תרגיל 13 משפטי רול ולגראנז הערות
|
|
- Πτοοφαγος Νηλεύς Αλεξόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון נגדיר x f. (x) = e x נניח כי יש פתרון בקרן הנ ל. נסמנו ב b. נשים לב כי גם 0 הוא פתרון. על כן, f (0) = f (b) = 0 ולכן אפשר להשתמש במשפט רול, ולהסיק כי קיימת (b c,0) עבורה = 0 (c) f. אבל: f (x) = e x e c = 0 e c = כלומר c,f (c) = e ולכן ולכן = 0 c, וזו סתירה..2 האם קיים פתרון למשוואה ln ( + x) = x בקרן )?(0, פתרון נגדיר f. (x) = ln ) + (x x נניח כי יש פתרון בקרן הנ ל. נסמנו ב b. נשים לב כי גם 0 הוא פתרון. על כן, f (0) = f (b) = 0 ולכן אפשר להשתמש במשפט רול, ולהסיק כי קיימת (b c,0) עבורה = 0 (c) f. אבל: f (x) = + x + c = 0 + c = + c = c = 0 = (c),f ולכן כלומר +c וזו סתירה.
2 Mthemtics, Summer 20 / Exercise 3 Notes.3 האם קיים פתרון למשוואה sin x = 2x בקרן )?(0, פתרון נגדיר f. (x) = sin x 2x נניח כי יש פתרון בקרן הנ ל. נסמנו ב b. נשים לב כי גם 0 הוא פתרון. על כן, f (0) = f (b) = 0 ולכן אפשר להשתמש במשפט רול, ולהסיק כי קיימת (b c,0) עבורה = 0 (c) f. אבל: f (x) = cos x 2 כלומר 2 c,f (c) = cos ולכן cos c 2 = 0 cos c = 2 וזו כמובן סתירה. 4. הוכיחו: (א) לכל x < y מתקיים: y rctn x rctn y x b < ln ( ) b < b b (ב) לכל < < b 0 מתקיים: ( (ג) לכל < c < b מתקיים: c) e b e c) (c ) > (e c e ) (b (ד) לכל b מתקיים: rccos (b) rccos () b הוכחות (א) נגדיר f. (x) = rctn x לפי משפט לגראנז (מאחר ו f רציפה וגזירה בקטע) מתקיים rctn x rctn y x y = f (c) = + c 2 rctn x rctn y x y = rctn x rctn y x y עבור y).c (x, לכן: = + c 2 < נכפול ב y x ונקבל את הדרוש. 2
3 Mthemtics, Summer 20 / Exercise 3 Notes (ב) יהיו < < b,0 ונסמן.f (x) = ln x לפי משפט לגראנז (מאחר ו f רציפה וגזירה בקטע) קיים b) c (, עבורו c = f f (b) f () (c) = b b b b ln b ln < < b b b < ln b ln < b < ln ln b < b b ( ) < ln < b b b b < c < ולכן מצד שני, ברור כי ומאחר ו ( b) חיובי, נוכל להכפיל בו ולקבל הכפלה ב ( ) תתן: ועל פי חוקי לוגריתמים נקבל: (ג) נסמן f. (x) = e x לפי משפט לגראנז (מאחר ו f רציפה וגזירה בקטע) מתקיים e b e c b c e c e c = f (d ) = f (d 2 ) כאשר b) d (c, ו ( c d 2 (, (ולכן,(d 2 < d וכמובן.f (x) = e x נשים לב כי: d 2 < d d 2 > d e d2 > e d e d2 < e d2 f (d 2 ) < f (d ) ולכן e b e c b c = f (d ) > f (d 2 ) = e c e c וע י כפל במכנים (שהם חיוביים) נקבל: ( e b e c) (c ) > ( e c e ) (b c) 3
4 Mthemtics, Summer 20 / Exercise 3 Notes (ד) נגדיר.f (x) = rccos x ממשפט לגראנז קיימת b) c (, עבורה = f rccos b rccos (c) = c 2 b rccos b rccos b = c 2 rccos b rccos b לכן ומכיוון ש ( b ) שלילי, נקבל π ( ) 4 25 < rctn < π הוכיחו את אי השוויון הבא:.rctn () = π 4 על פי משפט לגראנז, פתרון נסמן f. (x) = rctn x נשים לב כי rctn 4 3 rctn 4 3 = f (c) = + c 2 3) (, 4.c נשים לב כי עבור 9 25 = = + ( ) 4 2 < + c 2 < + 2 = < rctn 4 3 rctn 3 < < rctn 4 3 π 4 < 6 π < rctn 4 3 < π לכן 4
5 Mthemtics, Summer 20 / Exercise 3 Notes 6. הוכיחו בעזרת משפט לגראנז, כי אם הנגזרת של פונקציה שווה ל 0 בכל נקודה בקטע [b,], אז f קבועה בקטע זה. הוכחה יהיו שתי נקודות, c, < d,c, d בקטע [b,]. ע פ משפט לגראנז, מאחר והפונקציה רציפה וגזירה בקטע, קיים d) k (c, עבורו f (d) f (c) = f (k) = 0 d c f (d) f (c) = 0 f (d) = f (c) הראינו כי לכל,c d בקטע, (d) f, (c) = f ועל כן f קבועה בקטע הנ ל..7 מצאו כמה פתרונות בדיוק יש למשוואה = 5 0x.x 5 + פתרון נביט בפונקציה 5 0x f. (x) = x 5 + כפולינום מדרגה אי זוגית, אנו יודעים שיש לו לפחות שורש אחד. נסמן שורש זה ב. נניח בשלילה כי יש פתרון נוסף, b, בקרן (,). אז, לפי משפט רול, קיים (b c,) עבורו = 0 (c).f אבל, f (x) = 5x > 0 וזו סתירה. בדומה, מניחים בשלילה כי יש פתרון נוסף d בקרן (, ) ומגיעים לאותה הסתירה. דרך נוספת: מהגזירה הגענו למסקנה מעניינת הפונקציה תמיד עולה. אם היא תמיד עולה, לא ייתכן שיש לה יותר ממפגש אחד עם ציר ה x, ולכן אין יותר משורש אחד. 5
6 Mthemtics, Summer 20 / Exercise 3 Notes.8 נתונה פונקציה (x) f רציפה בקטע 2] [0, ומקיימת (2) f f (0) = ו ( ).f (0) < f הוכיחו כי קיימת נקודה.f (c) = f (c + ) עבורה c (0, ) רמז: ניתן להשתמש בפונקציית העזר ) + (x,g (x) = f (x) f ולהיעזר במשפט ערך הביניים. פתרון נגדיר פונקצית עזר: ) + (x.g (x) = f (x) f נשים לב כי g (0) = f (0) f () < 0 (שכן נתון לנו ש ( ) f). (0) < f כמו כן, g () = f () f (2) = f () f (0) > 0 מאותה הסיבה ממש. כמו כן, g הנה רציפה (כסכום של רציפות), ולכן ממשפט ערך הביניים קיימת (,0) c עבורה = 0 (c),g כלומר f (c) f (c + ) = 0 f (c) = f (c + ).9 תהי (x) f פונקציה חיובית גזירה ב R עבורה מתקיים = 0 (x) lim x f וגם = 0 (x).lim x f הוכיחו כי קיים c R עבורו = 0 (c).f רמז: משפט רול. הוכחה נביט בנקודה = 0 0 x. אם היא נקודת מקסימום, הנגזרת בה היא 0 (לפי משפט פרמה) וסיימנו. אחרת, יש מימינה או משמאלה נקודה x שגבוהה ממנה (כלומר ).(f (x 0 ) < f (x נניח ש x מימינה של x 0 (זה לא באמת משנה; אתם מוזמנים לבדוק את המקרה השני). כלומר, הפונקציה עולה מ x 0 ימינה לכיוון x. מכיוון שהפונקציה חיובית, היא צריכה לרדת חזרה ל 0, וממשפט ערך הביניים, תהיה בין x ל נקודה שגובהה בדיוק הגובה של x 0 (ציירו והיווכחו!). נקרא לנקודה הזו x. 2 כלומר, ) 2 f. x) 0 ) = f x) ממשפט רול נקבל את הדרוש..0 תהי (x) f פונקציה גזירה פעמיים בקטע 3).(, נניח כי מתקיים (3) f.f () = f (2) = הראו כי קיימת 3) (, c עבורה = 0 (c).f רמז: משפט רול. הוכחה מאחר ו ( 2 ) f () = f ו f גזירה, קיימת, לפי משפט רול, 2) (, עבורה = 0 ().f בדומה, מאחר ו ( 3 ),f (2) = f קיימת, לפי משפט רול, 3) (2, b עבורה = 0 (b).f לכן f () = 0 = f (b) עבור. < b מאחר ו f גזירה (כי f גזירה פעמיים), נובע ממשפט רול כי קיימת (b c,) עבורה f (c) = 0 6
7 Mthemtics, Summer 20 / Exercise 3 Notes. תהי (x) f פונקציה גזירה פעמיים בקטע ].[, נניח כי (0) 2f.f ( ) + f () = הראו כי קיימת ) (, c f () f (0) = f (0) f ( ) f () f (0) 0 = f (0) f ( ) 0 ( ) f () f (0) 0 עבורה = 0 (c) f. רמז: משפטי לגראנז ורול. הוכחה נביא את המשוואה לצורה של משפט לגראנז. נקבל: f (0) f ( ) 0 ( ) = f () = f (b) f () = f (b) או, יותר טוב: לפי משפט לגראנז, קיימת (0, ) עבורה וקיימת ) (0, b עבורה לכן, עבור, b אלה המקיימים, < b מתקיים מאחר ו f גזירה (שכן f גזירה פעמיים), לפי משפט רול נובע כי קיימת (b c,) עבורה = 0 (c) f, ( + x) 20 > + 20x 2. הוכיחו כי לכל > 0 x מתקיים הוכחה נגדיר (x 20 f. (x) = ) + נשים לב כי = (0) f. נרשום את אי השוויון שלעיל בצורה חדשה: ( + x) 20 > 20x f (x) f (0) > 20x f (x) f (0) x 0 > 20 כאשר את המעבר האחרון ביצענו מתוך ידיעה ש x חיובי. באגף שמאל רשומה לנו צורת לגראנז. על פי משפט לגראנז (ומאחר ו f גזירה!), קיים (x c,0) עבורו אגף שמאל שווה ל ( c ) f. נגזור את f: f (x) = 20 ( + x) 200 לכן f (x) f (0) x 0 = 20 ( + c) 200 > 20 7
8 Mthemtics, Summer 20 / Exercise 3 Notes x + > x 2 3. הוכיחו כי לכל x חיובי מתקיים x+.f (x) = נשים לב כי = (0).f נרשום את אי השוויון הנתון מחדש: הוכחה נגדיר x + > x 2 f (x) f (0) > x 2 f (x) f (0) x 0 > 2 כאשר את המהלך האחרון ביצענו מתוך ידיעה ש x חיובי. באגף שמאל רשומה לנו צורת לגראנז. על פי משפט לגראנז (ומאחר ו f גזירה!), קיים (x c,0) עבורו אגף שמאל שווה ל ( c ) f. נגזור את f: f (x) = (x + ) 3/2 2 ולכן נותר לנו להראות כי 2 (x + ) 3/2 > 2 לכל x חיובי. אכן, כפל ב ( 2 ) ייתן: (x + ) 3/2 < (x + ) 3/2 < ( ) x + ln x > x + וברור כי שוויון זה הנו נכון. 4. הוכיחו כי לכל x חיובי מתקיים הוכחה נגדיר f. (x) = ln x נרשום את אי השוויון בצורה חדשה, וניעזר בחוקי לוגריתמים: ln (x + ) ln x > f (x + ) f (x) > f (x + ) f (x) (x + ) x > x + x + x + 8
9 Mthemtics, Summer 20 / Exercise 3 Notes באגף שמאל רשומה לנו צורת לגראנז. על פי משפט לגראנז (ומאחר ו f גזירה!), קיים ( + x c,x) עבורו אגף שמאל שווה ל ( c ) f. נגזור את f: f (x) = x f (x + ) f (x) (x + ) x = c > x + sin x < x ולכן 5. הוכיחו כי לכל x חיובי מתקיים רמז כמעט הראנו זאת כבר בכיתה! הוכחה ראינו שלכל,x y מתקיים sin x sin y x y נציב = 0 y ונקבל שלכל x מתקיים sin x sin 0 x 0 כלומר sin x x עתה נביט רק ב x ים חיוביים (עליהם שאלו). לכן מתקיים sin x sin x x כמו כן, שוויון מתקיים רק ב 0. נראה זאת: לכל > x, ברור כי.sin x < x לכן נתבונן רק ב x ים בקטע ).(0, נגדיר.f (x) = sin x x נשים לב כי = 0 (0).f כמו כן, f (x) = cos x אבל < x cos לכל ) (0,,x ולכן f יורדת בקטע זה, ולכן = 0 (0) f f (x) < לכל ) (0,,x כלומר,sin x < x 9
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
x a x n D f (iii) x n a ,Cauchy
גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור
קיום ויחידות פתרונות למשוואות דיפרנציאליות
קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
מתמטיקה בדידה תרגול מס' 5
מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
{ : Halts on every input}
אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
סיכום- בעיות מינימוםמקסימום - שאלון 806
סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,
אינפי - 1 תרגול בינואר 2012
אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,
( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת
הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (
דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)
פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז
פתרון תרגיל בית 6 מבוא לתורת החבורות 88-211 סמסטר א תשע ז הוראות בהגשת הפתרון יש לרשום שם מלא, מספר ת ז ומספר קבוצת תרגול. תאריך הגשת התרגיל הוא בתרגול בשבוע המתחיל בתאריך ג טבת ה תשע ז, 1.1.2017. שאלות
פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.
פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
אלגברה ליניארית (1) - תרגיל 6
אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,
Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.
Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.
הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי
הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב 2011 2010 פרופ' יעקב ורשבסקי אסף כץ 15//11 1 סמל לזנדר יהי מספר שלם קבוע, ו K שדה גלובלי המכיל את חבורת שורשי היחידה מסדר µ. תהי S קבוצת הראשוניים הארכימדיים
אלגברה מודרנית פתרון שיעורי בית 6
אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )
הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b
אוסף שאלות מס. 3 פתרונות
אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.
בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית
מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1
1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n
s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=
את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -
אלגברה ליניארית 1 א' פתרון 2
אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק
co ארזים 3 במרץ 2016
אלגברה לינארית 2 א co ארזים 3 במרץ 2016 ניזכר שהגדרנו ווקטורים וערכים עצמיים של מטריצות, והראינו כי זהו מקרה פרטי של ההגדרות עבור טרנספורמציות. לכן כל המשפטים והמסקנות שהוכחנו לגבי טרנספורמציות תקפים גם
רשימת משפטים והגדרות
רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F
c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )
הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה
מתמטיקה בדידה תרגול מס' 13
מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.
מערך תרגיל קורס סמסטר ב תשע ה בחשבון אינפיניטסימלי 2 למדעי המחשב
מערך תרגיל קורס 89-33 סמסטר ב תשע ה בחשבון אינפיניטסימלי למדעי המחשב יוני 05, גרסה 0.9 מבוא נתחיל עם כמה דגשים: דף הקורס נמצא באתר.www.math-wiki.com שאלות בנוגע לחומר הלימודי מומלץ לשאול בדף השיחה באתר
"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי
הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת
סרוקל רזע תרבוח 1 ילמיסיטיפניא ןובשח
חוברת עזר לקורס חשבון אינפיטיסימלי 495 יולי 4 חוברת עזר לקורס חשבון אינפיטיסימלי 495 עמוד חוברת עזר לקורס חשבון אינפיטיסימלי 495 יולי 4 תוכן העניינים נושא עמוד נושא כללי 3 רציפות זהויות טריגונומטריות 4
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
3-9 - a < x < a, a < x < a
1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
תורת הקבוצות תרגיל בית 2 פתרונות
תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית
תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME
הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי
פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z.
פרק 5 טורי חזקות 5.5 טור לורן הגדרה 5. טורלורןסביבקוטב z מסדרm שלפונקציה( f(z הואמהצורה n m a n(z z m. למשל,טורלורן שלהפונקציה e z /z 2 סביב הוא + 2./z 2 +/z+/2+/3!z+/4!z משפט 5. תהי f פונקציה אנליטית
אלגברה ליניארית 1 א' פתרון 7
אלגברה ליניארית 1 א' פתרון 7 2 1 1 1 0 1 1 0 1 0 2 1 1 0 1 0 2 1 2 1 1 0 2 1 0 1 1 3 1 2 3 1 2 0 1 5 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 4 0 0 0.1 עבור :A לכן = 3.rkA עבור B: נבצע פעולות עמודה אלמנטריות
תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי
חשבון אינפיניטסמלי 2 סיכומי הרצאות
חשבון אינפיניטסמלי סיכומי הרצאות 9 ביולי מרצה: פרופ מתניה בן ארצי מתרגל: מני אקא mennyk@mth.huji.c.il סוכם ע י: אור שריר פניות לתיקונים והערות: tnidtnid@gmil.com הערה לקראת המבחנים כרגע חסרים מספר דברים
סיכום אינפי 2 19 ביוני 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין
סיכום אינפי 2 9 ביוני 200 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה בשום דרך. סוכם ע"י נגה רוטמן בשעות לא הגיוניות בעליל,
תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית:
משפט הדיברגנץ תחום חסום וסגור בעל שפה חלקה למדי, ותהי F פו' וקטורית :F, R n R n אזי: div(f ) dxdy = F, n dr נוסחת גרין I: uδv dxdy = u v n dr u, v dxdy הוכחה: F = (u v v, u x y ) F = u v כאשר u פו' סקלרית:
תרגול מס' 1 3 בנובמבר 2012
תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),
אלגברה לינארית (1) - פתרון תרגיל 11
אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6
טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.
1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח
חשבון אינפיניטסימלי (2)
חשבון אינפיניטסימלי (2) איתי שפירא 30 ביוני 2017 מתוך הרצאות מהאונברסיטה העברית 2017. i.j.shpir@gmil.com תוכן עניינים 1 מבוא והשלמות 5 1.1 כלל לופיטל................................. 5 1.2 חקירת פונקציות..............................
gra לא שימושי -rad רדיינים. רדיין = רק ברדיינים. נניח שיש לנו משולש ישר זוית. היחס בין שתי הצלעות שמול הזוית הישרה, נקבע ע"י הזוית.
A-PDF MERGER DEMO 56 פונקציות טריגונומטריות במחשבון בד"כ יש אופציות: deg מעלות מניח חלוקת המעגל ל 6 חלקים, כל אחד מעלה למה עשו 6? זה מספר עם הרבה מחלקים וזה גם קרוב ל 65 6 π π 6 π π α α α 6 8 π 6 57 ~
חשבון אינפיניטסמלי מתקדם 1 סיכומי הרצאות
חשבון אינפיניטסמלי מתקדם 1 סיכומי הרצאות 13 בינואר 211 מרצה: אילון לינדנשטראוס מתרגל: רון רוזנטל סוכם ע י: אור שריר פניות לתיקונים והערות: tnidtnid@gmail.com אתר הסיכומים שלי: http://bit.ly/huji_notes
מודלים חישוביים תרגולמס 5
מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך
אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט
467 אלגברה א', סמסטר חורף תשס"ט, פתרונות לשיעורי הבית, עמוד מתוך 6 467 אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט תוכן עניינים : גליון שדות... גליון מרוכבים 7... גליון מטריצות... גליון 4 דירוג,
חשבון אינפיניטסימלי 1
חשבון אינפיניטסימלי 1 יובל קפלן סיכום הרצאות פרופ צליל סלע בקורס "חשבון אינפיניטסימלי 1" (80131) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו.
אלגברה ליניארית 1 א' פתרון 11
אלגברה ליניארית 1 א' פתרון 11.1 K α : F איזומורפיזם של שדות. א. טענה 1 :.α(0 F ) = 0 K עלינו להוכיח כי לכל,b K מתקיים.b + α(0 F ) = α(0 F ) + b = b עבור b K (כיוון ש α חח"ע ועל), קיים ויחיד x F כך ש.α(x)
חדוו"א 2 סיכום טענות ומשפטים
חדוו"א 2 סיכום טענות ומשפטים 3 ביוני 2 n S(f, T ) := (t k+ t k ) inf k= סכום דרבו תחתון מוגדר על ידי [t k,t k+ ] f אינטגרל רימן חלוקות של קטע חלוקה של קטע [,] הינה אוסף סדור סופי של נקודות מהצורה: טענה.2
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( )
9. חשבון אינטגרלי. עד כה עסקנו בבעיות של מציאת הנגזרת של פונקציה נתונה. נשאלת השאלה בהינתן נגזרת האם נוכל למצוא את הפונקציה המקורית (הפונקציה שנגזרתה נתונה)? זוהי שאלה קשה יותר, חשבון אינטגרלי דן בבעיה
קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.
א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.
מבנים אלגבריים II 27 במרץ 2012
מבנים אלגבריים 80446 II אור דגמי, or@digmi.org 27 במרץ 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ אלכס לובוצקי בשנת לימודים 2012 1 תוכן עניינים 1 שדות 3 1.1 תזכורת מהעבר....................................................
תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית,
תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו. סודר באמצעות L
חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה.
חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. מרצה: למברג דן תוכן העניינים 3 מספרים ממשיים 1 3.................................. סימונים 1. 1 3..................................
מתמטיקה בדידה תרגול מס' 12
מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע
תורת ההסתברות 1 יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס "תורת ההסתברות 1" (80420) באוניברסיטה העברית,
תורת ההסתברות יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס "תורת ההסתברות " (80420) באוניברסיטה העברית, 8 2007. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו. סודר באמצעות
(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;
מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =
משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ
משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת
חשבון אינפיניטסימלי מתקדם II 21 ביוני 2012
חשבון אינפיניטסימלי מתקדם 836 II אור דגמי, or@digmi.org ביוני אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ ארז לפיד בשנת לימודים נושאים לקורס. המרחב.C(K). קירוב ע י פולינומים, משפט Stone-Weirstrss
n x 2 i x i x 2 i 1 x i A n = אשר מייצגים את השטח של איחוד של מלבנים, במקרה אחד החוסמים את הגרף מבחוץ, ובמקרה השני אשר חסומים בתוך הגרף.
סיכומים בחדו"א 2 שירי ארטשטיין 22 co כל הזכויות שמורות לשירי ארטשטיין. אין להעתיק, לשכפל, לצלם, לתרגם, להקליט, לשדר, לקלוט ו/או לאכסן במאגר מידע בכל דרך ו/או אמצעי מכני, דיגיטלי, אופטי, מגנטי ו/או אחר
פונקציות מרוכבות בדצמבר 2012
פונקציות מרוכבות 80519 אור דגמי, or@digmi.org 30 בדצמבר 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ גנאדי לוין בשנת לימודים 2013 מייל של המרצב: levin@math.huji.ac.il אפשר לקבוע פגישה. הקורסלאמבוססעלאףספרספציפי,
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
אלגברה ליניארית 1 א' פתרון 8
אלגברה ליניארית 1 א' פתרון 8.1 נניח כי (R) A M n מקיימת = 0 t.aa הוכיחו כי = 0.A הוכחה: נביט באיברי האלכסון של.AA t.(aa t ) ii = n k=1 (A) ik(a t ) ki = n k=1 a ika ik = n k=1 a2 ik = 0 מדובר במספרים ממשיים,
גמישויות. x p Δ p x נקודתית. 1,1
גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות
סיכום לינארית 1 28 בינואר 2010 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך.
סיכום לינארית 28 בינואר 2 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך הערות יתקבלו בברכה nogarotman@gmailcom תוכן עניינים 3 מבוא והגדרות בסיסיות 6 שדות 7 המציין של
פרק 8: עצים. .(Tree) במשפטים הגדרה: גרף ללא מעגלים נקרא יער. דוגמה 8.1: תרגילים: הקודקודים 2 ו- 6 בדוגמה הוא ).
מבוא לפרק: : עצים.(ree) עצים הם גרפים חסרי מעגלים. כך, כיוון פרק זה הוא מעין הפוך לשני הפרקים הקודמים. עץ יסומן לרב על ידי במשפטים 8.1-8.3 נפתח חלק מתכונותיו, ובהמשך נדון בהיבטים שונים של "עץ פורש" של
TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים
TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה
אוטומטים- תרגול 8 שפות חסרות הקשר
אוטומטים- תרגול 8 שפות חסרות הקשר דקדוק חסר הקשר דקדוק חסר הקשר הנו רביעיה > S
אלגברה לינארית מטריצות מטריצות הפיכות
מטריצות + [( αij+ β ij ] m λ [ λα ij ] m λ [ αijλ ] m + + ( + +C + ( + C i C m q m q ( + C C + C C( + C + C λ( ( λ λ( ( λ (C (C ( ( λ ( + + ( λi ( ( ( k k i חיבור מכפלה בסקלר מכפלה בסקלר קומוטטיב אסוציאטיב
brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק
יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות
אלגברה לינארית 1 יובל קפלן
אלגברה לינארית 1 יובל קפלן מחברת סיכום הרצאות ד"ר אלי בגנו בקורס "אלגברה לינארית 1" (80134) באוניברסיטה העברית, 7 2006 תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן אין המרצה אחראי לכל טעות שנפלה בו סודר
(Derivative) של פונקציה
נגזרת Drivtiv של פונקציה t הנגזרת היא המושג החשוב בקורס, ולה חשיבות מעשית רבה היא מכמתת את קצב השינוי של תופעה כלשהי פיסיקלית, כלכלית, וויזואלית דוגמאות: מהירות של עצם היא קצב השינוי במקומו, ולכן המהירות
אוטומטים ושפות פורמליות תרגולים
אוטומטים ושפות פורמליות תרגולים מבוסס על תרגולים של מר גולדגביכט עומר, אוניברסיטת בר אילן 2012. שיעור 1 הגדרות: א"ב: אוסף סופי ולא ריק של סימנים/אותיות/תווים. נסמן אותו באות. דוגמאות: 9},... 1,,{0, {א,..,.
מבוא ללוגיקה מתמטית 80423
מבוא ללוגיקה מתמטית 80423 24 במרץ 2012 איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה או המתרגל קשורים לסיכום זה בשום דרך. הערות יתקבלו בברכה.noga.rotman@gmail.com אהבתם? יש עוד! www.cs.huji.ac.il/
מכניקה אנליטית תרגול 6
מכניקה אנליטית תרגול 6 1 אלימינציה של קואורדינטות ציקליות כאשר יש בבעיה קואורדינטה ציקלית אחת או יותר, לעתים נרצה לכתוב פעולה חדשה (או, באופן שקול, לגראנז'יאן חדש) אשר לא כולל את הקואורדינטות הללו, וממנו
ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx
פרק 9: חשבון דיפרנציאלי ואינטגרלי O 9 ושל בציור שלפניך מתוארים גרפים של הפרבולה f() = נמצאת על הנקודה המלבן CD מקיים: הישר = 6 C ו- D נמצאות הפרבולה, הנקודה נמצאת על הישר, הנקודות ( t > ) OD = t נתון:
פולינומים אורתוגונליים
פולינומים אורתוגונליים מרצה: פרופ' זינובי גרינשפון סיכום: אלון צ'רני הקורס ניתן בסמסטר אביב 03, בר אילן פולינומים אורתוגונאליים תוכן עניינים תאריך 3.3.3 הרצאה מרחב מכפלה פנימית (הגדרה, תכונות, דוגמאות)
החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.
החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע