|
|
- Μνήμη Αναστασιάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1 The problem of the representation of an integer n as the sum of a given number k of integral squares is one of the most celebrated in the theory of numbers... Almost every arithmetician of note since Fermat has contributed to the solution of the problem, and it has its puzzles for us still. G. H. Hardy S 3, S 4 tetsushi@math.kyoto-u.ac.jp
2 2 p 2 p = x 2 + y 2 (x, y Z) , 3,, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 3, 9, 61, 67, 71, 73, 79, 83, 89, 97,... 7 a, b n a b n a b (mod n) a b n 2.1 ( ). p p p = x 2 + y 2 x, y Z 2 p 1 (mod 4) p 1. p = x 2 + y 2 ( x, y Z) 2. p 1 (mod 4) 2 (1) (2) 2.2 (2) (1) 2.1 p x 2 + y = , 13 = , 17 = , 29 = , 37 = , 41 = , 3 = , 61 = , 73 = , 89 = , 97 = p = x 2 + y 2 x, y p 4 3 p =3, 7, 11, 19, 23,... p = x 2 + y 2
3 x, y x 2 + y 2 3 (mod 4). x 0 (mod 4) x 2 0 (mod 4) x 1 (mod 4) x (mod 4) x 2 (mod 4) x (mod 4) x 3 (mod 4) x (mod 4) x y x 2 + y x 2 + y 2 3 (mod 4) = , 1171, = x 2 + y = x 2 + y = [Za] S = {(x, y, z) Z 3 x, y, z > 0, x 2 +4yz = p} f (x +2z, z, y x z) x<y z f :(x, y, z) (2y x, y, x y + z) y z<x<2y (x 2y, x y + z, y) x>2y #S g :(x, y, z) (x, z, y) 2 #S S S f f(f(x, y, z)) = (x, y, z) f f(x, y, z) =(x, y, z) (x, y, z) S p 4k +1 f (1, 1,k) 2.3 (). p r 2 1 (mod p) r p 1 (mod 4). r 2 1 (mod p) r F p F p p 1 p 1 4 p 1 (mod 4) 2.1 p p 1 (mod 4) 2.3 r 2 1 (mod p) r Z 0 a, b < p (a, b) ( p + 1) 2 α α p +1 > p ( p + 1) 2 > p ( p + 1) 2 p +10 a, b < p (a, b) p +1
4 4 a rb p p a 1 rb 1 a 2 rb 2 (mod p) (a 1,b 1 ) (a 2,b 2 ) 0 a 1,a 2,b 1,b 2 < px = a 1 a 2, y = b 1 b 2 (x, y) (0, 0) x 2 (a 1 a 2 ) 2 r 2 (b 1 b 2 ) 2 y 2 (mod p) x 2 + y 2 0 (mod p) x, y < p 0 <x 2 + y 2 < 2p x 2 + y 2 0 2p p x 2 + y 2 = p p p 1 (mod 4) p = x 2 + y 2 m mp = x 2 + y 2 (0 <m<p) (x, y, m) : 2.3 a (mod p) a (1 a<p) p a a 1 a< p 2 a2 +1< p2 4 +1<p2 a 2 +1=mp (0 <m<p) mp = x 2 + y 2 (0 <m<p) m m 0 m 0 > 1 m 0 p = x 2 + y 2 (x, y) r, s x = x rm 0, y = y sm 0, x m0 2, y m0 2 (x ) 2 +(y ) 2 x 2 + y 2 0 (mod m 0 ) (x ) 2 +(y ) 2 m 0 m 1 = (x ) 2 +(y ) 2 m 0 (x ) 2 +(y ) 2 m m2 0 4 = m2 0 2 m 1 m0 2 x, y m 0 : x, y m 0 m 0 p m <m 0 <p (x ) 2 +(y ) 2 0 m 1 0 (xx + yy ) 2 +(xy x y) 2 =(x 2 + y 2 ) ( (x ) 2 +(y ) 2) = m 2 0m 1 p x x (mod m 0 ),y y (mod m 0 ) xx + yy x 2 + y 2 0 (mod m 0 ), xy x y xy xy 0 (mod m 0 ) xx + yy = m 0 α, xy x y = m 0 β α 2 + β 2 = m 1 p m 1 m0 2 m 0 m 0 = Z 1 1 Z[ 1] Z[ 1] A 2 B 2 =(A + B)(A B) A = x, B = y 1 x 2 + y 2 =(x + y 1)(x y 1) p p =(x + y 1)(x y 1) p Z[ 1] p Q( 1) [Ta1], [HW], [Co] p
5 Q Gal(Q/Q) p Q Q p Gal(Q p /Q p ) Gal(Q/Q) Gal(Q p /Q p ) Gal(Q/Q) Gal(Q p /Q p ) Gal(F p /F p ) I p p Gal(F p /F p ) Frob p : F p x x 1/p F p Frob p Gal(Q/Q) Frob p Gal(Q/Q) p Frob p Gal(Q/Q) Frob p well-defined K/Q K/Q p I p Gal(K/Q) p K/Q Frob p Gal(K/Q) well-defined p Frob p Q Q p Frob p ρ: Gal(Q/Q) GL n (C) Q n p ρ(i p ) ρ p 2 Q( 1)/Q 1 ρ Q( 1)/Q : Gal(Q/Q) Gal(Q( 1)/Q) = {±1} C = GL 1 (C) ρ Q( 1)/Q 2 p ρ Q( 1)/Q (Frob p ) GL 1 (C) well-defined GL 1 (C) 1 p Q( 1)/Q ρ Q( 1)/Q (Frob p )=1 p ρ Q( 1)/Q (Frob p ) GL 1 (C) ρ Q( 1)/Q ρ Q( 1)/Q (Frob p ) p = x 2 + y 2 Q 3.1 (Q ()). 1. n ρ: Gal(Q/Q) GL n (C) N N p ρ p ρ(frob p ) p (mod N) 2. ρ (1) N 3. N (1) ρ Gal(Q(ζ N )/Q) ζ N = exp(2π 1/N ) 1 N (3) Q(ζ N ) N Q
6 6 exp(2π 1z) ρ: Gal(Q/Q) GL n (C) ρ(frob p ) n =1 ρ(frob p ) p (mod N) (N ) ρ ρ(frob p ) 2.1 Q( 1) = Q(ζ 4 ) 3.1 ρ Q( 1)/Q (Frob p ) p (mod 4) p x, y Z, p= x 2 +2y 2 p 1, 3 (mod 8) 2. 3 p x, y Z, p= x 2 +3y 2 p 1 (mod 3) 3. p x, y Z, p= x 2 +y 2 p 1, 9 (mod 20) 3.1 (1) (3) p Q 2 Q [Ta1], [HW], [Co] 4 p = x 2 + y 2 p p =6x 2 + xy + y 2 (x, y Z) x, y Z, p=6x 2 + xy + y 2 p a 1,...,a r (mod N) a 1,...,a r,n 1000 p =6x 2 + xy + y 2 23, 9, 101, 167, 173, 211, 223, 271, 307, 317, 347, 449, 463, 93, 99, 607, 691, 719, 809, 821, 829, 83, 877, 883, 991, = ( 1) + ( 1) 2 9 = ( 7) + ( 7) 2 = = ( ) + ( ) 2 = p =6x 2 + xy + y 2
7 f = (1 q n )(1 q 23n )= a n q n n=1 n=1 a n p 23 x, y Z, p=6n 2 + nm + m 2 a p =2 f p p =6x 2 + xy + y 2 f Y X f(q) =q (1 q n )(1 q 23n )= a n q n = q q 2 q 3 +q 6 +q 8 q 13 q 16 +q 23 q 24 +q 2 +q 26 +q 27 q 29 q 31 +q 39 n=1 n=1 q 41 q 46 q 47 +q 48 +q 49 q 0 q 4 +q 8 +2q 9 +q 62 +q 64 q 69 q 71 q 73 q 7 q 78 q 81 +q 82 +q 87 +q 93 +q 94 q q 101 q q 118 +q 121 +q 123 q 127 q 128 q 131 +q 138 q 139 +q 141 +q 142 +q 146 q 147 +q 10 q 11 +q 162 q q q 173 q q 177 q 179 +q 184 q 186 q 192 q 193 q 197 +q q 202 +q q 211 +q 213 +q 216 +q q 223 q 232 q 233 q 239 q 242 q 246 q 248 +q 24 q 27 +q 262 q q 271 q 277 +q 278 q 282 +q 289 +q 294 q 299 +q q q 307 q 311 +q q 317 q 32 +q 326 q 328 q q q q 347 q 349 q 31 q 33 +2q 34 +q 38 + q 361 q 363 q 368 q 376 +q 377 +q 381 +q 384 +q 386 +q 392 +q 393 +q 394 q 397 q 400 +q 403 q 409 +q q 422 q 426 q 432 q 438 q 439 q q q 449 +q 43 q q 463 +q 464 +q q 472 +q 478 q 487 +q 489 q 491 +q 496 q q 01 q 09 +q 12 +q 14 2 q 19 +q 29 +q 33 +q 37 +q 38 q 41 2 q 42 q 47 q 2 +q 4 q 68 +q 7 q 77 q 78 +q 79 q 84 q 87 +q 91 +2q 93 +q 98 +2q 99 q 600 q q q 607 +q q 614 +q 621 +q 622 q 624 +q 62 2 q q 634 q 637 q 647 q 648 +q 60 q 63 +q 66 +q 662 q q 669 q 673 +q 67 q q q 694 +q 696 +q 698 +q 699 +q q 706 q 713 +q q 719 q 722 q 72 +q 726 +q 729 q 739 +q 744 +q 72 q 74 q 761 q q 767 +q 771 q 77 q 783 q 784 q 786 +q 794 q 806 +q q q 809 q q 813 +q q 821 q q 829 +q 831 q 832 q 834 q q 83 q 87 q 89 q 863 q q 877 +q q 883 +q 886 q 887 +q q 898 +q 899 q q 921 +q 922 +q q 926 q q 933 q q 944 q 947 +q q 91 q 967 +q 968 +q 974 +q 97 q 978 +q 982 +q q 991 +q q 997 +q p =6x 2 + xy + y 2 6x 2 + xy + y 2 α = x y (x, y Z) α α = ( x y )( x y ) =6x 2 + xy + y 2 α α K = Q( 23) O K = Z [ 1+ ] 23 2 p p =6x 2 + xy + y 2 O K p = α α K/Q Q K/Q 1 ρ K/Q : Gal(Q/Q) Gal(K/Q) = {±1} C = GL 1 (C) p 23 p K/Q ρ K/Q (Frob p )=1
8 8 23 K/Q p K/Q (p) O K (p) =Q 1 Q 2 O K K Q(ζ 23 ) p K/Q p (mod 23) p K/Q (p) =Q 1 Q 2 O K K 3 Q 1,Q 2 Q 1,Q 2 K H K H K Gal(H/K) = Cl(K) Q O K Q H Cl(K) K H/K K = Q( 23) H H p 23 x, y Z, p=6x 2 + xy + y 2 (p) =Q 1 Q 2, Q 1,Q 2 p K/Q Q 1,Q 2 H/K p H/Q Gal(H/Q) Frob p =1 K = Q( 23) H X 3 X 1 Gal(H/Q) = S 3 3 p 23 Frob p Gal(H/Q) S 3 2 τ ρ H/Q : Gal(Q/Q) Gal(H/Q) = S 3 τ GL2 (C) Q 2 S 3 x S 3 Tr(τ(x)) = 2 x x, y Z, p=6x 2 + xy + y 2 Tr ρ H/Q (Frob p )=2 2 2 ρ H/Q Tr ρ H/Q (Frob p )=2 p ρ H/Q p (mod N) 4.1 f f 2 ρ f : Gal(Q/Q) GL 2 (C) Tr ρ f (Frob p )=a p ρ f ρ H/Q 4.1 p = x 2 + y 2 p Q( 1) 1 Q( 1) Q( 1) Q( 1)/Q
9 9 Q p = x 2 +2y 2, p = x 2 +3y 2, p = x 2 +y 2 Q Q p =6x 2 + xy + y 2 Q( 23) H Q Gal(H/Q) = S 3 Q p f Q( 23) H Q p =6x 2 + xy + y 2 f f f = 1 { q 6n2 +nm+m 2 } q 6n2 +nm+2m 2 2 n,m Z n,m Z 23 2 S f Q( 23) GL(1)/Q( 23) GL(2)/Q f 1 [Se] GL(n) GL n (C).1 ( ). K ρ: Gal(K/K) GL n (C) n GL n (A K ) π L(s + n 1 2,ρ)=L(s, π) l K ρ: Gal(Q/Q) GL n (Q l )
10 10 K l GL n (Q l ) l ι: Q l = C l.2 ( (GL(n) )). K l ι: Q l = C n l ρ: Gal(K/K) GLn (Q l ) GL n (A K ) π L(s + n 1 2,ρ)=L(s, π) ρ π l l p l l π π = vπ v v π v π (isobaric) [Cl], p.84 GL(1) A n =1 n 2 l l 2 4 n R red = T K = Q, n=2 ρ l [Sa] K = Q, n =2 mod l n 2 ρ L/K ρ Gal(K/L) ([T], [It2], [It4], [It]) 6 k (k =2, 4, 6, 8) n k r k (n) := # { (x 1,...,x k ) Z k n = x x 2 } k 2.1 p r 2 (p) 0 p 1 (mod 4)
11 11 p r k (p) n r k (n) p r k (p) p r k (n) r k (p) p L Fundamenta Nova Theoriae Functionum Ellipticarum 1829 r 2 (n) r 4 (n) r 6 (n) r 8 (n) ϑ(q) = n= 1 2 ( ϑ(q) ) k q n2 ( ) k ϑ(q) =1+ r k (n)q n r k (n) k 2 ( ϑ(q) ) k r k (n) [Gl], [Na], [We] [Na] r 2 (p) 2.1 p 1 (mod 4) p = x 2 + y 2 (x, y Z, x, y 1) x, y x, y 8 (±x, ±y), (±y, ±x) p = x 2 + y 2 r 2 (p) =8 { χ(p) =( 1) (p 1)/2 1 p 1 (mod 4) = 1 p 3 (mod 4) n=1 r 2 (p) =4 ( 1+χ(p) ) = { 8 p 1 (mod 4) 0 p 3 (mod 4) r 4,r 6,r 8 p r 4 (p) = 8(1 + p) r 6 (p) = 16 ( χ(p)+p 2) 4 ( 1+χ(p)p 2) r 8 (p) = 16(1 + p 3 ) r 2 (p), r 4 (p), r 6 (p), r 8 (p) p (mod 4) p 7 r 10 (p) k =2, 4, 6, 8 p (mod??) r 10 (p) p r 10 (p)
12 12 r 10 (p) 1866 [Na] r 10 (p) = 4 ( 1+χ(p)p 4 ) + 64 ( χ(p)+p 4 ) + 8 (x + y 1) 4 p=x 2 +y 2 p = x 2 + y 2 (x, y) (x, y) (x, y) p=x 2 +y 2(x + y 1) 4 p Q( 1) r 10 (p) p = (±1) C = (±2) 2 1 (±1) = 360 r 10 () = 8424 χ() = 1 Re (x + y 1) 4 = x 4 + y 4 6x 2 y 2 4( 1+χ() 4 ) + 64 ( χ() + 4 ) + 8 (x + y 1) 4 =x 2 +y 2 = 4 ( 1+ 4 ) + 64 ( 1+ 4 ) + 32 (x 4 + y 4 6x 2 y 2 ) =x 2 +y 2, x,y 0 = ( ) = = 8424 r 10 (p) Q( 1) p r 10 (p) r 10 (p) 8 r 12 (p) p (mod??) p K/Q K r 12 (p) r 12 (p) r 10 (p) r 12 (p) r k (p) k 2 ( ϑ(q) ) k k 2 f 1,...,f r α 1,...,α r C f i 2 l ( ) k r ϑ(q) = α i f i i=1 ρ fi : Gal(Q/Q) GL 2 (Q l ) 2 l ρ fi p r k (p) = r α i Tr ρ fi (Frob p ) i=1
13 13 r k (p) r k (p) α i 2 l ρ fi Tr ρ fi (Frob p ) 2 k k =2, 4, 6, 8 ( ϑ(q) ) k f f 2 l ρ f Tr ρ f (Frob p ) p (mod??) p χ(p) =( 1) (p 1)/2 Q( 1)/Q 1 p n Q l ( n) r 10 (p) ( ϑ(q) ) 10 Q( 1) r 10 (p) (x + y 1) 4 p=x 2 +y 2 f l ρ f Q ρ f 2 Gal(Q/Q( 1)) Gal(Q/Q) Q( 1) ρ f Gal ( Q/Q( 1) ) 1 f 4.1 r 12 (p) ( ϑ(q) ) 12 6 Γ 0 (4) 6 b n g = q (1 q 2n ) 12 = b n q n n=1 n=1 r 12 (p) = 8(1 + p ) + 32 b p g b p g 2 l ρ g : Gal(Q/Q) GL 2 (Q l ) r 12 (p) r 12 (p) = 8(1 + p ) + 32 Tr ρ g (Frob p ) [BLGHT] Tr ρ g (Frob p ) [BGG] 8.1 ( g ). 0 α<β π N p C(N,α,β) lim N cos β Tr ρ g(frob p ) 2p /2 cos α C(N,α,β) (N p ) = 2 π β α sin 2 θ dθ
14 14, Tr ρ g(frob p ) 2p /2 1 p Tr ρ g(frob p ) [ 1, 1] 2p / sin 2 θ p (mod??) K/Q r 12 (p) r 12 (p) : k r k (n) k k r k (n) k ( ϑ(q) ) k rk (n) k SL 2 (A) k =3 n n >4 24h( n) n 3 (mod 8) r 3 (n) = 12h( 4n) n 1, 2,, 6 (mod 8) 0 n 7 (mod 8) h( d) d L [Ko] [O] x 2 + y z 2 [OS] x 2 + y z 2 3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 23, 307, 391, 679, 2719 [BLGHT] Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R., A family of Calabi-Yau varieties and potential automorphy II, preprint, to appear P.R.I.M.S. rtaylor/ [BGG] Barnet-Lamb, T., Gee, T., Geraghty, D., The Sato-Tate conjecture for Hilbert modular forms, preprint ( [Cl] Clozel, L., Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), [Co] Cox, D. A., Primes of the form x 2 + ny 2. Fermat, class field theory and complex multiplication, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, [Gl] Glaisher, J. W. L., On the numbers of representations of a number as a sum of 2r squares, where 2r does not exceed eighteen, Proc. London Math. Soc. (2) (1907),
15 1 [HW] Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, th ed., Oxford University Press, Oxford, 1979G. H., E. M., I,II,,, 2001 [Ko] Koblitz, N., Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, 97. Springer-Verlag, New York, ( : N. (, ),,, 2006 ) [Na] Nathanson, M. B., Elementary Methods in Number Theory, Graduate Texts in Mathematics, 19. Springer-Verlag, New York, [Neu] Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322. Springer-Verlag, Berlin, : J. ( (), ()),,, 2003 ) [O] Ono, K., Ramanujan, taxicabs, birthdates, ZIP codes, and twists, Amer. Math. Monthly 104 (1997), no. 10, [OS] Ono, K., Soundararajan, K., Ramanujan s ternary quadratic form. Invent. math. 130 (1997), no. 3, [Sa],,, [Se] Serre, J-P., Modular forms of weight one and Galois representations, Algebraic number fields: L- functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 197), pp Academic Press, London, [We] Weisstein, E. W., Sum of Squares Function, From MathWorld A Wolfram Web Resource. [Za] Zagier, D, A one-sentence proof that every prime p equiv (mod 4) is a sum of two squares, Amer Math Monthly 97 (1990). [It2] [] ,. [It3] ,. [It4] , :, , 40 4,. [It] , ,. [Ta1] 2,, [T] : 2008.
11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))
Drinfeld Drinfeld 29 8 8 11 Drinfeld [Hat3] 1 p q > 1 p A = F q [t] A \ F q d > 0 K A ( ) k( ) = A/( ) A K Laurent F q ((1/t)) 1/t C Drinfeld Drinfeld p p p [Hat1, Hat2] 1.1 p 1.1.1 k M > 0 { Γ 1 (M) =
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00
: 2010 9 6 ( ) 9 10 : 1. 9/6( ) 10:20 12:40 GL(2) Hecke ( ) 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 16:45 18:15 GL(2) I ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 9/7( ) 7:00 9:00 9:15 10:30 GL(2)
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο
Κεφάλαιο 8 Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα Σε αυτό το κεφάλαιο αρχικά αποδεικνύουµε ότι υπάρχει επέκταση σωµάτων µε οµάδα Galois την S n. Για το σκοπό αυτό εξετάζουµε τα συµµετρικά πολυώνυµα.
([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-
5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Discriminantal arrangement
Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.
( ),.,,, 1, [17]. 1. 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K. 1.2. Σ g g. M g, Σ g. g 1 Σ g,, Σ g Σ g. Σ g, M g,, Σ g.. g = 1, M 1 M 1, SL(2, Z). Q. g = 2, 2000 M 2 (Korkmaz [20], Bigelow Budney [5])., Bigelow
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
On the k-bessel Functions
International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Jordan Form of a Square Matrix
Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation
KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!
Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013
Palestine Journal of Matheatics Vol. ( (03, 86 99 Palestine Polytechnic University-PPU 03 On Subclasses of Multivalent Functions Defined by a Multiplier Operator Involving the Koatu Integral Operator Ajad
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Κβαντικη Θεωρια και Υπολογιστες
Κβαντικη Θεωρια και Υπολογιστες 1 Εισαγωγη Χειμερινο Εξαμηνο Iωαννης E. Aντωνιου Τμημα Μαθηματικων Aριστοτελειο Πανεπιστημιο Θεσσαλονικη 54124 iantonio@math.auth.gr http://users.auth.gr/iantonio Κβαντική
ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS
Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements
5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
Πυθαγόρειες Τριάδες: από την ανακάλυψη μιας κανονικότητας στη διατύπωση και την απόδειξη μιας πρότασης
Πυθαγόρειες Τριάδες: από την ανακάλυψη μιας κανονικότητας στη διατύπωση και την απόδειξη μιας πρότασης Δημήτριος Ντρίζος Σχολικός Σύμβουλος Μαθηματικών Τρικάλων και Καρδίτσας drizosdim@yahoo.gr Σεραφείμ
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
page: 2 (2.1) n + 1 n {n} N 0, 1, 2
page: 1 1 1 ( ) ( ) ( ) ( 1 ) 1) 2 1 page: 2 2 [ 4 ] [11] ( [11] ) Chapter I 0 n ( n ) (2.1) n + 1 n {n} 0, 1, 2, 3, 4,..., { }, {, { }}, {, { }, {, { }}}, {, { }, {, { }}, {, { }, {, { }}}},... n n =
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.
338-8570 255 e-mail: tkishimo@rimath.saitama-u.ac.jp 1 C T κ(t ) 1 [Projective] κ = κ =0 κ =1 κ =2 κ =3 dim = 1 P 1 elliptic others dim = 2 P 2 or ruled elliptic surface general type dim = 3 uniruled bir.
Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2
Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Generating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
The k-bessel Function of the First Kind
International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National
Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.
Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
COMPLEX NUMBERS. 1. A number of the form.
COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called
IUTeich. [Pano] (2) IUTeich
2014 12 2012 8 IUTeich 2013 12 1 (1) 2014 IUTeich 2 2014 02 20 2 2 2014 05 24 2 2 IUTeich [Pano] 2 10 20 5 40 50 2005 7 2011 3 2 3 1 3 4 2 IUTeich IUTeich (2) 2012 10 IUTeich 2014 3 1 4 5 IUTeich IUTeich
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Wishart α-determinant, α-hafnian
Wishart α-determinant, α-hafnian (, JST CREST) (, JST CREST), Wishart,. ( )Wishart,. determinant Hafnian analogue., ( )Wishart,. 1 Introduction, Wishart. p ν M = (µ 1,..., µ ν ) = (µ ij ) i=1,...,p p p
Οµάδες Κοτσίδων και δράσεις της απόλυτης οµάδας Galois
Οµάδες Κοτσίδων και δράσεις της απόλυτης οµάδας Galois Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. Συνέδριο Αλγεβρας Θεσσαλονίκη 2-3 Μαΐου 2014 Η παρούσα έρευνα έχει συγχρηµατοδοτηθεί
( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]
1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter
ECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions