ΕΠΙΣΤΗΜΗ ΠΟΛΥΜΕΡΩΝ. Ενότητα : Εισαγωγικές έννοιες. Διδάσκων : Κων/νος Τσιτσιλιάνης, Καθηγητής
|
|
- Μελπομένη Ανδρεάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΠΙΣΤΗΜΗ ΠΟΛΥΜΕΡΩΝ Ενότητα : Εισαγωγικές έννοιες Διδάσκων : Κων/νος Τσιτσιλιάνης, Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
2 ΕΠΙΣΤΗΜΗ ΠΟΛΥΜΕΡΩΝ 2
3 Επιστήμη Πολυμερών Εισαγωγή Ονοματολογία μακρομορίων, βαθμός πολυμερισμού και μέσες μοριακές μάζες, ταξινόμηση αντιδράσεων πολυμερισμού μακρομορίων Χημεία σταδιακών αντιδράσεων πολυμερισμού Μονομερή και γενικά σχήματα σταδιακών αντιδράσεων, πολυμερή υψηλής μηχανικής και θερμικής αντοχής, δικτυωμένα πολυμερή (θερμοσκληραινόμενα), δενδρομερή. Κινητική σταδιακών αντιδράσεων πολυμερισμού Εξισώσεις ταχύτητας, σχέση βαθμού πολυμερισμού με την απόκλιση από την στοιχειομετρία των δραστικών ομάδων, μοριακή κατανομή προϊόντων πολυμερισμού, κινητική αντιδράσεων που οδηγούν στην δημιουργία πηκτώματος. Χημεία αλυσωτών αντιδράσεων πολυμερισμού μέσω ελευθέρων ριζών Ρόλος της χημικής σύστασης του μονομερούς, εκκινητές, θερμική κατάλυση, κατάλυση από οξειδοαναγωγικά συστήματα, δραστικότητα εκκινητών, επιβραδυντές/παρεμποδιστές αντιδράσεων, ελεγχόμενος πολυμερισμός μέσω ελευθέρων ριζών. Κινητική αλυσωτών αντιδράσεων πολυμερισμού Κινητικό σχήμα (έναρξη, πρόοδος, τερματισμός), ταχύτητες πολυμερισμού, προσδιορισμός κινητικών σταθερών, βαθμός πολυμερισμού προϊόντων αντίδρασης, σχέσεις DP DP w με τον βαθμό προόδου της αντίδρασης. Φαινόμενο Trommsdorff. Επίδραση αντιδράσεων μεταφοράς στις κινητικές εξισώσεις. Kινητική αντιδράσεων συμπολυμερισμού Κινητικό σχήμα, λόγοι δραστικότητας, εξίσωση συμπολυμερισμού, ιδανικός συμπολυμερισμός, αζεοτροπικός συμπολυμερισμός, εναλλασσόμενος συμπολυμερισμός. Προσδιορισμός λόγων δραστικότητας. Στατιστική θερμοδυναμική μακρομοριακών διαλυμάτων Στοιχεία στατιστικής θερμοδυναμικής (ιδανικά, κανονικά διαλύματα), θεωρία δικτύου μακρομοριακών διαλυμάτων (Flory, Huggs), εντροπία αναμίξεως αθερμικών διαλυμάτων, ενθαλπία αναμίξεως και χημικά δυναμικά κανονικών διαλυμάτων, θερμοδυναμικά μεγέθη πραγματικών μακρομοριακών διαλυμάτων, παράμετρος αλληλεπίδρασης. Ισορροπίες φάσεων, διαλυτότητα Συνθήκες ευστάθειας, διμερή συστήματα πολυμερές/διαλύτης, διμερή συστήματα πολυμερές /πολυμερές Ζ (πολυμερικά μίγματα). Αραιά μακρομοριακά διαλύματα και μέθοδοι χαρακτηρισμού πολυμερών Οσμωτική πίεση-προσδιορισμός Μ, ιξωδομετρία-προσδιορισμός Μ ν, χρωματογραφία πηκτώματος-προσδιορισμός μέσων ΜΒ και μοριακής κατανομής. Ιδιότητες μακρομορίων στην στερεά κατάσταση. Κρυσταλλική κατάσταση, παράγοντες που επηρεάζουν κρυσταλλικότητα, θερμοδυναμική κρυστάλλωσης πολυμερών, κινητική κρυστάλλωσης, τήξη των πολυμερών, άμορφη κατάσταση, υαλώδης μετάβαση, Τ g, παράγοντες που επηρεάζουν την Τ g, θεωρία ελευθέρου όγκου, Συμπολυμερή. Μηχανικές ιδιότητες Εισαγωγή στην ιξωδοελαστικότητα, μοντέλο Μaxwell, μοντέλο Kelv, ερπυσμός, χαλάρωση τάσης, δυναμικές μηχανικές ιδιότητες, μηχανική αστοχία πολυμερών-εφελκυσμός. 3
4 Τα πολυμερή είναι παντού 4
5 5
6 ΠΡΟΗΓΜΕΝΑ ΥΛΙΚΑ 6
7 ΝΑΝΟΤΕΧΝΟΛΟΓΙΑ 7
8 ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ ΤΧΜ ΠΠ 8
9 Πολυμερή Μακρομόρια polymers macromolecules Πόσο μεγάλα είναι τα μόρια αυτά? ΜΕΓΕΘΟΣ μοριακό βάρος, μοριακή μάζα βαθμός πολυμερισμού Μοριακές διαστάσεις Γωνία C-C-C 09.5, μήκος C-C 0,54 m, μήκος μονομερούς 0,252 m 9
10 ΦΥΣΙΚΑ ΠΟΛΥΜΕΡΗ Πρωτεΐνη 0
11 ΟΝΟΜΑΤΟΛΟΓΙΑ, ΜΕΣΕΣ ΜΟΡΙΑΚΕΣ ΜΑΖΕΣ, ΤΑΞΙΝΟΜΗΣΗ ΑΝΤΙΔΡΑΣΕΩΝ ΠΟΛΥΜΕΡΙΣΜΟΥ, ΙΣΟΜΕΡΕΙΕΣ Ονοματολογία μακρομορίων μονομερές πολυμερές μονομερές στοιχείο [ ] Στυρόλιο Πολυστυρόλιο PS
12 Πολυ(μεθακρυλικός μεθυλεστερας) [ ] Πολυ(6-αμινοκαπροικό οξύ) μονομερές στοιχείο Πολύ(τερεφθαλικός αιθυλεστέρας) 2
13 ΟΜΟΠΟΛΥΜΕΡΗ 3
14 ΤΥΠΟΥ ΚΤΕΝΑΣ 4
15 ΑΣΤΕΡΟΕΙΔΗ ΠΟΛΥΜΕΡΗ 5
16 6
17 7
18 Δενδρόμορφα πολυμερή 8
19 9
20 ΣΥΜΠΟΛΥΜΕΡΗ 20
21 2
22 Παράδειγμα συσταδικού συμπολυμερούς που χρησιμοποιείται σαν θερμοπλαστικό ελαστομερές PS-PB-PS SBS 22
23 Μέσες τιμές μοριακών μαζών των μακρομορίων μ: μοριακή μάζα μονομερούς : βαθμός πολυμερισμού : μοριακή μάζα αλυσίδων βαθμού πολυμερισμού : αριθμός αλυσίδων βαθμού πολυμερισμού m : βάρος αλυσίδων βαθμού πολυμερισμού m = = μ =μ Μέσος βαθμός πολυμερισμού και μέση μοριακή μάζα σε αριθμό DP o l () l l 23
24 μέση μοριακή μάζα σε αριθμό (2). (3) DP (4) 24
25 (5) m = m m (6) 25
26 Μέσος βαθμός πολυμερισμού και μέση μοριακή μάζα σε βάρος Μέσος βαθμός πολυμερισμού σε βάρος DP W (7) m m μέση μοριακή μάζα σε βάρος W (8) m m 26
27 W m m 2 W (0) m = (9) 27
28 Άλλες μέσες τιμές μοριακών μαζών F K () F K a (2) F F f (3) 28
29 F F a K F (6) m m f (4) F f F a K F (5) 29
30 a a /. 2 3 z (8) (9) K. F (7) F = [] πειρ = v 0,5<a< 30
31 2 W 2 3 z z w w I / a a /. Συντελεστής διασποράς 3
32 Ταξινόμηση αντιδράσεων πολυμερισμού Αντιδράσεις συμπύκνωσης Αντιδράσεις προσθήκης αλυσωτές αντιδράσεις HO R OH + OCN R NCO HO R OCONH R NHCOO R OCONH R NCO P. FLORY Σταδιακές Αντιδράσεις 32
33 Σταδιακές αντιδράσεις Όλα τα ευρισκόμενα μοριακά είδη στο χώρο της αντιδράσεως μπορούν να αντιδράσουν μεταξύ τους. Το μονομερές ή τα μονομερή εξαφανίζονται σχεδόν αμέσως όταν αρχίσει η αντίδραση. Το μοριακό βάρος των μακρομορίων συνεχώς αυξάνει κατά τη διάρκεια της αντιδράσεως. Για τη λήψη μεγάλου μοριακού βάρους, κατά τις σταδιακές αντιδράσεις, σύμφωνα με την ως άνω χαρακτηριστική ιδιότητα, η αντίδραση θα πρέπει να λαμβάνει χώρα σε αρκετό χρονικό διάστημα. Α. Μονομερές Β.Γ. Συμπύκνωση δι αντιδράσεως μεταξύ δύο διαφορετικών ενεργών ομάδων. Κατά την πορεία της αντιδράσεως συναντώνται διαφορετικού μήκους αλυσίδες, οι οποίες διά της αντιδράσεως μεταξύ ων συνεχώς αυξάνουν σε μήκος. Δ. Περάτωση αντιδράσεως (μόριο άπειρου μήκους). 33
34 NaCl SNa CH S CH Cl NaSNa Cl CH S CH Cl NaCl Cl CH S CH Cl Cl CH Cl SNa CH Cl NaCl SNa CH Cl NaSNa Cl CH Cl ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( κ.ο.κ. πολυσουλφίδια NaCl Na S CH Cl NaSNa Cl CH Cl ) (2 ) ( ) (
35 Αλυσωτές αντιδράσεις (προσθήκης) Το μόνο αντιδρών είδος είναι το μονομερές το οποίο προστίθεται στο ενεργό άκρο της αυξανόμενης σε μήκος αλυσίδας. Η ποσότητα του μονομερούς διαρκώς ελαττώνεται κατά τη διάρκεια της αντιδράσεως. Οι μακρομοριακές αλυσίδες σχηματίζονται σχεδόν αμέσως και ελάχιστα το μοριακό βάρος αυξάνει με το χρόνο. Ο μεγάλος χρόνος πολυμερισμού δεν συντελεί στην αύξηση του μοριακού βάρους του λαμβανομένου προϊόντος, συντελεί όμως στην αύξηση της αποδόσεως της αντιδράσεως. Α. Μονομερές με διπλό δεσμό ή ένωση περιέχουσα δακτύλιο Β. Γ. Πολυμερισμός των μονομερών πάνω στα καταλυτικά ενεργά κέντρα και ακαριαία αύξηση του μήκους της αλυσίδας. Δ. Περάτωση της αντιδράσεως με την κατανάλωση του μονομερούς. 35
36 Πολυ(μεθακρυλικοί εστέρες) Η προσδιορισμός Μ με ανάλυση άκρων 36
37 Ισομέρειες των μακρομορίων γεωμετρική ισομέρεια ως προς το επίπεδο διπλού δεσμού οπτική ισομέρεια διαφορετική τοποθέτηση υποκαταστατών άνθρακα δομική ισομέρεια Cofgurato «διάταξη» διαφορετική τοποθέτηση υποκαταστατών στο χώρο διαφορετική τοποθέτηση μονομερών στο χώρο coformato («διαμόρφωση») 20 ο 37
38 Πολυμερισμός διενίων - 4 cs - 4 tras 38
39 στερεοκανονικότητα ατακτικό ατακτικότητα Ισοτακτικό συνδιοτακτικό Δι-τακτικότητα 39
40 Η στερεοχημική τοποθέτηση των μονομερών στοιχείων στην αλυσίδα είναι προδικασμένη κατά τον πολυμερισμό Παρουσίαση κατά Newma δύο διαδοχικών ψευδοασυμμέτρων ατόμων άνθρακα μακρομοριακής αλυσίδας με διαφορετική στερεοκανονικότητα (Α και Β). 40
41 Θέση δυο διαδοχικών ομάδων R ως προς το επίπεδο μεσομορφική δομή meso m mmmm ισοτακτικό ρακεμική δομή racemc r rrrrrr συνδιοτακτικό 4
42 Σύνοψη κεφαλαίου Το πιο σημαντικό χαρακτηριστικό ενός πολυμερούς, που το διαφοροποιεί από τις μικρού ΜΒ χημικές ενώσεις, είναι ο βαθμός πολυμερισμού ή το μοριακό βάρος του. Η στατιστική φύση των αντιδράσεων πολυμερισμού οδηγεί αναπόφευκτα σε κατανομές μοριακών βαρών. Για να τις προσδιορίσουμε χρησιμοποιούμε ειδικούς μέσους όρους, όπως π.χ. το μέσο κατ αριθμόν και κατά βάρος ΜΒ. Τα πολυμερή εμφανίζουν πολλές και διαφορετικές αρχιτεκτονικές τα πιο σημαντικά είναι τα γραμμικά, (κανονικά η διασταυρωμένα) και τα διακλαδισμένα (αστεροειδή, τύπου κτένας κλπ) πολυμερή. Ομοπολυμερή ονομάζονται τα πολυμερή που περιέχουν μόνο ένα είδος επαναλαμβανόμενης μονάδας Συμπολυμερή περιέχουν δύο ή περισσότερες επαναλαμβανόμενες μονάδες και ανάλογα με την τοποθέτηση τους κατά μήκος της αλυσίδας χωρίζονται σε τυχαία η κατά συστάδες συμπολυμερή με ποικίλες αρχιτεκτονικές. Τοπικά, η δομή κατά μήκος της αλυσίδας ενός πολυμερούς, εμφανίζει πολλές πιθανές διαφοροποιήσεις οδηγώντας στην εμφάνιση ισομερών. Αυτά διακρίνονται σε στερεοχημικά, γεωμετρικά και ισομερή θέσεως. 42
43 ΒΙΒΛΙΟΓΡΑΦΙΑ. «Συνθετικά Μακρομόρια, Βασική Θεώρηση», Α.Ντόντος, Εκδ. Κωσταράκης, Αθήνα, «Επιστήμη και Τεχνολογία Πολυμερών», Κ. Παναγιώτου, Εκδ. ΠΗΓΑΣΟΣ, Θεσσαλονίκη. 3. «Χημεία πολυμερών», Paul C. Hemez, Tmothy P. Lodge, Απόδοση στα ελληνικά Στ. Βράτολης, Ηλ. Κακουλίδης, Θεόδ. Πρεβεδώρος, Πανεπιστημιακές Εκδόσεις Κρήτη, Ηράκλειο
44 ΤΕΛΟΣ ΕΝΟΤΗΤΑΣ 44
45 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 45
46 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση
47 Σημείωμα Αναφοράς Copyrght Πανεπιστήμιον Πατρών, Καθηγητής, Κωνσταντίνος Τσιτσιλιάνης. «Επιστήμη Πολυμερών». Έκδοση:.0. Πάτρα 205. Διαθέσιμο από τη δικτυακή διεύθυνση: 47
48 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creatve Commos Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 48
ΕΠΙΣΤΗΜΗ ΠΟΛΥΜΕΡΩΝ. Ενότητα : Κινητική σταδιακών αντιδράσεων πολυμερισμού. Διδάσκων : Κων/νος Τσιτσιλιάνης, Καθηγητής
ΕΠΙΣΤΗΜΗ ΠΟΛΥΜΕΡΩΝ Ενότητα : Κινητική σταδιακών αντιδράσεων πολυμερισμού Διδάσκων : Κων/νος Τσιτσιλιάνης, Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Εισαγωγή στη κινητική Σταδιακών πολυμερισμών.
ΕΠΙΣΤΗΜΗ ΠΟΛΥΜΕΡΩΝ. Ενότητα : Χημεία σταδιακών αντιδράσεων πολυμερισμού. Διδάσκων : Κων/νος Τσιτσιλιάνης, Καθηγητής
ΕΠΙΣΤΗΜΗ ΠΟΛΥΜΕΡΩΝ Ενότητα : Χημεία σταδιακών αντιδράσεων πολυμερισμού Διδάσκων : Κων/νος Τσιτσιλιάνης, Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών 1 ΧΗΜΕΙΑ ΣΤΑΔΙΑΚΩΝ ΑΝΤΙΔΡΑΣΕΩΝ ΠΟΛΥΜΕΡΙΣΜΟΥ 2
ΕΠΙΣΤΗΜΗ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ισορροπίες φάσεων, διαλυτότητα
ΕΠΙΣΤΗΜΗ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ισορροπίες φάσεων, διαλυτότητα Διδάσκων : Κων/νος Τσιτσιλιάνης, Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών IΣΟΡΡΟΠΙΕΣ ΦΑΣΕΩΝ. ΔΙΑΛΥΤΟΤΗΤΑ Τα διαλύματα των μακρομορίων
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 8: ΠΟΛΥΜΕΡΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 8: ΠΟΛΥΜΕΡΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή του παράγοντα της
1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 2: Θερμοδυναμικές συναρτήσεις Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή νέων θερμοδυναμικών συναρτήσεων
ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 6 : Διάσταση των ουσιών σε υδατικά διαλύματα. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας
ΥΔΡΟΧΗΜΕΙΑ Ενότητα 6 : Διάσταση των ουσιών σε υδατικά διαλύματα Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας Σκοποί ενότητας Κατανόηση της αυτοδιάστασης του νερού και της διάλυσης των αερίων
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις
Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 3: Προσδιορισμός συντελεστή ενεργότητας μέσω μετρήσεων διαλυτότητας Αθανάσιος Τσεκούρας Τμήμα Χημείας 1. Θεωρία... 3. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων...
Προσχολική Παιδαγωγική Ενότητα 2: Οργάνωση χρόνου και χώρου στα νηπιαγωγεία
Προσχολική Παιδαγωγική Ενότητα 2: Οργάνωση χρόνου και χώρου στα νηπιαγωγεία Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας Περιγραφή των
ΕΡΓΑΣΤΗΡΙΟ ΟΡΓΑΝΙΚΗΣ ΧΗΜΕΙΑΣ Ενότητα : Χρωματογραφία λεπτής στοιβάδας, TLC
ΕΡΓΑΣΤΗΡΙΟ ΟΡΓΑΝΙΚΗΣ ΧΗΜΕΙΑΣ Ενότητα : Χρωματογραφία λεπτής στοιβάδας, TLC Διδάσκοντες: Κων/νος Τσιτσιλιάνης, Καθηγητής Ουρανία Κούλη, Ε.ΔΙ.Π. Μαρία Τσάμη, Ε.ΔΙ.Π. Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
ΕΡΓΑΣΤΗΡΙΟ ΟΡΓΑΝΙΚΗΣ ΧΗΜΕΙΑΣ Ενότητα : Σύνθεση Διβενζαλακετόνης
ΕΡΓΑΣΤΗΡΙΟ ΟΡΓΑΝΙΚΗΣ ΧΗΜΕΙΑΣ Ενότητα : Σύνθεση Διβενζαλακετόνης Διδάσκοντες: Κων/νος Τσιτσιλιάνης, Καθηγητής Ουρανία Κούλη, Ε.ΔΙ.Π. Μαρία Τσάμη, Ε.ΔΙ.Π. Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοπός
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο
ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 5 : Διάλυση ορυκτών. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας
ΥΔΡΟΧΗΜΕΙΑ Ενότητα 5 : Διάλυση ορυκτών Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας Σκοποί ενότητας Κατανόηση της διαλυτότητας των ορυκτών και του γινομένου διαλυτότητας Αντιδράσεις οξέως
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Γενική Φυσική Ενότητα: Ταλαντώσεις
Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση
Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Ενότητα 1: Εισαγωγή Βασικές Έννοιες Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΛΙΕΡΗΣ Εισαγωγή 2 Περιεχόμενα 1. Εισαγωγή 2. Αριθμητική παραγώγιση
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η περιγραφή των ορισμών και των θεμελιωδών
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 1: E-L Συστήματα Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Άσκηση 1β: Ενθαλπία εξατμίσεως Αθανάσιος Τσεκούρας Τμήμα Χημείας 1. Θεωρία... 3 2. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 Σελίδα 2 1. Θεωρία Σύμφωνα με τον κανόνα
ΕΡΓΑΣΤΗΡΙΟ ΟΡΓΑΝΙΚΗΣ ΧΗΜΕΙΑΣ Ενότητα : Σύνθεση Οξίμης της Κυκλοεξανόνης
ΕΡΓΑΣΤΗΡΙΟ ΟΡΓΑΝΙΚΗΣ ΧΗΜΕΙΑΣ Ενότητα : Σύνθεση Οξίμης της Κυκλοεξανόνης Διδάσκοντες: Κων/νος Τσιτσιλιάνης, Καθηγητής Ουρανία Κούλη, Ε.ΔΙ.Π. Μαρία Τσάμη, Ε.ΔΙ.Π. Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις
Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 7: Κατανομή ουσίας μεταξύ δύο διαλυτών και προσδιορισμός σταθεράς ισορροπίας αντιδράσεως Βασιλική Χαβρεδάκη Τμήμα Χημείας 1. Θεωρία... 3. Μετρήσεις... 5 3. Επεξεργασία
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ. Ενότητα 9: Σχέση Ηθικής και Δικαιοσύνης. Παρούσης Μιχαήλ. Τμήμα Φιλοσοφίας
ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ Ενότητα 9: Σχέση Ηθικής και Δικαιοσύνης Παρούσης Μιχαήλ Τμήμα Φιλοσοφίας 1 Σκοποί ενότητας Το σημερινό μάθημα αφορά την έννοια της δικαιοσύνης ως ηθικής αρχής. Κατά πόσο αυτή η αρχή μπορεί
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών
ΕΡΓΑΣΤΗΡΙΟ ΟΡΓΑΝΙΚΗΣ ΧΗΜΕΙΑΣ Ενότητα : Σύνθεση Ακετανιλιδίου
ΕΡΓΑΣΤΗΡΙΟ ΟΡΓΑΝΙΚΗΣ ΧΗΜΕΙΑΣ Ενότητα : Σύνθεση Ακετανιλιδίου Διδάσκοντες: Κων/νος Τσιτσιλιάνης, Καθηγητής Ουρανία Κούλη, Ε.ΔΙ.Π. Μαρία Τσάμη, Ε.ΔΙ.Π. Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοπός Η
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις στην Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας... 4 1.1
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 10 Μοριακή Δομή Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 (α) Να υπολογιστεί το ολικό πλάτος του κανονικοποιημένου δεσμικού
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
Οικονομετρία. Απλή Παλινδρόμηση. Πληθυσμός και δείγμα. H μέθοδος Ελαχίστων Τετραγώνων. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Απλή Παλινδρόμηση Πληθυσμός και δείγμα. H μέθοδος Ελαχίστων Τετραγώνων Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση της σχέσης
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Άσκηση 6: Ισορροπία φάσεων συστήματος πολλών συστατικών αμοιβαία διαλυτότητα Βασιλική Χαβρεδάκη Τμήμα Χημείας 1. Θεωρία... 3 2. Μετρήσεις... 5 3. Επεξεργασία Μετρήσεων...
ΙΙ» ΜΑΘΗΜΑ: «ΧΗΜΕΙΑ. Διδάσκουσα: ΣΟΥΠΙΩΝΗ ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Β ΕΞΑΜΗΝΟ (ΕΑΡΙΝΟ)
ΜΑΘΗΜΑ: «ΧΗΜΕΙΑ ΙΙ» Β ΕΞΑΜΗΝΟ (ΕΑΡΙΝΟ) Διδάσκουσα: ΣΟΥΠΙΩΝΗ ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 1: Βασικά χαρακτηριστικά της Θερμοδυναμικής. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 1: Βασικά χαρακτηριστικά της Θερμοδυναμικής Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η περιγραφή των ορισμών και
ΧΗΜΕΙΑ Ι Ενότητα 3: Καταστάσεις της Ύλης
ΧΗΜΕΙΑ Ι Ενότητα 3: Καταστάσεις της Ύλης Χρυσή Κ. Καραπαναγιώτη Τμήμα Χημείας Περιεχόμενα Μαθήματος Καταστάσεις της ύλης Στερεά Υγρά Αέρια Φυσικές και Χημικές Ιδιότητες Αλλαγές Σύσταση της ύλης Καθορισμένες
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 5: Ακολουθίες, όρια, σειρές (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 10 η : Ανάλυση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 10 η : Ανάλυση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη ψηφιακή ανάλυση εικόνας
ΧΗΜΕΙΑ. Ενότητα 16: Χημική Ισορροπία. Ντεϊμεντέ Βαλαντούλα Τμήμα Χημείας. Χημική ισορροπία
ΧΗΜΕΙΑ Ενότητα 16: Χημική Ισορροπία Ντεϊμεντέ Βαλαντούλα Τμήμα Χημείας Χημική ισορροπία Χημική ισορροπία είναι η κατάσταση στην οποία φθάνει το μίγμα μιας αντίδρασης όταν η ταχύτητα της αντίδρασης προς
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ Ενότητα 8: ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΙ ΚΑΤΑΤΜΗΣΗΣ ΚΑΤΑΝΑΛΩΤΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra
Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
ΠΙΝΑΚΕΣ. Θερμοδυναμική 2012 Σελίδα 292
ΠΙΝΑΚΕΣ 2012 Σελίδα 292 Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες: Ιδανικά αέρια Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc.
ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 4: Θερμοδυναμικά δεδομένα. Ζαγγανά Ελένη Σχολή: Θετικών Επιστημών Τμήμα : Γεωλογίας
ΥΔΡΟΧΗΜΕΙΑ Ενότητα 4: Θερμοδυναμικά δεδομένα Ζαγγανά Ελένη Σχολή: Θετικών Επιστημών Τμήμα : Γεωλογίας Σκοποί ενότητας Εισαγωγικές έννοιες της Θερμοδυναμικής Κατανόηση των εννοιών της εντροπίας, ενθαλπίας
Έλεγχος Ποιότητας Φαρμάκων
Έλεγχος Ποιότητας Φαρμάκων Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Συσκευές Αποσάθρωση Δισκίων (ενός καλαθιού (δεξιά) και δύο καλαθιών (αριστερά) 2 Συσκευή Αποσάθρωσης 4
Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης
Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Οικονομετρία. Απλή Παλινδρόμηση. Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Απλή Παλινδρόμηση Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Οικονομετρία. Πολλαπλή Παλινδρόμηση. Στατιστικός έλεγχος γραμμικού συνδυασμού συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Πολλαπλή Παλινδρόμηση Στατιστικός έλεγχος γραμμικού συνδυασμού συντελεστών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση της
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος
Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Δυναμικής Άκαμπτου Σώματος... 4 1.1 Ερώτηση 1... 4 1.2 Ερώτηση 2... 4 1.3 Ερώτηση
Αρχιτεκτονική και Οπτική Επικοινωνία 1 - Αναπαραστάσεις
Αρχιτεκτονική και Οπτική Επικοινωνία 1 - Αναπαραστάσεις Ενότητα: ΜΕΘΟΔΟΣ MONGE Διδάσκων: Γεώργιος Ε. Λευκαδίτης Τμήμα: Αρχιτεκτόνων Μηχανικών ΜΕΘΟΔΟΣ MONGE ΚΕΦΑΛΑΙΟ 1 ΠΑΡΑΣΤAΣΗ ΘΕΜΕΛΙΩΔΩΝ ΓΕΩΜΕΤΡΙΚΩΝ ΣΤΟΙΧΕΙΩΝ
Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 1: Εισαγωγή
Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 1: Εισαγωγή Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας Να ενημερωθούν οι
Ζωική Ποικιλότητα. Ενότητα 7. Bauplan. Ρόζα Μαρία Τζαννετάτου Πολυμένη, Επίκουρη Καθηγήτρια Σχολή Θετικών Επιστημών Τμήμα Βιολογίας
Ζωική Ποικιλότητα Ενότητα 7. Bauplan Ρόζα Μαρία Τζαννετάτου Πολυμένη, Επίκουρη Καθηγήτρια Σχολή Θετικών Επιστημών Τμήμα Βιολογίας Bauplan 1/2 Ο όρος εισήχθη από τον H. Woodgen (1894-1981), το 1945. Σημασία
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 7: Universal motor Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης
Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις
Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 4: Μερικός γραμμομοριακός όγκος Αθανάσιος Τσεκούρας Τμήμα Χημείας . Θεωρία... 3. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 4. Τελικά αποτελέσματα... 7 Σελίδα
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΧΗΜΕΙΑ. Ενότητα 5: Μίγματα Ουσίες. Χρυσή Κ. Καραπαναγιώτη Τμήμα Χημείας. Κατηγορίες της ύλης σύμφωνα με τα συστατικά της. Ύλη
ΧΗΜΕΙΑ Ενότητα 5: Ουσίες Χρυσή Κ. Καραπαναγιώτη Τμήμα Χημείας Κατηγορίες της ύλης σύμφωνα με τα συστατικά της αποτελούνται από ένα είδος ατόμου ή μορίου Έχουν δικές τους χημικές και φυσικές ιδιότητες αποτελούνται
Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος)
Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος) 1 Περιεχόμενα 1 η Άσκηση Λειτουργίες του βιβλίου διευθύνσεων σε ένα πρόγραμμα ηλεκτρονικού ταχυδρομείου... 4 2 η Άσκηση Λειτουργίες
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 2: Εισαγωγή στον βέλτιστο έλεγχο Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
ΧΗΜΕΙΑ. Περιεχόμενα Μαθήματος
ΧΗΜΕΙΑ Ενότητα 3: Καταστάσεις της Ύλης Χρυσή Κ. Καραπαναγιώτη Τμήμα Χημείας Περιεχόμενα Μαθήματος Καταστάσεις της Ύλης Στερεά Υγρά Αέρια Μίγματα Τήξη και Πήξη Εξάτμιση Βρασμός Υγροποίηση Στερεά Υγρά Αέρια
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Αερισμός. Ενότητα 1: Αερισμός και αιμάτωση. Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής
Αερισμός Ενότητα 1: Αερισμός και αιμάτωση Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Ολικός και κυψελιδικός αερισμός Η κύρια λειτουργία του αναπνευστικού συστήματος είναι
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε
Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου
Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Θεοδωρίδης Προκόπης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Ενόργανη Ανάλυση II. Ενότητα 1: Θεωρία Χρωματογραφίας 2 η Διάλεξη. Θωμαΐδης Νικόλαος Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Ενόργανη Ανάλυση II Ενότητα : η Διάλεξη Θωμαΐδης Νικόλαος Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΔΙΑΧΩΡΙΣTIΚΟΤΗΤΑ Ή ΔΙΑΧΩΡΙΣΤΙΚΗ ΙΚΑΝΟΤΗΤΑ ΠΟΙΟΤΗΤΑ ΔΙΑΧΩΡΙΣΜΟΥ A A S W W Z W W Z ) / ( ) / ( ΠΛΗΡΗΣ
Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ασκήσεις κυκλωμάτων συνεχούς ρεύματος. Κανόνες Kirchhoff. Γ. Βούλγαρης 2 Ο Νόμος των Ρευμάτων
EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Διαφορική Ανιχνευτική Θερμιδομετρία (DSC)
EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Διαφορική Ανιχνευτική Θερμιδομετρία (DSC) Διδάσκων : Κων/νος Τσιτσιλιάνης, Καθηγητής Ουρανία Κούλη, Ε.ΔΙ.Π. Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών 1 Σκοπός Η εξοικείωση
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 6: Όριο και συνέχεια συναρτήσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Έλεγχος και Ευστάθεια Σ.Η.Ε
Έλεγχος και Ευστάθεια Σ.Η.Ε Ενότητα 1: Εισαγωγή Νικόλαος Βοβός, Γαβριήλ Γιαννακόπουλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και τεχνολογίας Υπολογιστών 1 Σημείωμα Αδειοδότησης Το παρόν υλικό
ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ
ΜΑΘΗΜΑ: «ΧΗΜΕΙΑ ΙΙ» Β ΕΞΑΜΗΝΟ (ΕΑΡΙΝΟ) Διδάσκουσα: ΣΟΥΠΙΩΝΗ ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 4: Απόδοση συστημάτων AM υπό θόρυβο Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της γενικής μορφής