PDF created with pdffactory Pro trial version
|
|
- Σάπφιρα Τρικούπη
- 7 χρόνια πριν
- Προβολές:
Transcript
1 الثاني القواعد والا ساسات
2 الباب الثاني الا ساسات الا ساسات الا ساس ھي الجزء الذي ینقل أحمال المبنى إلى التربة ولذلك فا ن الا ساسات تتا ثر بالوزن المحمل علیھا, فكما كان الوزن أكبر كلما كان حج م القاعدة أكب ر كي تستطیع تحمل ذلك الوزن, والعلاقة بین الا ساسات والتربة ھي أنھ كلما كانت التربة أقوى في التحمل فا ن الحجم للقاعدة یكون أصغر. تصميم الا ساسات: تمر عملية تصميم الا ساسات بثلاث مراحل: 1. استكشاف التربة (ا خذ العينات): ويتم ذلك بعمل حفر (يتراوح قطرها بين 5 40 سم والغالب في غزة 40 سم) في ا رض المشروع تختلف ا عماقها باختلاف المشروع حيث يكفي في مشاريع الطرق مثلا الوصول ا لى عمق متر ا و متر ونصف وتو خذ عينة عند كل نصف متر ا ما في حالة المباني فيتم تحديد العمق بطريقتين: ا. ا ما بربطه بعرض القاعدة الا قصى المتوقع فمثلا يتم الحفر ا لى ضعف عرض القاعدة ا و ا كثر ا و ا قل ومن عيوب هذه الطريقة ا نه في حالة قواعد اللبشة يستحيل ربط العمق با بعاد القاعدة لكبر هذه الا بعاد. ب. ا و بالوصول ا لى عمق يصل الضغط فيه ا لى ع شر الضغط المبذول على التربة ا سفل القاعدة مباشرة. من عيوب هذه الطريقة ا نها قد تو دي في بعض الا حيان ا لى الوصول ا لى ا عماق كبيرة للوصول ا لى عشر الضغط السطحي ملاحظة: (1) العدد الا دنى لحفر الاستكشاف هذه هو ثلاثة ويجب ا ن تقع تحت البناء موزعة على مساحة المبنى وا ن تعذر ذلك فيجب ا ن تقع في ا قرب مكان للبناء. (2) حفر الاستكشاف يمكن الاستفادة منها ا ثناء عملية الحفر في ا مرين: ا ولا : التعرف بالنظر على طبقات التربة التي مر عليها الحفر من حيث سمك ونوعية هذه الطبقات. ثانيا : التعرف على التربة الردمية ا ن وجدت في الموقع حيث يتم التعرف عليها مباشرة من خلال عدم تجانس مكوناتها ويتم ا زالتها نهاي يا من الموقع. 2. ا جراء التجارب وتحديد قدرة تحمل التربة.
3 وينتج عن هذه الخطوة فحص التربة الذي يعطي المعلومات الا تية: طبيعة الطبقات وسمكها. خصاي ص خاصة بالعينة مثل ) (Bearing Liquid limit, Plastic limit, Water content,.capacity, Unit weight, Plasticity index, void ratio كذلك يعطي اختبار التربة قيمتين مهمتين في تحديد قوة تحمل التربة وهما (زاوية الاحتكاك بين حبيبات التربة Φ وعلاقتها ا ساسا بالرمل (Sand (قوة الالتصاق بين حبيبات التربة (C) Cohesion وعلاقتها الا ساسية بالطين (Clay فمثلا عندما تكون Φ ذات قيمة معينة وC=0.0 فا ن التربة رملية (Sand) وتكون طينية (Clay) في حالة العكس. وجود قيم لكلا الثابتين فا ن العينة خليط clay).(silty sand,or Silty ا ما في حالة يعطي فحص التربة معلومات هامة عن التا سيس فمثلا يمنع التا سيس على تربة غير ا صلية (ردم) ا لا بعد فحص الدمك. 3. تحديد نوع الا ساس الملاي م (تصمیم الا ساسات): تنقسم الا ساسات إلى أساسات سطحیة وأخرى عمیقة وكل منھا یوجد لھا عدة أشكال یمكن تصنیفھا كالتالي: ا. الا ساسات السطحیة foundation) :shallow وهي ما كانت فيها (B/ D) f ا صغر من 1 حيث B عرض القاعدة D f عمق التا سيس. والجدير ذكره هنا ا ن التا سيس يمكن ا ن يكون نظريا على سطح الا رض ا ما عمليا فيصعب ذلك لعدة اعتبارات منها: ا مكانية ارتفاع ا و انخفاض منسوب الشارع بالردم ا و الحفر مستقبلا وبناء على ذلك يتم معرفة المنسوب التصميمي للشارع قبل تحديد عمق التا سيس. منسوب شبكات المياه والصرف الصحي في الشوارع. في المناطق الباردة تتعرض الطبقات السطحية للتربة ا لى التجمد شتاء (بسمك حوالي 60 سم) مما يو دي ا لى زيادة حجمها وينعكس ذلك عند ارتفاع درجات الحرارة مما يعني حركة داي مة للتربة ا سفل المنشا وهنا يجب النزول بالتا سيس ا لى ا عماق ا كبر من سمك هذه الطبقات. وتنقسم الا ساسات السطحية ا لى عدة ا قسام ا همها:
4 1) قواعد منفصلة: وفيها تحتوي كل قاعدة على عامود واحد فقط وتحسب ا بعادها من خلال حساب المساحة (بقسمة الضغط المبذول على القاعدة على قدرة تحمل التربة) ثم فرض ا حد الا بعاد وا يجاد الا خر من خلال المساحة. ويفضل ا ن يكون مركز العامود على مركز القاعدة ا ما في حالة وجود ا زاحة للعامود فيجب ا لا يزيد البعد بين المركزين عن (6/L) حيث L هو الطول الموجود على امتداده خط الا زاحة. ا نواع الانهيارات في القواعد المنفصلة: ا. Failure :Bearing وينتج عن كون مساحة القاعدة غير كافية لمنع القاعدة من الغوص في التربة بفعل الا حمال. ب. Failure :Shear وينتج بفعل عدم كفاية سمك القاعدة لتحمل الا حمال. 2) قواعد مشتركة: وتحتوي القاعدة من هذا النوع على عامودين ا و ا كثر بشرط ا ن يكون خط عملهما واحدا مع السماح بانحراف عن خط العمل لا يزيد عن %10 من المسافة بين العمودين. ا سباب استخدام القواعد المشتركة: ا. تداخل القواعد المنفصلة ا ثناء التصميم بسبب: ا ما قرب الا عمدة من بعضها البعض. ا و زيادة الا حمال على الا عمدة مما يو دي ا لى كبر حجم القواعد وتداخلها. ب. قرب القواعد من بعضها البعض. ج. (عمود حد الجار) حيث يمنع التا سيس خارج حدود البناء عند الحاجة للبناء على هذه الحدود. ا نواع القواعد المشتركة: ما يسعى ا ليه مصمم القواعد هو الحصول على ضغط منتظم ا سفل القاعدة وهذا ليس شرطا وا نما هو الا فضل لذلك تقسم القواعد تبعا لظروف المبني ومن ا جل تحقيق الغاية المذكورة ا لى: ا مستطيلة (شكل 1) يلجا ا لى هذا النوع في حالة: كون المسافة بين الا عمدة متوسطة ا لى قريبة (4 ا و 5 م ا و ا قل) وكذلك عند تقارب الا حمال على هذه الا عمدة. وعندما تكون ا مكانية امتداد القاعدة على جانبي العامود واردة.
5 P1 R P2 X1 X2 C1 C2 X Lmin. شكل (1) ب شبه منحرف (شكل 2) تستخدم القواعد شبه المنحرفة في حالة: كون الا حمال على عامود ا كبر بكثير منها على عامود ا خر على نفس القاعدة. وعدم ا مكانية امتداد القواعد على الجوانب. P1 a P2 B2 B1 L شكل 2
6 كابولي (شداد): والشداد هو عبارة عن جسر (حزام) يربط بين العامودين في منسوب القواعد ا و فوق القواعد مباشرة. ويستخدم في حالة: ت كبر المسافات بين الا عمدة (7 ا و 8 م) ووصول ا حد الا عمدة ا لى حد الجار وبالتالي لا يمكن الامتداد بقاعدته ا لى خارج الحد. ملاحظة مهمة: التربة ا سفل الشداد يجب ا ن تكون ضعيفة مقلقلة وقابلة للا نضغاط لا ن التربة لو كانت قوية غير قابلة للا نضغاط فسوف تو دي ا لى عمل رد فعل معاكس على الشداد مما يو دي ا لى مضاعفة الحمل والعزم عليه. ويمكن حل هذه المشكلة ا يضا با ضافة (كلكل) ا و ا سفنج قابل للا نضغاط ا سفل الشداد ا و بعدم دمك الرمل ا و بترك فراغ بين التربة والشداد. 3) القواعد الشريطية: وتستخدم في نظام الجدران الحاملة وذلك بان تستمر تحت كامل الجدار وبعرض يعتمد على قيمة الاحمال الواقعة عليها وعلى قدرة تحمل التربة للاحمال ويمكن انشاو ها من الخرسانة او الطوب او الدبش وخير مثال للنوعين الاخيرين ا ساسات الا سواروالبنايات القديمة 4) لبشة: هي عبارة عن قاعدة تحتوي على عامودين ا و ا كثر ليسوا على خط عمل واحد. ا نواع اللبشة: وهي نوعان ا ساسيان: مصمتة ومفرغة ويندرج تحت كل نوع عدة ا نواع: 1. مصمتة ذات سمك ثابت: وهي النوع الغالب في غزة حيث يتم الصب بسمك ثابت على كامل المساحة. مصمتة ذات سمك متغير: حيث يتم زيادة سمك القاعدة ا سفل الا عمدة ذات الا حمال المرتفعة فقط. مصمتة با حزمة غير ظاهرة: في النوعين السابقين لا توجد ا حزمة في اللبشة بين الا عمدة ا ما في هذا النوع و النوع الذي يليه فيتم ا ضافة ا حزمة في اللبشة. وهنا تكون الا حزمة بسمك يساوي سمك القاعدة (لا يظهر الحزام بعد الصب). مصمتة با حزمة مقلوبة: وفيها يكون سمك الا حزمة ا كبر من سمك القاعدة. مفرغة: ويتم اللجوء ا ليها من جانب اقتصادي عند التصميم لمبان ذات ارتفاعات منخفضة نسبيا
7 %60 من مساحة الا رض. متى تستخدم اللبشة تستخدم اللبشة في حالة: 1. زيادة مساحة القواعد عن 2. ا و كون الا رض معرضة لهبوط متفاوت settlement).(differential ب الا ساسات العمیقة foundation) (deep ا شهر ا نواعها الخوازيق (Piles) وتسمى في القطاع (القدوح), وتستخدم في حالة كون التربة التي على السطح ضعیفة لا یمكن التا سیس علیھا, وتعتبرالخوازیق أكثر أنواع الا ساسات تكلفة إلا إذا كانت الطبقة التي نرید التا سیس علیھا غیر بعی دة كثی را ع ن الس طح (76 مت ر) حینھا نقارن بین اللبش ة والخوازیق أیھما وفر وأفضل. وتصنع ا ما من الخشب ا و الحديد ا و الباطون. الخشب: عادة ما يستخدم للمباني الصغيرة ا و المعرضة للمياه مثل المراسي ومرافي الصيد وعيبه الري يسي ضعفه في تحمل الضغوط العالية كما يعتبر من عيوبه تعرضه للتا كل والتسوس. الحديد: في حالة الخوازيق الكبيرة وا كبر عيوبه ارتفاع ثمنه كما ا نه يتعرض للصدا بسهولة الا ان هذه المشكلة امكن التغلب عليها حديثا ا. الباطون: وهو الا كثر استخداما لرخص ثمنه وسهولة تشكيله ويعتبر الشكل الداي ري الا كثر استخداما لغرض الخوازيق ويمكن التحميل كما يلي: من خلال الاحتكاك بين الخازوق والتربة (في حالة الطبقات الضعيفة لا عماق كبيرة). ا و من خلال الارتكاز على طبقة صخرية سطح الا رض). (في حالة كون الطبقات القوية قريبة من ا و كلا الا مرين معا (في حالة كون طبقات التربة القوية قريبة وفي نفس الوقت تكون قوى الاحتكاك كبيرة مع الجوانب). طريقة التنفيذ: يتم التنفيذ با حدى طريقتين: الدق: حيث يتم صب عامود داي ري كبير خارج التربة ويثبت في طرفه السفلي مخروط من الحديد وفي طرفه العلوي غطاء (Capping) ويتم نصبه بشكل عمودي على النقطة المراد غرس الخازوق فيها ويبدا الدق على قمة الخازوق حتى يصل للعمق المطلوب.
8 يتم اللجوء ا لى طريقة الدق عادة في حالة كون مستوى المياه الجوفية قريبا من سطح الا رض لا ن استخدام الخوازيق المنف ذة بالحفر والصب يتطلب استخدام المواد المقاومة لا ثر المياه على الخازوق المصبوب مثل البنتونايت (التي سيا تي ذكرها) وهي مواد مرتفعة الثمن وبالتالي يتم اللجوء للدق لدوافع اقتصادية. يكون الدق ا فضل في حالة البايلات التي تعتمد على الاحتكاك لا نه يعمل على ا حداث تضاغط في التربة مما يدعم قوة الاحتكاك المطلوبة. ب. الحفر: وهي الطريقة المعروفة في غزة حيث يتم الحفر مكان الخازوق ويوضع الحديد ثم يصب الخازوق في مكانه. الا فضل: طريقة الدق والسبب هو ا ن طريقة الدق تسبب تضاغط التربة المحيطة بالخازوق مما يو دي ا لى تحسين مقاومة البايل بالاحتكاك كما ذكر. ملاحظة (1): ا ثناء عملية الحفر قد تكون المياه الجوفية قريبة من سطح التربة مما يو دي ا لى انهيارات في التربة وا عاقة لعملية الحفر. وعلاج هذه المشكلة يتم باستخدام مادة طينية ناعمة شرهة لامتصاص المياه تسمى (البنتونايت) حيث تذاب هذه المادة في محلول وتوضع في البايل ثم تنتقل ا لى جوانبه لتكون طبقة رقيقة حوله تمنع انتقال الماء ا لى داخل الخازوق. ملاحظة (2): عدد الخوازيق تحت ا ي عامود يجب ا لا يقل عن اثنين. توزيع حمل العامود على الخوازيق:.1.2 هناك حالتان لتوزيع حمل العامود على البايلات: في حالة كون مركز العامود منطبقا على مركز الخوازيق وفي هذه الحالة تكون القوة على كل خازوق = (P/n) حيث P هي القوة على العامود n عدد الخوازيق. في حالات ا خرى قد لا ينطبق المركزان المذكوران مثال ذلك وجود قوى ا فقية تو ثر على المنشا مثل الرياح ا و الزلازل ا و التربة مما يو دي ا لى ا زاحة محصلة القوى الرا سية بعيدا عن مركز الخوازيق ا و كون العامود نفسه غير منطبق على مركز الخوازيق لسبب ا و لا خر. في هذه الحالة تكون القوة المو ثرة على الخازوق عبارة عن القوى الرا سية اضافة الى العزوم الناشي ة عن القوى الا فقية مما يو دي الى اختلاف احمال الخوازيق تبعا لموقعها اسفل العمود. ملاحظة( 1 )/ القاعدة الناقلة للحمل من العامود للخوازيق تسمى الغطاء ا و (Cap) ويجب ا ن يكون سمك هذه القاعدة كبيرا وذلك لتوزيع الا حمال على الخوازيق بشكل منتظم.
9 من هنا نخلص ا لى ا ن الوسادة ا و (Cap) يشترط فيها: ا ن تكون سميكة بما يكفي لا ن تصل ا لى حالة من (Rigidity) تسمح لها بتوزيع الا حمال على البايلات. ا همال ارتكازها على التربة حيث يتم اعتبارها مرتكزة على الخوازيق فقط..1.2 ملاحظة (2)/ يعتبر قرب المسافة بين الخوازيق عاملا ا ساسيا في ا ضعاف تحملها وذلك لا ن ا ي خازوقين متجاورين يضمان فيما بينهما كمية من التربة تتا ثر بكليهما وليس بواحد فقط مما يضعف قوة التحمل الكلية. ولتجنب هذه المشكلة اصطلح على ا ن تكون المسافة الدنيا بين مركزي ا ي خازوقين = ثلاثة ا ضعاف قطر الخازوق (3D) حتى يتم اعتبار كل خازوق مستقلا بذاته Pile) (Single وهنا يتم حساب قوة تحمل الخازوق الواحد وضربها في عدد الخوازيق للحصول على قوة التحمل الكلية. ا ما في حالة كون المسافة بين الخوازيق ا صغر من ا ي ا نها تعمل في مجموعة Piles).(Group (3D) فيتم اعتبار تصرفها ككتلة واحدة وهنا يتم حساب الكفاءة للخوازيق معا ) group Q) ثم حساب ) single Q) ويجب ا لا يزيد خارج قسمة الا ولى على الثانية ا و ما يعرف ب ((E) (Effeciency عن واحد. بمعنى ا نه لو كانت قيمة Q group ا كبر من قيمة Q single يتم اعتبار القيمتين متساويتين.
Le travail et l'énergie potentielle.
الشغل و الطاقة الوضع التقالية Le travail et l'énergie potentielle. الا ستاذ: الدلاحي محمد ) السنة الا ولى علوم تجريبية (.I مفهوم الطاقة الوضع الثقالية: نشاط : 1 السقوط الحر نحرر جسما صلبا كتلتھ m من نقطة
Ακαδημαϊκός Λόγος Εισαγωγή
- سا قوم في هذه المقالة \ الورقة \ الا طروحة بدراسة \ فحص \ تقييم \ تحليل Γενική εισαγωγή για μια εργασία/διατριβή سا قوم في هذه المقالة \ الورقة \ الا طروحة بدراسة \ فحص \ تقييم \ تحليل للا جابة عن هذا
( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3
) الحدة هي ( cm ( 4)( + + ) P a b c 4 : (, i, j ) المستي المرآب منسب إلى المعلم المتعامد المتجانس + 4 حل في مجمعة الا عداد المرآبة المعادلة : 0 6 + من أجل آل عدد مرآب نصع : 64 P b, a أ أحسب (4 ( P ب عين
Εμπορική αλληλογραφία Παραγγελία
- Κάντε μια παραγγελία ا ننا بصدد التفكير في اشتراء... Επίσημη, με προσοχή ا ننا بصدد التفكير في اشتراء... يس ر نا ا ن نضع طلبي ة مع شركتك... يس ر نا ا ن نضع طلبي ة مع شركتك... Επίσημη, με πολλή ευγενεία
X 1, X 2, X 3 0 ½ -1/4 55 X 3 S 3. PDF created with pdffactory Pro trial version
محاضرات د. حمودي حاج صحراوي كلية العلوم الاقتصادية والتجارية وعلوم التسيير جامعة فرحات عباس سطيف تحليل الحساسية في البرمجة الخطية غالبا ما ا ن الوصول ا لى الحل الا مثل لا يعتبر نهاية العملية التي استعملت
مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن
أهم فقرات الدرس معادلة مستقيم مادة الرياضيات _ I المعادلة المختصرة لمستقيم غير مواز لمحور الا راتيب ( تعريف ; M ( التي تحقق المتساوية m + هي مستقيم. مجموعة النقط ( المتساوية m + تسمى المعادلة المختصرة
تمارين توازن جسم خاضع لقوتين الحل
تمارين توازن جسم خاضع لقوتين التمرين الأول : نربط كرية حديدية B كتلتها m = 0, 2 kg بالطرف السفلي لخيط بينما طرفه العلوي مثبت بحامل ( أنظر الشكل جانبه(. 1- ما نوع التأثير الميكانيكية بين المغنطيس والكرية
( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B
الدران I- تعريف الدران 1- تعريف لتكن O نقطة من المستى المجه P α عددا حقيقيا الدران الذي مرآزه O زايته من P نح P الذي يربط آل نقطة M بنقطة ' M ب: M = O اذا آانت M ' = O - OM = OM ' M O اذا آان - OM ; OM
بحيث ان فانه عندما x x 0 < δ لدينا فان
أمثلة. كل تطبيق ثابت بين فضائين متريين يكون مستمرا. التطبيق الذاتي من أي فضاء متري الى نفسه يكون مستمرا..1.2 3.اذا كان f: R R البرهان. لتكن x 0 R و > 0 ε. f(x) = x 2 فان التطبيق f مستمرا. فانه عندما x
( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات
الا ستاذ محمد الرقبة مراآش حساب التكامل Clcul ntégrl الدال الا صلية (تذآير آل دالة متصلة على مجال تقبل دالة أصلية على. الدالة F هي الدالة الا صلية للدالة على تعني أن F قابلة للا شتقاق على لكل من. F لتكن
تصميم الدرس الدرس الخلاصة.
مو شرات الكفاءة:- يحدد مجال المرا ة المستوية. الدروس التي ينبغي مراجعتها: المتوسط). - الانتشار المستقيم للضوء(من دروس الا رسال الثالث للسنة الا ولى من التعليم - قانونا الانعكاس (الدرس الثالث من ا الا رسال
المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph
8 א א ن א ع א א ن א ع א تحديد خارج تفاعل حمض الا سكوربيك مع الماء بقياس ph O.. آتابة معادلة التفاعل H8O( q + H ( 7 ( q + l + ( q.. الجدول الوصفي H8O( q + HO ( H7O ( q HO+ l + ( q معادلة التفاعل آميات mol
( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r
نهايات المتتاليات - صيغة الحد العام - حسابية مجمع متتابعة لمتتالية ) ( متتالية حسابية أساسها + ( ) ملاحظة - متتالية حسابية + أساسها ( ) متتالية حسابية S +... + + ه الحد الا ل S S ( )( + ) S ه عدد المجمع
( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) (
الا سقاط القدرات المنتظرة *- الترجمة المتجهية لمبرهنة طاليس 1- مسقط نقطة مستقيم D مستقيمين متقاطعين يجد مستقيم حيد مار من هذا المستقيم يقطع النقطة يازي في نقطة حيدة ' ' تسمى مسقط نقطة من المستى تعريف )
- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5
تارين حلل ف دراسة الدال اللغاريتمية السية - سلسلة - ترين ]0,+ [ لتكن f الدالة العددية للمتغير الحقيقي المعرفة على المجال بما يلي f ( )= +ln. (O, i, j) منحنى الدالة f في معلم متعامد ممنظم + f ( ) f ( )
ﻉﻭﻨ ﻥﻤ ﺔﺠﻤﺩﻤﻟﺍ ﺎﻴﺠﻭﻟﻭﺒﻭﺘﻟﺍ
The Islamic iversity Joural (Series of Natural Studies ad Egieerig) Vol.4, No., P.-9, 006, ISSN 76-6807, http//www.iugaza.edu.ps/ara/research/ التوبولوجيا المدمجة من نوع * ا.د. جاسر صرصور قسم الرياضيات
با نها خماسية حيث: Q q الدخل. (Finite Automaton)
الخامس الفصل اللغات الصورية والا وتومات A = Q F Σ Fnte Automaton 1. الا وتومات المنتهي تعريف: نعر ف "الا وتومات المنتهي" حيث: با نها خماسية Q: مجموعة منتهية من الحالات. Q ندعوها الحالة الابتداي ية. Q وندعوها
أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي
أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي 4102 4102 تذكر أن :1- قانون نيوتن الثاني : 2- في حال كان الجسم متزن أو يتحرك بسرعة ثابتة أوساكن فإن
الموافقة : v = 100m v(t)
مراجعة القوة والحركة تصميم الدرس 1- السرعة المتوسطة 2- السرعة اللحظية 3- النموذج الرياضي : شعاع السرعة 4- شعاع السرعة والحركة المستقيمة 5- الحالة الخاصة 1 1 السرعة المتوسطة سيارة تقطع مسافة L بين مدينة
١٤ أغسطس ٢٠١٧ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥
ح اب الا شع ة (ال هات) ١٤ أغسطس ٢٠١٧ ال ات ٢ الا شع ة ١ ٣ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥ هندسة الا شع ة ٣ ٩ الضرب التقاطعي - Product) (eng. Cross ٤ ١ ١ الا شع ة يمكننا تخي ل الا عداد الحقيقية
( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية
أ عمميات حل الدال العددية = [ 1; [ I أنشطة تمرين 1 لتكن دالة عددية لمتغير حقيقي حيث أدرس زجية أدرس رتابة على آل من[ ;1 [ استنتج جدل تغيرات دالة زجية على حيز تعريفها ( Oi ; ; j 1 استنتج مطاريف الدالة إن
(1) (2) على. 0.2f c. .(curvature ductility) f y
مجلة جامعة دمشق للعلوم الهندسية المجلد السابع والعشرون- العدد الثاني- 11 دراسة في العوامل المو ثرة في مطاوعة الانحناء لجدران القص البيتونية المسلحة * الدكتور حافظ الملخص يعد تا مين المطاوعة في الجمل الا
يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان
األعداد المركبة 800 هذه التمارين مقترحة من درات البكالريا من 800 إلى 800 المضع األل التمرين 0: حل في مجمعة األعداد المركبة المعادلة: = 0 i ( + i) + نرمز للحلين ب حيث: < ( عدد حقيقي ) 008 - بين أن ( المستي
قوانين التشكيل 9 الةي ر السام ظزري 11/12/2016 د. أسمهان خضور سنستعمل الرمز (T,E) عوضا عن قولنا إن T قانون تشكيل داخلي يعرف على المجموعة E
ظزري 45 قوانين التشكيل 9 11/12/2016 8 الةي ر السام د. أسمهان خضور صاظعن الاحضغض الثاخطغ operation) (the Internal binary تعريف: ا ن قانون التشكيل الداخلي على المجموعة غير الخالية ( E) E يعر ف على ا نه التطبيق.
********************************************************************************** A B
1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani 1
[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي
O ( AB) تحيلات في المستى القدرات المنتظرة - التعرف على تقايس تشابه الا شكال استعمال الا زاحة التحاآي التماثل. - استعمال الا زاحة التحاآي التماثل في حل مساي ل هندسية. [ AD] التماثل المحري التماثل المرآزي
**********************************************************************************
1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani تاريخ
Immigration Studying ا ود التسجيل في الجامعة. ا ود التقدم لحضور مقرر. ما قبل التخرج ما بعد التخرج دكتوراه بدوام كامل بدوام جزي ي على الا نترنت
- University Stating that you want to enroll ا ود التسجيل في الجامعة. ا ود التقدم لحضور مقرر. Stating that you want to apply for a course Θα ήθελα να εγγραφώ σε πανεπιστήμιο. Θα ήθελα να γραφτώ για. ما
Samer-3. قياس المسافات الافقية :Measurements of Horizontal Distances. .3 التاكيومتري :Tacheometry ا. stadia الستيديا. D δ = δ
-3 Samer-3 قياس المسافات الافقية :Measurements of Horizontal istances احدى العمليات الاساسية في هي قياس المسافات. تقسم المسافات بشكل عام الى نوعين:. المسافة الافقية.Horizontal distance. المسافة الشاقولية.Vertical
مثال: إذا كان لديك الجدول التالي والذي يوضح ثلاث منحنيات سواء مختلفة من سلعتين X و Yوالتي تعطي المستهلك نفس القدر من الا شباع
- هذا الا سلوبعلى أنه لا يمكن قياس المنفعة بشكل كمي بل يمكن قياسها بشكل ترتيبي حسب تفضيلات المستهلك. يو كد و يقوم هذا الا سلوب على عدد من الافتراضات و هي:. قدرة المستهلك على التفضيل. -العقلانية و المنطقية.
الا شتقاق و تطبيقاته
الا شتقاق و تطبيقاته سيدي محمد لخضر الفهرس قابلية ا شتقاقدالةعددية.............................................. قابلية ا شتقاق دالة في نقطة................................. المماس لمنحنى دالة في نقطة..............................
مرونات الطلب والعرض. العراق- الجامعة المستنصرية
مرونات الطلب والعرض أ.د.عبد الستارعبد الجبار موسى http://draamusa.weebly.com العراق- الجامعة المستنصرية مفهوم المرونات لقد وضحت النظرية االقتصادية اتجاه تأثير المتغيرات الكمية )السعر الدخل اسعار السلع
- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم
تارين وحلول ف دراسة الدوال اللوغاريتمية والسية - سلسلة -3 ترين [ 0,+ [ نعتبر الدالة العددية f للمتغير الحقيقي المعرفة f ( )=ln( ++ 2 +2 ) بما يلي. (O, i, j) وليكن منحناها في معلم متعامد ممنظم ) ln يرمز
دئارلا óï M. R D T V M + Ä i e ö f R Ä g
الائد óï D T V M i ö لا R Ä f Ä + e g بلا بلا لا ب اإلحتمال إحتمال عدم وقوع ا ل ا = ١ ل ا ١ ن ) ا @ @ * فضاء العينة : ھو مجموعة جميع النواتج إحتمال وقوع ا فقط وقوع ب وقوع ا و عدم @ ل ا ب إحتمال ل ا ب =
التيار الحراري= التيار الحراري α K معمل التوصيل الحراري
1- انتقال الحرارة: يتم انتقال الحرارة بثالث طرق 1- التوصيل: هو انتقال الطاقة الحرارية بين االجزاء المتجاورة نتيجة الفرق بين درجات الحرارة دون انتقال جزيئات المادة ويوجد نوعان من االنتقال 1- انتقال الحرارة
( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في
الاشتقاق تطبيقاته دراسة الدال www.woloj.com - الاشتقاق في نقطة- الدالة المشتقة ( A أنشطة نشاط باستعمال التعريف ادرس اشتقاق الدالة في حدد العدد المشتق في إن جد ثم حدد معادلة المماس أ نصف المماس لمنحنى الدالة
א א. [êñ^èˆéëö]< éã Ö]<î Â<Ü Âù]< ^rëþ ]<íè Þ<àÚ<ì ñ^ëö]<^ú א א א. << < ^ÛÂ<Ý Ò_<êÚ] <J_. << << íé ^i<í.
א א
M = A g/mol. M 1 ( 63 Cu) = A 1 = 63 g/mol M 2 ( 65 Cu) = A 2 = 65 g/mol.
: - 07 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.co/site/faresfergai تاريخ ا خر تحديث : 03/03/
تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن
تمرين تمارين حلل = ; دالتين عدديتين لمتغير حقيقي حيث = + - حدد مجمعة تعريف الدالة - أعط جدل تغيرات لكل دالة من الدالتين - أ) أنقل الجدل التالي أتممه - D ب) حدد تقاطع C محر الافاصيل ( Oi ج ( المنحنيين C
() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن
تصحیح الموضوع الثاني U V 5 ن B التمرین الا ول( ن): - دراسة عملیة الشحن: - - التوتر الكھرباي ي بین طرفي المكثفة عند نھایة الشحن : -- المعادلة التفاضلیة: بتطبيق قانون جمع التوترات في حالة الربط على التسلسل
( ) ( ) 27,5.10 1,35.10 = 5, = 0,3. n C V mol ( ) M NaHCO max. n( CO ) n CO. 2 exp 2. Page 1
الكيمياء صحيح الفرض المنزلي 01 السنة الثانية علوم فيزياي ية 1 نوع التفاعل : تفاعل حمض قاعدة. التعليل : لا ن حمض الا يثانويك آحمض برونشتد قادر على إعطاء بروتون + H و أيون هيدروجينو آربونات آقاعدة برونشتد
Business عزيزي السيد الري يس سيدي المحترم سيدتي المحترمة سيدي المحترم \ سيدتي المحترمة السادة المحترمون ا لى م ن يهم ه الا مر عزيزي السيد ا حمد
- Opening Arabic عزيزي السيد الري يس Greek Αξιότιμε κύριε Πρόεδρε, Very formal, recipient has a special title that must be used in place of their name Formal, male recipient, name unknown سيدي المحترم
ﻲﻧوﺮﺘﻜﻟﻹا ﻞﯿﻤﻟا : فﺮﻋ
عرف المیل الا لكتروني ج هو مقياس لقابلية الذرة على استقبال الا لكترون اشرح تدرج المیل الا لكتروني في الجدول الدوري ١- في الدورات ٢- في اموعات باستثناء الغازات النبيلة يزداد الميل الا لكتروني بزيادة العدد
ءﺎﺼﺣﻹا ﻒﻳرﺎﻌﺗ و تﺎﺤﻠﻄﺼﻣ - I
الا حصاء I - I مصطلحات و تعاريف - الساآنة الا حصاي ية: الساآنة الا حصاي ية هي المجموعة التي تخضع لدراسة إحصاي ية وآل عنصر من هذه المجموعة يسمى فردا أو وحدة إحصاي ية. ميزة إحصاي ية أو المتغير الا حصاي ي:
الهيدروليكية تاريخ االستالم: 2220/2/19 تاريخ القبول: 2212/12/11 الخالصة
مجلة جامعة كركوك - الدراسات العلمية المجلد) (- العدد) ( دراسة عملية ونظرية لتوزيع الشحنة البيزومترية الهيدروليكية المنشات أسفل سحر عبد الحسين محمد ارسالن أكرم جلنك قسم الهندسة المدنية/ كلية الهندسة- جامعة
2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن :
اختبار الثلاثي الثاني في مادة المستوى: نھاي ي علوم تجریبیة المدة : ساعتان التاریخ : /... فیفري/ 0 مدینة علي منجلي - قسنطینة تمرین( 0 ): أ- قیمة ال : ph لمحلول لحمض النمل HOOH تركیزه المولي. ph,9 - أكتب
حركة دوران جسم صلب حول محور ثابت
حركة دوران جسم صلب حول محور ثابت I تعريف حركة الدوران لجسم صلب حول محور ثابت 1 مثال الجسم (S) في حركة دوران حول محور ثابت : النقطتين A و B تتحركان وفق داي رتين ممركزتين على المحور النقطتين M و N المنتميتين
( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف.
الثانية سلك بكالوريا علوم تجريبية دراسة الدوال ( A الا نشطة تمرين - حدد رتابة الدالة أ- ب- و مطاريفها النسبية أو المطلقة إن وجدت في الحالات التالية. = ج- ( ) = arctan 7 = 0 = ( ) - حدد عدد جذور المعادلة
ﻩﺫﻴﻔﻨﺘﻭ S RM (6/8) ﺓ ﺭ ﻤ ﻴﻐﺘ ﺔﻴﺴ ﺎ ﻴﻁ ﻨﻐﻤ ﺔﻤ ﻭﺎﻘﻤ ﻱﺫ ﻙﺭﺤﻤ ﺓﺩﺎﻴﻘﻟ ﻡﺎﻅﻨ ﻡﻴﻤﺼﺘ ﺏﻭﺴﺎﺤﻟﺍ ﻡﺍﺩﺨﺘﺴﺎﺒ
SRM (6/8) تصميم نظام لقيادة محرك ذي مقاومة مغناطيسية متغي رة وتنفيذه باستخدام الحاسوب * د. عباس الملخص ع ر ض ت في هذه المقالة طريقة لقيادة محرك ذي مقاومة مغناطيسية متغي رة (6/8 (SRM با ربعة ا طوار باستخدام
PDF created with pdffactory Pro trial version
الا ساليب الا حصاي ية المستخدمة الوصفية لمتغير واحد: نوع المتغير ا ساليب القياس المناسبة نزعه مركزية تشتت المقاييس النسبية ا خرى ------ : المنوال التكرار النسبي للقيمة التكرار الن سبي ) المنوالية النسب
-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { }
الحساب المثلثي الجزء - الدرس الا ول القدرات المنتظرة التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على عدد الساعات: 5 الداي رة المثلثية الدورة الثانية k k I- المعادلات المثلثية cos x = a - المعادلة
ا قرار تعاريف المصادر 1-1 بينها.
1 الصفحة 9 9 10 12 13 13 14 16 16 17 19 19 20 21 المحتويات كلمة معالي وزير الصحة تقديم مدير ا دارة الرقابة الدواي ية ا قرار تعاريف 1 تقييم نظام تسجيل المستحضرات الصيدلانية المثيلة ومتعددة المصادر المنتجات
التا ثیر البینیة المیكانیكیة
التا ثیر البینیة المیكانیكیة I التجاذب الكوني 1 1 مبدأ التا ثیرات البینیة نص المبدأ : عندما يتم تا ثير بيني سواء بالتماس أو عن بعد بين جسمين و فا ن القوة F / التي يطبقها الجسم على الجسم والقوة F / التي
الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة.
GUZOUR Aek Maraval Oran الكتاب الثاني الوحدة 7 التطورات غير الرتيبة التطو رات الا هتزازية الدرس الثاني الاهتزازات الكهرباي ية أفريل 5 ما يجب أن أعرفه حتى أقول إني استوعبت هذا الدرس وعدم دورية يجب أن أعرف
du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc
ة I) التذبذبات الحرة في دارة RCعلى التوالي: ) تعريف: الدارةRCعلى التوالي هي دارة تتكون من موصل أومي مقاومته R ومكثف سعته C ووشيعة مقاومتها r ومعامل تحريضها. تكون التذبذبات حرة في دار RC عندما لا يتوفر
المجلة الا ردنية للفيزياء
ص ص.. 157-149 المجلة الا ردنية للفيزياء المجلد 5 العدد 2012 3 ARTICLE تا ثير أشعة كاما على عمل نبيطة شوتكي Au/n-Si نوع من نوفل يوسف جميل ومحمدنور خضر قسم الفيزياء كلية العلوم جامعة الموصل الموصل العراق.
عرض المنشأة في األجل القصير الفصل العاشر
عرض المنشأة في األجل القصير الفصل العاشر أولا: مفهوم المنافسة الكاملة وجود عدد كبير من البائعين والمشترين, تجانس السلع. حرية الدخول والخروج من السوق. توافر المعلومات الكاملة للجميع. فالمنشأه متلقية للسعر
" األساسات الوتديظ " األوتاد البيتونيظ : هندسة األساسات واملنشآت املطمورة " نظري "
ميزات أخرى للمسبقة الصنع : إختصار زمن التنف ذ ف مكن أن ننته من أعمال التاس س خالل وم ن فقط. إمكان ة إدخالها لولب ا ف حال كانت ظروف المنشآت المجاورة والتربة المإسس عل ها ال تسمح بالدق خاصة الترب المفككة
ق ارءة ارفدة في نظرية القياس ( أ )
ق ارءة ارفدة في نظرية القياس ( أ ) الفصل األول: مفاهيم أساسية في نظرية القياس.τ, A, m P(Ω) P(Ω) فيما يلي X أو Ω مجموعة غير خالية مجموعة أج ازئها و أولا:.τ τ φ τ الحلقة: τ حلقة واتحاد أي عنصرين من وكذا
المواضيع ذات أهمية بالغة في بعض فروع الهندسة كالهندسة الكهربائية و الميكانيكية. (كالصواريخ و الطائرات و السفن و غيرها) يحافظ على إستقرار
بسم اللهجلال الحاج الرحمن عبدالرحيم يشرح المقال هذا بعض أهم المفاهيم و المواضيع النظرية للتحكم هذه المفاهيم و المواضيع ذات أهمية بالغة في بعض فروع الهندسة كالهندسة الكهربائية و الميكانيكية. تظهر أهمية
)الجزء األول( محتوى الدرس الددراتالمنتظرة
األعداد العقدية )الجزء األل ) 1 ثانية المنصر الذهبي التأهيلية نيابة سيدي البرنصي - زناتة أكا يمية الدار البيضاء الكبرى األعدا القددية )الجزء األل( األستاذ تباعخالد المستى السنة الثانية بكالريا علم تجريبية
التفسير الهندسي للمشتقة
8 5 األدبي الفندقي والياحي المنير في الرياضيات الأتاذ منير أبوبكر 55505050 التفير الهندي للمشتقة من الشكل نلاحظ أنه عندما تتحرك النقطة ب من باتجاه أ حتى تنطبق عليها فإن القاطع أب ينطبق على مما المنحنى
Isomorphism-invariants and their applications in testing for isomorphism between finitely presented groups
014 مجلة جامعة دمشق للعلوم الا ساسية المجلد (30) العدد الثاني الصفات الثابتة بالتماثل وتطبيقها في التحقق من تماثل الزمر منتهية التمثيل () (1) نضال جبيلي و عبد اللطيف هنانو تاريخ الا يداع 013/03/5 قبل للنشر
المجاالت المغناطيسية Magnetic fields
The powder spread on the surface is coated with an organic material that adheres to the greasy residue in a fingerprint. A magnetic brush removes the excess powder and makes the fingerprint visible. (James
التتبع الزمني لتحول آيمياي ي سرعة التفاعل تمارين مرفقة بالحلول فيزياء تارودانت التمرين الا ول: يتفاعل أيون ثيوآبريتات ثناي ي أوآسيد الكبريت مع أيونات الا وآسونيوم وفق المعادلة الكيمياي ية التالية: H S
المتغير الربيعي التباين نسبي والتفرطح المعياري
اساليب تحليل البيانات الكيفية و الكمية الاحصاء الوصفي الاحصاء الاستدلالي اختيار الاساليب الاحصاي ية دلالة النتاي ج الاحصاي ية اختيار الا ساليب الا حصاي ية المستخدمة الوصفية لمتغير واحد: نوع ا ساليب القياس
أولا: ضع إشارة ) ( أمام اإلجابة األنسب فيما يلي:
المدرس: محم د سيف مدرسة درويش بن كرم الثانوية القوى والمجاالت الكهربائية تدريبات الفيزياء / األولى أولا: ضع إشارة ) ( أمام اإلجابة األنسب فيما يلي: - شحنتان نقطيتان متجاورتان القوة المتبادلة بينهما )N.6(.
( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من.
عمميات حل الدال العددية السنة الا لى علم تجريبية علم رياضية تذآير : إشارة دالة تا لفية ثلاثية الحدد طريقة المميز المختصر ( 4 ): ( ) I- زجية دالة عددية : -( أنشطة : تمرين 0 : أدرس زجية الدالة العددية في
الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB
المستوى : السنة الثانية ثانوي الطاقة الكامنة الوحدة 4 حسب الطبعة 3 / للكتاب المدرسي GUZOURI Lycée aaal Oan ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - يجب أن أعرف مدلول الطاقة الكامنة الثقالية
دراسة تا ثير بعض ا نواع الا لات المحملة على الساحبة عنتر ٧١ على نسبة الانزلاق
دراسة تا ثير بعض ا نواع الا لات المحملة على الساحبة عنتر ٧١ على نسبة الانزلاق + الحاصلة في ترب مختلفة النسجة STUDYING THE EFFECT OF SOME KINDS OF HITCHED EQUIPMENTS BY ANTER 71 TRACTOR ON GAINED SLIPPING
الجزء الثاني: "جسد المسيح الواحد" "الجسد الواحد )الكنيسة(" = "جماعة المؤمنين".
اجلزء الثاين من حبث )ما هو الفرق بني الكلمة اليواننية )سوما )σῶμά بقلم الباحث / مينا سليمان يوسف. والكلمة اليواننية )ساركس σάρξ ((!. الجزء الثاني: "جسد المسيح الواحد" "الجسد الواحد )الكنيسة(" = "جماعة
المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH
8 ا ستاذ ( éq wwwphysiquelyceecl א الجزء I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء حساب الترآيز ( ( i i ومنه و نعلم أن M ( M (, 9,7 ol L 6, تع تفاعل الا یبوبروفين مع الماء تفاعل محدود * الجدول
ﻡﻴـ ﻠ ﻌﹾﻟﺍ ﹶﺕـﻨ ﺃ ﻙـﱠﻨ ﺇ ﺎﹶﻨﹶﺘ ﻤﱠﻠ ﻋ ﺎ ﻤ ﱠﻻ ﺇ ﺎﹶﻨﹶﻟ ﻡﹾﻠ ﻋ ﹶﻻ ﻙﹶﻨﺎ ﺤ ﺒ ﺴ
א א א א א / كلية التجارة جامعة عين شمس - ٢ - طبقا لقوانين الملكية الفكرية א א א. א א א א א א (عبر الانترنت ا و للمكتبات الالكترونية ا و الا قراص المدمجة ا و اى وسيلة ا خرى ( א א א. א. א ت ا لع ل يم ا ن
الوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم
المستى : السنة الثانية ثاني الحدة 0 العمل الطاقة الحرآية (حالة الحرآة الا نسحابية) GUEZOURI Lycée Maaal Oan ماذا يجب أن أعرف حتى أقل : إني استعبت هذا الدرس يجب أن أفر ق بين انسحاب جسم درانه يجب أن أعرف
**********************************************************
اجب بصحيح أو خطا : أيكون محلول قاعديا إذا آان : سلسلة تمارين حول المعايرة تمرين ص 99 p > log k e / على الشكل : pk للمزدوجة بثابتة الحمضية محلول حمض p pk p log [ éq éq ب ( تكتب العلاقة التي تربط p هو 8
Using Artificial Neural Networks in Multiple Linear Regression. Abstract
كلية الا دارة والاقتصاد-جامعة الموصل تنمية الرافدين العدد ٩٩ مجلد ٣٢ لسنة ٢٠١٠ ص ص[ ١-٣٣] استخدام الشبكات العصبية الاصطناعية في تحليل الانحدار الخطي المتعدد ندوى خزعل رشاد مدرس مساعد - قسم نظم المعلومات
مدرسة أقرا لا بداع العلمي أسي لة استرشادية لنھاية الفصل الدراسي الا ول في مادة الفيزياء الحرارية للصف ثاني ثانوي( (
مدرسة أقرا لا بداع العلمي أسي لة استرشادية لنھاية الفصل الدراسي الا ول في مادة الفيزياء الحرارية للصف ثاني ثانوي( ( علمي للعام 217-216 س 1. عرفي كلا من : أ الحرارة :ھي كمية الطاقة الحرارية التي تتدفق من
نصيحة لك أخي الطالب كما يمكنك تحميل النسخة بدون حلول "اضغط هنا" ملاحظة هامة
1 نصيحة لك أخي الطالب ننصحك وبشدة قبل الإطلاع على الحلول أن تقوم بالمحاولة بحل كل سؤال بنفسك أنت! ولاتعتمد على أي حل آخر, فجميع الحلول لنا أو لغيرنا تحتمل الخطأ والصواب وذاك لتحقق أكبر فائدة بإذن هللا,
Contents مقدمة. iii. vii. xxi
Contents iii vii xxi ٣ ٥ ١١ ١١ ١٣ ١٦ ٢٠ ٢٣ ٢٦ ٢٧ ٢٩ ٣٢ ٣٥ ٣٥ xi مقدمة قاي مة الرموز المستعملة الفصل الا ول مفاهيم ا ساسية عن الجودة مقدمة ١ ملامح تاريخية عن تطور مفهوم الجودة و ا دارهتا ٢ ما هي الجودة
ظاهرة دوبلر لحركة المصدر مقتربا أو مبتعدا عن المستمع (.
ظاهرة دوبلر وهي من الظواهر المألوفة إذا وجدت سرعة نسبية بين مصدر الصوت والسامع تغيرت درجة الصوت التي تستقبلها أذن السامع وتسمى هذه الظاهرة بظاهرة دوبلر )هو التغير في التردد او بالطول الموجي نتيجة لحركة
ما هي متلازمة بلاو/داء الساركويد الشبابي
www.printo.it/pediatric-rheumatology/lb/intro ما هي متلازمة بلاو/داء الساركويد الشبابي نسخة من 2016 1- ما هي متلازمة بلاو/داء الساركويد الشبابي 1-1 ما هي متلازمة بلاو هي مرض وراثي. وي عاني المصابين به
Plus DVB-T ا و DVB-C HDTV Satellite Receiver TEST REPORT وحدة التحكم فى اليد كما يوجد عدد 2 فتحة لا دخال الكامات بمختلف
TEST REPORT HDTV Satellite Receiver الريسيفر ABCom IPBOX 9000 HD Plus احصل على صورة HDTV من جميع نظم الا رسال الملون DVB-S2 DVB-S DVB-T ا و DVB-C ا ن التطورات الحديثة فى هذا ا جهزة الريسيفر المزودة بقرص
الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A
التطورات المجال الرتيبة 3 الوحدة الكهرباي ية الظواهر ر ت ر ت ع المستوى 3 3 رقم ملخص مآتسبات قبلية التيار الآهرباي ي المستمر التيار الآهرباي ي المتناوبببب قانون التواترات 3 حالة الدارة المتسلسلة أ هو آل
جامعة دمشق كلية الهندسة المدنية قسم الهندسة الجيوتكنيكية ميكانيك التربة 1 د.م.عبد الرحمن المنصوري المحاضرة األولى
2015-2016 جامعة دمشق كلية الهندسة المدنية قسم الهندسة الجيوتكنيكية ميكانيك التربة 1 المحاضرة األولى أوال - تعاريف أساسية : التربة : جسم طبيعي غير متجانس نشأ نتيجة تاثير العوامل الجوية على الصخور, حيث الخواص
8. حلول التدريبات 7. حلول التمارين والمسائل 3. حلول المراجعة 0. حلول االختبار الذاتي
. حلول التدريبات نخة الطالب.... حلول التمارين والمائل. حلول المراجعة. حلول االختبار الذاتي 1 ائلة الوزارة حب الدر لالتفار ت )411( اكاديمية نوبل...مركز الخوارزمي - البوابة الشمالية لجامعة اليرموك لمزيد
ﻙﺭﺤﺘﻤﻟﺍ ﻲﻫ ﺔـﺘﺴ ﹴﺭﻭﻤﺄﺒ ﻕﻠﻌ ﺘﺘ ﺔﻜﺭﺤﻟﺍ ﻥﺃ ﻡﻠﻋ
الباب الا ول ولا غرو فا ننا حتى اليوم حين ب ت ن ا ننظر ا لى الديناميكيات النيوت ن ي ة بمثابة جزء من اللوحة الا عرض التي رسمتها نسبية ا ينشتاين فا ن معظمنا ما يزال مستمرا بالتفكير في الا طار النيوتني وما
مقدمة: التحليل الخاص باإلنتاج والتكاليف يجيب عن األسئلة المتعلقة باإلنتاج الكميات المنتجة واألرباح وما إلى ذلك.
مقدمة:.1.2.3 التحليل الخاص باإلنتاج والتكاليف يجيب عن األسئلة المتعلقة باإلنتاج الكميات المنتجة واألرباح وما إلى ذلك. المنشأة في النظام الرأسمالي أيا كان نوعها هي وحدة القرار الخاصة باإلنتاج وهدفها األساسي
االستفادة من طاقة الم اه الكامنة. الغرض من التجربة:- حساب القوة و توز ع الضغط ومعرفة مركز هذا القوة الناتجة من تأث ر ضغط سائل ساكن.
التجربة رقم )( :- حساب مركز الضغط على سطح م س ت و. المقدمة:- إن تأث رات الضغوط الناتجة من وزن المائع الساكن جب أن ت ؤخ ذ بالح سبان عند تصم م التراك ب الغاطسة مثل السدود والغواصات والبوابات و إلخ كما ع
Acceptance Sampling Plans. مقدمة المستهلك.
الباب الخامس ضبط الجودة عن طريق خطط الفحص و عينات القبول Acceptance Sampling Plans د. محمد عيشوني أستاذ مساعد قسم التقنية الميكانيكية - ٢٠٠٤ m_aichouni@yahoo.co.uk مقدمة تقتني الشرآات الصناعية المواد الخام
ص 2 ص 1 س 2 س 1-2 ( ) النقطة التي إحداثياتيا ( ) تقع في الربع ال اربع. 2 ص =
الؤال الول الوحدة الولى: ( الهندة التحميمية ) :ضع عالمة )( مام العارة الصحيحة وعالمة )( مام العارة الخط فيما يمي: ص ص ( ) إذا كانت ) ص ) ( ص ) فإن ميل ( ) النقطة التي إحداثياتيا ( ) تقع في الرع ال ارع.
المصادر: : الاستنتاجات يلاحظ أن هناك الثابت يكون أكبر بشكل عام ويتخذ قيمة موجبة عند الضغط 0.8 باسكال وهذا ما لم يلاحظ في المنطقة السابقة.
تشابه التصرف مع علاقة باشن في التفريغ الراديوي في غاز الا ركون a 1 يلاحظ أن هناك الثابت يكون أكبر بشكل عام ويتخذ قيمة موجبة عند الضغط 0.8 باسكال وهذا ما لم يلاحظ في المنطقة السابقة. كذلك فان الثوابت a
Αιτήσεις Συνοδευτική Επιστολή
- Εισαγωγή سيدي المحترم Επίσημη επιστολή, αρσενικός αποδέκτης, όνομα άγνωστο سيدي المحترم سيدتي المحترمة سيدتي المحترمة Επίσημη επιστολή, θηλυκός αποδέκτης, όνομα άγνωστο سيدي المحترم \ سيدتي المحترمة
( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح
. المرجح القدرات المنتظرة استعمال المرجح في تبسيط تعبير متجهي إنشاء مرجح n نقطة 4) n 2 ( استعمال المرجح لا ثبات استقامية ثلاث نقط من المستى استعمال المرجح في إثبات تقاطع المستقيمات استعمال المرجح في حل
2) CH 3 CH 2 Cl + CH 3 O 3) + Br 2 4) CH 3 CHCH 3 + KOH.. 2- CH 3 CH = CH 2 + HBr CH 3 - C - CH C 2 H 5 - C CH CH 3 CH 2 OH + HI
اكتب الناتج العضوي في كل من التفاعلات الا تية : 5 مساعد (400-300) س C + 2H عامل 2. ضوء CH 4 + Cl 2 CH 3 NH 2 + HCl أكتب صيغة المركب العضوي الناتج في كل من التفاعل الا تية : 2) CH 3 CH 2 Cl + CH 3 3) +
بحيث = x k إذن : a إذن : أي : أي :
I شبكة الحيود: ) تعريف شبكة الحيود: حيود الضوء بواسطة شبكة شبكة الحيود عبارة عن صفيحة تحتوي على عدة شقوق غير شفافة متوازيةومتساوية المسافة فيما بينها. الفاصلة بين شقين متتاليين تسمى خطوة الشبكة ويرمز إليها
1/ الزوايا: المتت امة المتكاملة المتجاورة
الحصة األولى الز وايا القدرات المستوجبة:* تعر ف زاويتين متكاملتين أو زاويتين متتام تين. * تعر ف زاويتين متجاورتين. المكتسبات السابقة:تعريف الزاوية كيف نستعمل المنقلة لقيس زاوية كيف نرمز للزاوية 1/ الزوايا:
1-5 -ميكانيك األجسام الصلبة: 2 -ميكانيك األجسام الصلبة القابلة للتشو ه. 3 -ميكانيك الموائع. سيتم دراسة فقط القسم األول ))ميكانيك األجسام الصلبة((.
المحاضرة السابعة علم السكون مقدمة: يدرس علم الميكانيك الظواهر الفيزيائية ويرتبط بشكل وثيق بعلم الرياضيات. والرياضيات والميكانيك هما ركنان أساسيان في كل العلوم الهندسية. يطلق اسم الميكانيك النظري )العام(
األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية
http://benmoussamathjimdocom/ 55:31 5342-3-41 يم السبت : األستاذ: بنمسى محمد ثانية: عمر بن عبد العزيز المستى: 1 علم رياضية إحداثيات نقطة بالنسبة لمعلم - إحداثيات متجهة بالنسبة ألساس: األساس المعلم في الفضاء:
المادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V
8 n א الجزء ( تفاعل حمض آربوآسيلي مع الماء ثم مع الا مونياك - تحديد الصيغة الا جمالية لحمض آربوآسيلي - معادلة تفاعل المعايرة O H OO H n Hn OOH( HO n n ( l BB, - * حساب الترآيز المولي عند التكافو نحصل على