HH BMiQ bbm;h2ticles + i2@that are likely to rearran 0.25 more useful in thermal and/o ;Q`v UQM2 T2 F- `2/V r?bh2 M/ `/ T `ib+h2bĝ/2}m2/ 7`QKis` /B H fluctuations lead to stochasticity /Bz2`2Mi 8 12 /Bbi`B#miBQMb U#Hm2 0.4 M/ Our method relies on local s BM7Q`K ibqm #Qp2Ĝ? p2 p2`v ;`22M1 T2 FbVX lmhbf2 be applied directly to snapsho B B GA (i; rpeak ) BA (i; 2.07 AA, 1, 2) #27Q`2-?2`2 i?2 bq7i T `ib+h2b M/ i?2 H0? `/ T `ib+h2b? p2 p2`v /Bz2`2Mi /Bbi`B#m@ tems, in contrast to previous m AB FIG. 4. (color online) (a) Distribution of GA B (i; rpeak ), proporproach also scales linearly with AB ibqmb r?bh2 bq7i T `ib+h2b H1? `/weighted T `ib+h2bdensity? p2 bbkbh ` tional to M/ the gaussian at rpeak, /Bbi`B#miBQMbX for soft (red) "QM/@ M;H2 N, while vibrational mode appr AB and hard (blue/green) particles. rpeak corresponds to the first efficient identification of flow de BM7Q`K ibqm i?2`27q`2 bq7i T `ib+h2b M/ `/ T `ib+h2b peak /BbiBM;mBb?2b of gab or gba. #2ir22M (b) Distribution of B AB (i; 2.07 AA, 1, 2), ing phenomenological approache proportional to the density of neighbors with small bond anflow#2@ defects [6, 32 34]. Previous #mi MQi #2ir22M bq7i T `ib+h2b M/ `/ T `ib+h2bx hq 7mHHv /BbiBM;mBb? gles near a particle i,1 for soft (red) and hard (blue/green) learning methods in physics hav particles. The inset shows examples of configurations with tion [25, 35, 36] or on optimizati corresponding radial and bond orientation properties, where dark (light) gray neighbors 83 are of species A (B). 40]. Our approach shows that su detecting subtle correlations can gain conceptual understanding n features a single peak, that for hard particles is bimodal. tional approaches. This indicates the existence of (at least) two distinct E.D.C. and S.S.S. contributed populations of hard particles which we divide into two thank Amos Waterland, Carl Go AB groups: one with GB and Franz Spaepen for helpful dis A (i; rpeak )/r < 1/2 (blue) that we will B AB
81 not between soft particles and H To fully distinguish between sof both radial and bond-angle inform r/ AA r/ AA particles have environments tha fewer particles in their nearest ne FIG. 3. (color online) Radial distribution functions averaged angles between adjacent particles. over hard (black lines) or soft (red lines) particles. gab and gba of soft particles are not equal to each other since they In summary, we have presented refer to di erent kinds of regions: neighbors of soft particles identifying flow defects in disorder from species A and neighbors of soft particles from species B, we have focused on the short-tim respectively. ture with particle rearrangements. should shed light on the connectio 1.0 tural evolution and the correlatio time and space [31] over longer ti 0.75 ing liquids. We also note that specific particles that will particip 0.5 at a later time; rather, we identif ticles that are likely to rearrange 0.25 is more useful in thermal and/or fluctuations lead to stochasticity i Our method relies on local str be applied directly to snapshots B GB A (i; rpeak ) BA (i; 2.07 AA, 1, 2) tems, in contrast to previous m AB FIG. 4. (color online) (a) Distribution of GA B (i; rpeak ), proporab proach also scales linearly with th 6B;m`2 9XN, U+QHQ` QMHBM2V U V.Bbi`B#miBQM Q7 GA (i; r )T`QTQ`iBQM H iq i?2 ; mbbb M r2b;?i2/ AB B T2 F tional to the gaussian weighted density at rpeak, for soft (red) AB AB N, while /2MbBiv i rt2 F - 7Q` bq7i U`2/V M/? `/ U#Hm2f;`22MV T `ib+h2bx rt2 F +Q``2bTQM/b iq i?2 }`bi T2 Fvibrational mode approa AB and hard (blue/green) particles. rpeak corresponds to the first B efficient identification of flow def Q7 gab Q` gba X U#V.Bbi`B#miBQM 2.07σ T`QTQ`iBQM H iq i?2 /2MbBiv Q7 M2B;?#Q`b B AA, 1, 2)-of AB.(i; peak of gab Q7 or Ψ gba (b) Distribution AB (i; 2.07 AA, 1, 2), ing phenomenological approaches rbi? bk HH #QM/ M;H2b M2 ` T `ib+h2 i- density 7Q` bq7i of U`2/V M/? `/ U#Hm2f;`22MV h?2 BMb2i proportional to the neighbors with small bondt `ib+h2bx anflow defects [6, 32 34]. Previous a b?qrb 2t KTH2b Q7 +QM};m` ibqmb rbi? +Q``2bTQM/BM; ` /B H and M/ hard #QM/ (blue/green) Q`B2Mi ibqm T`QT2`iB2b- r?2`2 gles near a particle i, for soft (red) learning methods in physics have / `F UHB;?iV ;` v M2B;?#Q`b `2 Q7 bt2+b2b U"VX examples of configurations with particles. The inset shows tion [25, 35, 36] or on optimizatio corresponding radial and bond orientation properties, where dark (light) gray neighbors are of species A (B). 40]. Our approach shows that such ir22m bq7i M/? `/ T `ib+h2b- #Qi? ` /B H M/ #QM/@ M;H2 BM7Q`K ibqm Bb M22/2/X aq7isubtle correlations can a detecting gain conceptual understanding not T `ib+h2b? p2 2MpB`QMK2Mib i? iĝ i KBMBKmKĜ? p2 72r2` T `ib+h2b BM i?2b` M2 `2bi features a single peak, that for hard particles is bimodal. tional approaches. This indicates the existence of (at least) two distinct E.D.C. and S.S.S. contributed eq M2B;?#Q` b?2hh M/populations H `;2` M;H2b /D +2Mi T `ib+h2bx of #2ir22M hard particles which we divide into two thank Amos Waterland, Carl Goo B AB groups: one with GA (i; rpeak )/r < 1/2 (blue) that we will and Franz Spaepen for helpful disc AB call H0 -type, and one with GB supported by the UPENN MRSE A (i; rpeak )/r > 1/2 (green) 9Xe *QM+HmbBQM that we will call H1 -type. Radial information therefore (S.S.S., J.M.R.), NSF DMR-1305 distinguishes between soft particles and H1 hard particles partment of Energy, Office of B but not between soft and H hard particles. Division of Materials Sciences a 0 AM bmkk `v- r2? p2 T`2b2Mi2/ MQp2H JG K2i?Q/ 7Q` B/2MiB7vBM; ~Qr /272+ib BM /Bb@ We now consider the distribution of Award DE-FG02-05ER46199 (A.J Q`/2`2/ bqhb/bx q2 MQi2 i? i r2? p2 7Q+mb2/ QM i?2 b?q`i@ibk2 +Q``2H ibqm Q7 bi`m+@ P 0.0 im`2 rbi? T `ib+h2 `2 `` M;2K2MibX >Qr2p2`- Qm` K2i?Q/ b?qmh/ b?2/ HB;?i QM i?2 +QM@ M2+iBQM #2ir22M HQ+ H bi`m+im` H 2pQHmiBQM M/ i?2 +Q``2H ibqm Q7 `2 `` M;2K2Mib BM ibk2 M/ bt +2 R Qp2` HQM;2` ibk2 b+ H2b BM ;H bb7q`kbm; HB[mB/bX q2 HbQ MQi2 i? i r2 + MMQi T`2/B+i i?2 bt2+b}+ T `ib+h2b i? i rbhh T `ib+bt i2 BM `2 `` M;2K2Mib i H i2` ibk2c ` i?2`- r2 B/2MiB7v TQTmH ibqm Q7 T `ib+h2b i? i `2 HBF2Hv iq `2 `` M;2X h?2 H i@ i2` [m MiBiv Bb KQ`2 mb27mh BM i?2`k H M/fQ` b?2 `2/ bvbi2kb- bbm+2 ~m+im ibqmb H2 / iq biq+? bib+biv BM `2 `` M;2K2MibX 8N
82 N N 3
83 5 T 0
84 T 0 M = 166 M R M i M τ α
85 S i i R M S i > 0 i S i < 0 d =3 ρ T A 6, 000 T R M S i (t) i t 30, 000τ ρ T σ AA =1.0 σ AB =0.8 σ BB =0.88 ϵ AA =1.0 ϵ AB =1.5 ϵ BB =0.5 m A = m B =1 τ = m A σaa 2 /ϵ AA k B =1 2.5σ AA τ τ
86 ρ ρ p p t R = 10τ A = [t t R /2,t] B =[t, t + t R /2] p (t) = ( r i r i B ) 2 A ( r i r i A ) 2 B A B A B p p 0.05
87 p t 1 p t 2 r = r t (t 2 ) r i (t 1 ) t = t 2 t 1 phop ri(t) ri(0) (a) (b) t/ T =0.47 ρ =1.20 p p t r p T =0.47 p p r t p P R (S) dq/dt p
88 PH»Dr»L »Dr» PHDtL Dt p T =0.47 p a P R (S) a r t r p r p p t p p p 0.2 τ R (T ) τ R (T ) T τ R (T )
89 X»Dr»\ * p hop XDt\ * p hop p T = p >p c =0.2 p c S > 0 T =0.47 p c p c % p 0.2 p c 0.2 p c
90 P (S >0) p c p c T =0.47 ρ =1.20 p =0.2
91 DE Ì Á Ûı Û ı ÙÌ Á ÁÁ ÛÌ ı Û Ûıı ıù Û ÁÚ Ù Ï ÚÚ Ï Ï ÚÚÚ Á Á ÙÙÙ Ì ÌÌ ÌÌ Ì Û ÛÛ Û ı ıı ı ÏÏ Ï Ú ÙÙ Á Ú Ú Ù Ûı ı Ê Ï ÊÊÊ ÏÁ ÚÚÚÚ ÏÏÏÏ Ù Á Û Ù Û Ù Ù ÌÌÌÌÌÌ ÁÁÁÁ Û ı ıı ÛÌÌ Û ıı Û Û ı ÙÙ ÚÚ Ê Ï Ú ÙÙÙ Ì ÁÁÁ Ú ÊÊÊÊ ÚÚÚÚÚÚÚÚ ÁÁ Ù ÊÊ ÊÊÊÊÊÊÊ ÏÏÏÏÏÏÏÏÏÏÏ ÙÙ Á Ûı Ì ÛÛ ıı ÌÌ ı ÛÛ ÁÁÁÁ Ù Ì ı Ì Û ÌÌ Û ı ÙÙÙÙ Á Ûı ÁÁÁ Ú ÏÏÏ ÚÚ ÙÙ ÙÙÙ ÌÌÌÌÌÌÌÌÌÌ ÛÛ ııı ÛÛ ı Û ÛÛ ıı ı Û ÚÚÚ Ù ÁÁÁÁÁÁÁÁÁÁ ÙÙÙÙÙÙÙÙÙ Û ı ı ÛÛÛ ıìì ı ÌÌÌÌÌÌÌÌ ÚÚÚÚÚÚÚÚÚÚ ÛÛÛÛ ıııı ÁÁ ÏÏÏÏÏÏÏÏÏÏÏÏÏ Á ÚÚ Ù Ù ÌÌ ÙÙÙ ÙÙÙÙÙÙÙÙ ÏÏÏÏÏ ÏÏÏÏ ÚÚÚÚÚÚÚÚÚÚÚ ÌÌÌÌÌÌÌÌÌÌÌÌ Û ı Û ıııııııııııııı ÛÛÛÛÛÛÛÛÛÛÛ ÛÛ ÛÛÛÛÛÛ ııı ÚÚ ÙÙÙÙ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÚÚÚÚÚÚÚ ÙÙÙÙÙ ÌÌÌÌ ııı ÏÏÏÏÏÏÏÏÏÏÏÏÏ ÊÊÊ ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ S loghp0l Ù Á ÛÌ Á Ú Ú ÏÊ Ê Ê Ê ÊÊÊ ÏÏ ÚÚ ÏÏÏ Ú Ù ÙÙ Ì Û Á Ì Ì Ú Û ÙÌ Ù Á Á ÁÌ ÏÚÚ Ï Ê Ú Á Û Ù Ì Û Ù Ù Ì Û Ù ÁÁ Ê ÏÏÏÏ ÏÏ Ú ÏÏ Ï ÊÊÊÊÊÊÊÊÊÊÊÊ Ú Ú Ì Ì Û Ì ÛÛÛ Û Ù Ù ÚÛ ÚÚ ÚÚÚ ÙÙ Ù ÁÁ ÁÁÁÁ Ì Ì ÙÙÙ ÏÏÏÏÏÏÏÏ Ú ÙÙ ÚÚ Ù Ì ÛÛ Ì Ì Û ÛÛ Ì Á Á Á Ì ÁÁ ÌÌ Á ÚÙÙÙÙ Ê Û ÚÚÚÚ ÊÊÊÊÊÊÊ Á ÏÏ ÚÚ ÛÌ ÛÛ ÛÌ Û Ì Ì ÛÌ ÁÁÁÁÁ Ù ÙÙÙ ÏÏÏ ÚÚÚ ÛÌ ÙÙÙ ÊÊ ÁÁÁÁÁÁÁÁÁ ÏÏÏÏÏÏÏÏ Ú ÚÚÚÚÚÚÚÚ Ù ÙÙÙÙÙÙÙ ÛÛÛ ÌÌ ÌÌ Û Ì Ì Ì Û ÛÛ Ì Ì Û ÊÊÊÊÊÊÊÊÊÊ Û Û Ì ÛÌ Ì ÏÏ Ú ÛÛÛÛ Ì Á Ù ÌÌÌ Ï ÁÚ Ù Á Û ÚÙ ÊÊÊ ÁÁÁ ÚÚÚ ÙÙÙ ÚÚÚÚÚ ÙÙÙÙÙÙÙÙ Ì Û Ì Û Ì ÛÛÛÛÛÛÛÛÛÛ ÌÌ ÏÏÏÏÏÏÏÏÏÏÏ ÁÁÁÁÁÁÁÁ ÌÌÌÌÌÌÌÌÌÌ ÚÚÚ ÊÊÊÊÊÊÊÊÊÊ ÏÏ ÁÁ ÚÚÚÚ ÙÙ ÊÊ Û ÏÏÏÏÏÏÏ ÁÁÁÁÁÁÁ ÙÙÙÙÙÙÙ ÊÊÊÊÊÊÊ ÌÌ ÚÚÚÚÚ ÛÛÛ ÌÌÌÌ Û ÛÛ S p c p c = Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê e1 8.0 E1 8 Ê Ê Ê Ê Ê 7.0 Ê log p c p c y i =1
92 τ α y i =0 {(F 1,y 1 ),...,(F N,y N )} F i { Fi 1 },...,FM i M i M r ± δ i G X (i; r, δ) = j X e 1 2δ 2 (r R ij) 2 R ij i j X r δ X i δ =0.1σ AA ξ Ψ XY (i; ξ,λ,ζ) = j X e (R2 ij +R2 jk +R2 ik )/ξ2 (1 + λ cos θ ijk ) ζ k Y θ ijk R ij R ik λ = ±1 ζ X Y X Y ζ λ ξ w F b = 0 y i =1 y i =0
93 y C 1 2 wt w + C N χ i, i=1 y i (w T F i + b ) 1 χ i χ i 0 χ i C F n F n w F n b>0 S n = w F n b g AA (r) g AB (r) g(r)
94 a b P (S R) P (S) S 6B;m`2 8Xd, h?2 +? ` +i2`bbib+b Q7 i?2 bq7im2bb }2H/X - bm Tb?Qi Q7 i?2 bvbi2k i T = 0.47 M/ ρ = 1.20 rbi? T `ib+h2b +QHQ`2/ ++Q`/BM; iq i?2b` bq7im2bb 7`QK `2/ UbQ7iV iq #Hm2 U? `/VX #- h?2 /Bbi`B#miBQM Q7 bq7im2bb Q7 HH T `ib+h2b BM i?2 bvbi2k U#H +FV M/ Q7 i?qb2 T `ib+h2b i? i `2 #Qmi `2 `` M;2 U`2/VX NyW Q7 i?2 T `ib+h2b i? i `2 #Qmi iq `2 `` M;2? p2 S > 0 Ub? /2/ `2;BQMVX LQM2 Q7 i?2 / i BM+Hm/2/ BM i?bb THQi r2`2 BM i?2 i` BMBM; b2ix? p2 bi`m+im`2 i? i Bb KQ`2 bbkbh ` iq?b;?2`@i2kt2` im`2 HB[mB/- r?2`2 i?2`2 `2 KQ`2 `2 `` M;2K2Mib- r?bh2? `/ T `ib+h2b r?qb2 bi`m+im`2 TT2 `b +HQb2` iq HQr2`@ i2kt2` im`2 HB[mB/ R38 X 6B;X R U V Bb bm Tb?Qi rbi? T `ib+h2b +QHQ`2/ ++Q`/BM; iq i?2b` bq7im2bbx 1pB@ /2MiHv- S? b bi`qm; bt ib H +Q``2H ibqmbx 6B;X R U#V b?qrb i?2 /Bbi`B#miBQM Q7 bq7im2bbp (S)- M/ i?2 /Bbi`B#miBQM Q7 bq7im2bb 7Q` T `ib+h2b Dmbi #27Q`2 i?2v ;Q i?`qm;? `2@ `` M;2K2Mi- P (S R)X q2 b22 i? i NyW Q7 i?2 T `ib+h2b i? i mm/2`;q `2 `` M;2K2Mib? p2 S > 0X q2? p2 HbQ i2bi2/ Qi?2` b2ib Q7 bi`m+im`2 7mM+iBQMb Ub22 bmtth2k2mi H BM7Q`K ibqmv M/ 7QmM/ M2 `Hv B/2MiB+ H ++m` +vx aq7im2bb Bb i?2`27q`2?b;?hv +@ +m` i2 T`2/B+iQ` Q7 `2 `` M;2K2Mib i? i Bb `2 bqm #Hv `Q#mbi iq i?2 b2i Q7 bi`m+im`2 7mM+iBQMb +?Qb2MX q2 M2ti b?qr i? i i?2 T`Q# #BHBiv i? i T `ib+h2b `2 `` M;2 Bb 7mM+iBQM Q7 i?2b` bq7im2bbx h?bb T`Q# #BHBiv Bb + H+mH i2/ b i?2 7` +ibqm Q7 T `ib+h2b Q7 bq7im2bb- S- dk
95 P R (S) P R (S) T =0.47 T =0.58 T P R (S) S = 3 S =3 P R (S) 1/T S P R (S) =P 0 (S)exp( E(S)/T ) P 0 (S) E(S) S P R (S)/P 0 (S) E(S)/T E(S) E(S) Σ(S) ln P 0 (S) S S E = e 0 e 1 S Σ=Σ 0 Σ 1 S T P R (S) T 0 Σ E/T 0 T 0 = e 1 /Σ 1 P R (S) T 0 T 0 T m 0 T 0 T = T 0
96 a c log PR S E S b d log PR T log (PR/P0) E/T /T T0 m P R (S) T = P R (S) dq(s, t)/dt T =0.47 T =0.58 P R (S) 1/T S 3 S 3 P R /P 0 E/T E Σ P R (S) =exp(σ E/T ) S T 0 T0 m ρ =1.15, 1.20, 1.25, 1.30 T 0 = T0 m
97 a b q(t) t/ t/ T = P R (S) q(t) = 1 N Θ( r i (t) r i (0) a) i N r i i Θ a =0.5 ρ = 1.20 q(t) P R (S) S t = 0 q(s, t) q(t) = dsq(s, t)p (S) q(s, t) S t dq(s,t) dt t=0 = c a P R (S) c a a dq(s,t) dt t=0 P R (S)
98 a G(S, 3,t) log (t/ ) S b G(S, 3,t) S c hs(t)is t/ S 0 3 t =0 t = 1000τ S 0 3 S 0 3 P R (S) q(s, t) S t 1 t (1 P R (S)) t 1 P R (S) q(t) q(t) G(S, S 0,t) t S 0 t =0 a t
99 t G(S, S 0 = 3,t) G(S, S 0,t) S 0 t t G(S, S 0 = 3,t) S(t) S0 = dssg(s, S 0,t) S 0 S 0 τ α G(S, S 0,t) = δ(s S 0 ) P R (S) q(s, t) G(S, S 0,t) S S 0 t q(t) r d 1 g(r) δ 0
100 g(r) R G X (i; r, δ) = j X e 1 2δ 2 (r R ij) 2 R ij i j X r σ AA 0.1σ AA Ψ XY (i; ξ,λ,ζ) = j X e (R2 ij +R2 jk +R2 ik )/ξ2 (1 + λ cos θ ijk ) ζ k Y θ ijk R ij R ik λ = ±1 ζ X Y G X (i; r, δ) X δ r
101 Structure"function"parameters"for"Ψ YZ ξ"(σ AA ) ζ λ g(r) g AB (r)
102 0.66 Type A 0.62 Accuracy r/σ Type B Accuracy r/σ r g AA (r)
103 Type A (r/ ) Type B (r/ ) Type A (r/ ) Type B (r/ ) 0.9σ AA 1.1σ AA
104 300 Type A Histogram Histogram r/σ Type B r/σ 1.9σ AA 1.1σ AA 0.8, σ AA
105 median weight r/σ AA N s = 15 N s N s = 15
106 Accuracy No. of structure functions S i = α w α G(i; rα,δ) w α r α G = (G G )/ δg 2 G(i; r, δ) r
107 wa rês AA wb rês AA r/σ AA g(r) g(r) g AA (r) g AB (r)
108 0.2 Type A neighbors 0.4 Type B neighbors gaa(r) g(r) AA H g H g - AA S g S g g AB H g g H - AB S g S g(r) gab(r) r/σ AA r/σ AA g H AX gs AX gax H gax S g AX(r) g AX (r)
109 i G Y cdf (i; µ) = j 1, R ij <µ. G Y cdf (i; µ) Y µ i Y µ σ AA 0.1σ AA Y lm ( r ) ( 4π Q l (i; r min,r max )= 2l +1 l m= l Q lm ( r ) 2 ) 1/2,
110 Q lm ( r ) = 1 Y lm ( R N ij ), r min <R ij <r max. j j Q lm ( r ) Y lm ( r ) j i Q l (i; r min,r max ) Q lm r min r max 0.5σ AA σ AA l l {2, 4, 6, 8, 10, 12, 14} ρ =1.15 T =0.37 ρ =1.2 T =0.47 g(r) Q l 2% G Y cdf Q l A B ( l ) 3/2 Ŵ l = W l Q lm ( r ) 2, m= l
111 W l = m 1,m 2,m 3 l l l m 1 m 2 m 3 ( Q lm1 ( r ) Q lm2 ( r ) Q lm3 ( r ) ) l l l m 1 m 2 m 3 3j W l l Q l P R P R (S) q(s, t) = 1 Θ( r i (t) r i (0) a)δ(s i (0) S) N S i
112 N S S t =0 t τ R (T ) P R (S) a P R (S) c(t )P R (S) c(t ) a c(t ) = c a f rrev (T ) c a a f rrev (T ) G(S, S 0,t) S 0 t =0 t f t = dsg(s, S 0,t)P R (S). t 1 t t 1 P (t S 0 )= (1 f t )f t = t =0 t 1 t =0 [ ] dsg(s, S 0,t )(1 P R (S)) dsg(s, S 0,t)P R (S) t
113 Q7 i?2 Qp2`H T 7mM+iBQM Ĝ rbhh #2 ;Bp2M #vt t< 1 #"! q(s0, t) = 1 t =0 t =0 dsg(s, S0, t )(1 PR (S)) $" dsg(s, S0, t )PR (S). U8XRdV h?bb ;Bp2b bq7im2bb /2T2M/2Mi T`2/B+iBQM 7Q` i?2 Qp2`H T i? i + M #2 +QKTmi2/ M@ HviB+ HHv QM+2 PR (S) M/ G(S, S0, t) `2 FMQrMX h?2 Qp2` HH Qp2`H T Bb `2H i2/ iq q(s, t) #v q(t) = " U8XR3V dsq(s, t)p (S). AM 6B;X 8XR3 U V r2 b22 i?2 Qp2`H T b 7mM+iBQM Q7 ibk2 7Q` /Bz2`2Mi bq7im2bb2b i irq `2T`2b2Mi ibp2 i2kt2` im`2bx AM #Qi? + b2b r2 b22 ;QQ/ ;`22K2Mi #2ir22M i?2 T`2@ /B+i2/ M/ K2 bm`2/ p Hm2b Q7 q(s, t)x abkbh `Hv BM 6B;X 8XR3 U#V r2 b22 i?2 p2` ; qhtl <qhs,tl> Qp2`H T 7Q` HH i2kt2` im`2b +QMbB/2`2/ M/ }M/ bbkbh `Hv ;QQ/ ;`22K2MiX têt têt B;m`2 8XR3, h?2 MQM@2tTQM2MiB H /2+ v Q7 Qp2`H TX U V i?2 bq7im2bb@/2t2m/2mi Qp2`H T q(s, t) 7Q` irq `2T`2b2Mi ibp2 i2kt2` im`2b T = 0.47 UHQM; ibk2v M/ T = 0.58 Ub?Q`i ibk2v i 7Qm` bq7im2bb2b 7`QK 4 U#Hm2V iq 4 U`2/VX U#V i?2 p2` ;2 Qp2`H T i HH i2kt2` im`2b 7`QK T = 0.45 U#Hm2V iq T = 0.70 U`2/VX q?2m +QKTmiBM; q(s, t) r2 TT`QtBK i2 G(S, S0, t) #v : mbbb M #2+ mb2 Bi HHQrb mb iq +QMpQHp2 i?2 T`Q# #BHBiv Q7 `2 `` M;2K2Mi- PR (S)- rbi? i?2 T`QT ; iq` M Hvi@ NR
114 G(S, S 0,t) P R (S) G(S, S 0,t) q(s, t) P (S) q(t) q(t) =1 t t =0 [ t 1 t =0 ds(1 P R (S))P (S, t )] dsp R (S)P (S, t ) P (S, t) = ds 0 G(S, S 0,t)P(S 0 ) P (S, t) t P (S, t) q(s, t) γ C
115 Accuracy Gamma C γ E log P 0 S
116 P R (S) P R (S) 1 DE ÊÊ ÊÊÊ Ê Ê Ê Ê Ê ÊÊ ÊÊ ÊÊÊÊ Ê ÊÊÊÊ Ê ÊÊÊÊ Ê Ê Ê ÊÊÊÊ Ê ÊÊÊÊÊ S E(S) S T =0.47 ρ =1.20 Ê E(S) log P 0 (S) S E(S) =E 0 + E 1 S + E 2 S 2 E 2 E 1 a =0.5
117 t =0 τ R (T ) a b =0.2 b f rrev f rrev f rrev f rrev firrev S X firrev\ T f rrev T =0.47 T =0.63
118 T 0 T 0
119 6
120
121
122 σ AA ϵ AA m kt/ϵ =0.1 γ = 10 4 kt/ϵ =0.47 ρ =1.2 d =3 τ τ = mσaa 2 /ϵ AA 2τ p p t t A =[t t/2,t] B =[t, t + t/2] p (t) = (r i r i B ) 2 A (r i r i A ) 2 B
123 A B A B r i A = r i B p p p >p c =0.2 p i D 2 (i) = j R ij <R c [R ij (t + t) Λ R ij (t)] 2 Λ R c =2.5σ t =5τ D 2 S [ P R (S) =exp Σ(S) E(S) ] kt Σ(S) =Σ 0 Σ 1 S E(S) =e 0 e 1 S
124 i Σ(S) E(S) T 0 d =3 G X (i; r, σ) = 1 2π j X e 1 2σ 2 (R ij r) 2 R ij i j r ± σ i g(r) r
125 d =3 σ AA (a) (b)
126 E L > 18 E L > (a) (b) (c) PR(NC) 10-3 PR(EL) 10-3 PR(S) N C E L S 10 6 i X i X P R (X i ) X i
127 X i µ X σ X X i X i Q = P R(X i >µ X + σ X ) P R (X i <µ X σ X ) X i X i X X Q = 6.2 Q =5.0 Q = 165 Q Q 20 Q Q T =0.35. Q 500 Q =7.6 Q =9.9 Q
128 g(r) r
129 N T N O P R (S)
130 10 0 h A(0) A(r)i r/ ξ =1.2 ξ =1.1 δs i = S i S (S S ) 2. δs(0)δs(r) r δs(0)δs(r) = Ae r/ξ. ξ 1.2
131 p δp(0)δp(r) ξ 1.1 i (S j S i )R ij S i = R 2. j R ij <R c ij R c =2.5σ AA α i t α t α r iα = r i (t α ) r i (t α ). i cos θ = r S r S. cos θ r S
132 r S (a) (b) 0 apple r rs < 1 1 apple r rs < 2 2 apple r rs < 3 3 apple r rs < 4 hcos i P (cos ) rs r cos i r i S i r S P (cos θ) r S cos θ r S cos θ r S r S r S r S 60 deg S cos θ r S r S
133 d =3 w b G i i S i = w G i + b w α w b = 0 G iµ = G(i; µσ, σ) µ r µ = µσ R c N σ = R c /σ w(r µ ) w µ N σ S i = w(r µ )G(i; r µ,σ). µ=0
134 waa(r) wab(r) (a) (b) gaa(r) gab(r) (c) (d) r/ g AA (r) g AB (r) σ 0 r = r µ = µσ N σ lim σ = σ 0 µ=0 lim σ 0 Rc 0 dr 1 2πσ e 1 2σ 2 r2 = δ(r) S i = Rc 0 dr j δ(r ij r) w(r). r
135 i S i = j w(r ij) 82.5% 88% S i = j A A AA e α AAR ij + j B A AB e α ABR ij. r<σ HS σ HS C XY w XY (r) = A XY e α XY r r<σ HS XY r>σ HS XY.
136 85% M R M
137 d =2 d =3 0.3σ AA
138 0.3σ AA 2.5σ AA d =2 d =2 d =3 d =2 d =3 d =2 d =2 d =3
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157 β
158
159
160
A Classical Perspective on Non-Diffractive Disorder
A Classical Perspective on Non-Diffractive Disorder The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable
Defects in Hard-Sphere Colloidal Crystals
Defects in Hard-Sphere Colloidal Crystals The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable Link Terms
Gradient Descent for Optimization Problems With Sparse Solutions
Gradient Descent for Optimization Problems With Sparse Solutions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Chen,
Between Square and Circle
DOCTORAL T H E SIS Between Square and Circle A Study on the Behaviour of Polygonal Steel Profiles Under Compression Panagiotis Manoleas Steel Structures Printed by Luleå University of Technology, Graphic
Diamond platforms for nanoscale photonics and metrology
Diamond platforms for nanoscale photonics and metrology The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
The effect of curcumin on the stability of Aβ. dimers
The effect of curcumin on the stability of Aβ dimers Li Na Zhao, See-Wing Chiu, Jérôme Benoit, Lock Yue Chew,, and Yuguang Mu, School of Physical and Mathematical Sciences, Nanyang Technological University,
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.
RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet
RECIPRCATING CMPRESSR CALCULATIN SHEET ISTHERMAL CMPRESSIN Gas properties, flowrate and conditions 1 Gas name Air Item or symbol Quantity Unit Item or symbol Quantity Unit Formula 2 Suction pressure, ps
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Μελέτη των υλικών των προετοιμασιών σε υφασμάτινο υπόστρωμα, φορητών έργων τέχνης (17ος-20ος αιώνας). Διερεύνηση της χρήσης της τεχνικής της Ηλεκτρονικής Μικροσκοπίας
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.
P3-2009-104.. ² ± μ ˆ ˆ Š Š ˆ œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008. ² ± μ.. ²μ μ ± μé±²μ μé ÓÕÉμ μ ±μ μ ±μ ÉÖ μé Ö μ³μðóõ É μ μ ³ ²ÒÌ Ô P3-2009-104 ÓÕÉμ
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Mean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
DuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Thin Film Chip Resistors
FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.
Low Impedance, For Switching Power Supplies Low impedance and high reliability withstanding 5000 hours load life at +05 C (3000 / 2000 hours for smaller case sizes as specified below). Capacitance ranges
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R
þÿ ½ Á Å, ˆ»µ½± Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å
Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016-08 þÿ µà±³³µ»¼±ä¹º ½ ÀÄž ÄÉ þÿµºà±¹ µåä¹ºî½ - ¹µÁµÍ½ à Äɽ þÿ³½îãµé½
Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA
Supporting Information Pb 3 B 6 O 11 F 2 : A First Noncentrocentric Lead Fluoroborate with Large Second Harmonic Generation Response Hongyi Li, a Hongping Wu, a * Xin Su, a Hongwei Yu, a,b Shilie Pan,
Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi