Discriminantal arrangement
|
|
- Βασιλική Πρωτονοτάριος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement 1989 Manin Schctman Braid arrangement discriminantal arrangement [12] A = {H 0 1, H0 2,..., H0 n} C k n (generic arrangement) C n C n discriminantal arrangement B(n, k) B(n, k) B(n, 1) ( [14]) arrangement [12], [1], [3] Zamolodchikov equation [7] [15] [12] Z combinatorics ( combinatorics n k ) B(n, k) Z 1994 Falk [5] [13] sect. 8, [14] [9] A Z discriminantal arrangement combinatorics A B(n, k) combinatorics A = {H 0 1, H0 2,..., H0 n} 1997 Bayer Brandt [3] discriminantal arrangement very generic non very generic so.yamagata.math@gmail.com. The author is supported by The Ministry of Education, Culture, Sports, Science and Technology through Program for Leading Graduate School (Hokkaido University Ambitious Leader s Program )
2 very generic discriminantal arrangement 1999 Athanasiadeis [1] non very generic combinatorics 2016 Libgober Settepanella [11] [11] [10] combinatorics F V F k A = {H 1, H 2,..., H n } (arrangement of hyperplanes) F C V (k 1)- H α = (α 1, α 2,..., α k ) F k 0 H H = {v V α v = 0}, α v = (α 1, α 2,..., α k ) (v 1, v 2,..., v k ) = α i v i. J = {v V α v = a, a C} V C k+1 k- P(V) = (V \ {0})/C V C k+1 H k- H = {P = [U] P(V) U H} 1 i k A A B A A A = {H 1, H 2,..., H n } V P(V) A V P(V) A generic arrangement 1 p n {H i1, H i2,..., H ip } A, p k dim(h i1 H i2,..., H ip ) = k p, {H i1, H i2,..., H ip } A, p > k H i1 H i2,..., H ip =.
3 p 1234 p 1256 p l l 56 l H 1 H 2 H H 4 H 5 H 6 8 C 3 1: Intersection semilattice of L(A) (intersection poset) L(A) = { H B H B A}, x < y x y x < y x y Combinatorics semilattice lattice C 3 generic arrangementa = {H 1, H 2,..., H 6 } 1 l i j = H i H j p i jkl = l i j l kl 2.2 Discriminantal arrangement A = {H 0 1, H0 2,..., H0 n} C k generic arrangement H 0 1, H0 2,..., H0 n S(H 0 1,..., H0 n) (Hi 0 S ) n- H 1,..., H n i = 1,..., n H i Hi 0 = H i = Hi 0 S = {(H 1, H 2,..., H n ) H i H 0 i = or H i = Hi 0 (i = 1, 2,..., n)}.
4 S C n A S ([11]). Generic arrangement A generic arrangement S L = {i 1,..., i k+1 } [n] := {1,..., n} D L = {(H 1, H 2,..., H n ) S i j L [n], L =k+1 H i j } Discriminantal arrangement L {D L } L [n], L =k+1 B(n, k, A) Mannin Schectman [12]. Discriminantal arrangement normal vector Bayer Brandt [3]. Definition 2.1 (Bayer and Brandt [3]). A = {H 0 1, H0 2,..., H0 n} C k generic arrangement α 1, α 2..., α n H 0 1, H0 2..., H0 n normal vector normal vector section 2.1 (α 1, α 2..., α n ) (v 1, v 2..., v n ) = n α i v i. Discriminantal arrangement B(n, k, A) C n normal vector i=1 k+1 α L = ( 1) i det(α s1,..., αˆ si,..., α sk+1 )e si, (1) i=1 {s 1 < s 2 < < s k+1 } [n] {e j } 1 j n C n α L 0. C k P k \ H H 0 i H 0 i C k generic arrangement A = {H 1, H 2,..., H n } arrangement A = {H,1, H,2,..., H,n } i (i = 1, 2,..., n) H,i = H 0 i H A P k n- S Generic arrangement A Discriminantal arrangement B(n, k, A ) Discrimnantal arrangement combinatorics A [11] B(n, k, A) B(n, k, A ) A generic arrangement B(n, k, A ) combinatorics A A very generic, non very generic 2.3 good 3s-partition A(A ) s 2 n 3s s, n T = {L 1, L 2, L 3 } L i [n] L i = 2s, L i L j = s(i j), L 1 L 2 L 3 = ( L i = 3s) L 1 = {i 1,..., i 2s }, L 2 = {i s+1,..., i 3s }, L 3 = {i 1,..., i s, i 2s+1..., i 3s }. T = {L 1, L 2, L 3 } good 3s-partition. Lemma
5 Lemma 2.2 (Lemma 3.1 [11]). s 2, n = 3s, k = 2s 1 A = {H 0 1, H0 2,..., H0 n} C k generic arrangement [n] = [3s] good 3s-partition T = {L 1, L 2, L 3 } H s H,i, j = t L i L j H,t H,i, j H D L1 D L2 D L3 2. D Li B(n, k, A ) T = {L 1, L 2, L 3 } L 1 = {1, 2, 3, 4}, L 2 = {1, 2, 5, 6}, L 3 = {3, 4, 5, 6} good 6- partition I 1 = L 1 L 2, I 2 = L 2 L 3 I 3 = L 1 L 3 i I 1 H,i, j I 2 H,i k I 3 H,i H [11] dependent s 2, P 2s 2 generic arrangement A = {W,1,..., W,3s } [3s] partition I 1, I 2, I 3 P i = t I i W,t P 2s 2 A dependent {L 1, L 2, L 3 } good 3spartition I 1 = L 1 L 2, I 2 = L 1 L 3, I 3 = L 2 L 3 lemma 2.2 A dependent P k+1 ([n]) = {L [n] L = k + 1} k + 1 [n] A(A ) = (α L ) L Pk+1 ([n]) (2) D L normal vector α L A T (A ) α L, L T, T P k+1 ([n]) A(A ) 2.4 Gr(k, n) Gr(k, n) C n k- γ : Gr(k, n) P( k C n ) < v 1,..., v k > [v 1 v k ], [x] P( k C n ) γ(gr(k, n)) φ x : C n k+1 C n v v x k ker φ x =< v 1,..., v k > e 1,..., e n C n e I = e i1... e ik, I = {i 1,..., i k } [n], i 1 < < i k k C n x k C n x = β I e I = I [n] I =k 1 i 1 < <i k n β i1...i k (e i1 e ik ) (3)
6 β I C n e 1,..., e n P( k C n ) = P (n k) 1 φ x M x = (b i j ) ( n k+1) n I [n], I = k i I b i j = ( 1) i β I { j}\{i} b i j = 0 dim(ker φ x ) = k M x (n k + 1) (n k + 1) 0 ( [6]) (i 1,..., i k 1, j 0,..., j k ) k ( 1) l β i1...i k 1 j l β j0... ĵ l... j k = 0 (4) l=0 Remark 2.3. (1) α L M x I = L D L A(A ) = M x A(A ) det (α s1,..., αˆ si,..., α sk+1 ) β I, I = {s 1, s 2,..., s k+1 }\{s i } 2.5 C 3 generic arrangement A = {H 0 1, H0 2,..., H0 6 } normal vector α i = (a i1, a i2, a i3 ), 1 i 6 H t i i Hi 0 α i H t i i = Hi 0 + t i α i, t i C. T = {L 1, L 2, L 3 } [6] good 6-partition L 1 = {1, 2, 3, 4}, L 2 = {1, 2, 5, 6},L 3 = {3, 4, 5, 6} A T (A ) = α L1 α L2 α L3 β 234 β 134 β 124 β = β 256 β β 126 β 125, 0 0 β 456 β 356 β 346 β 345 a i1 a j1 a k1 β i jk = det a i2 a j2 a k2 a i3 a j3 a k3 A(A ) α 1 α 2 α i α j α i, α j (α i α i+1 ) α 3 α 4 α 5 α 6 α i α j H i H j α i α j H i H j ranka T (A ) = 2 rank(α i α i+1 ) = 2 ranka T (A ) = 2 codim (D L1 D L2 D L3 ) = 2 Lemma 2.2 H ti i H = H t 3 3 H t 4 4 H, H ti i H = H t 1 1 H t 2 2 H, H ti i H = H t 5 5 H t 6 6 H i L 1 L 2 i L 1 L 3 i L 2 L 3 H t i i Ht i+1 i+1 rank(α i α i+1 ) = 2 ( 2).
7 2: Picture of case B(6, 3, A 0 ) A T (A ) 2 A T (A ) 3 0. β i jk β 456 (β 134 β 256 β 234 β 156 ) = 0 β 156 (β 124 β 356 β 123 β 456 ) = 0 β 356 (β 134 β 256 β 234 β 156 ) = 0 (β 134 β 126 β β 124 β 156 β 346 ) = 0 β 346 (β 134 β 256 β 234 β 156 ) = 0 β 134 β 125 β β 124 β 156 β 345 = 0 β 345 (β 134 β 256 β 234 β 156 ) = 0 β 134 β 126 β β 123 β 156 β 346 = 0 β 256 (β 124 β 356 β 123 β 456 ) = 0 β 234 β 126 β β 124 β 256 β 346 = 0 and (β 134 β 125 β β 123 β 156 β 345 ) = 0 β 134 (β 125 β 346 β 126 β 345 ) = 0 (5) (β 234 β 125 β β 124 β 256 β 345 ) = 0 β 126 (β 124 β 356 β 123 β 456 ) = 0 (β 234 β 126 β β 123 β 256 β 346 ) = 0 β 125 (β 124 β 356 β 123 β 456 ) = 0 β 234 β 125 β β 123 β 256 β 345 = 0 β 234 (β 125 β 346 β 126 β 345 ) = 0 β 124 (β 125 β 346 β 126 β 345 ) = 0 β 123 (β 125 β 346 β 126 β 345 ) = 0 3 Gr(3, n) A section 2.5 C 3 6 generic arrangement a 11 a 12 a A =... a 61 a 62 a 63 (6) Hi 0 A normal vector α i A generic A C 6 C 6 3
8 Gr(3, 6) A 0 3 β i jk A(A ) φ x : C 6 4 C 6 v v x, x = 1 i< j<k n β i jk (e i e j e k ). A dependent β i jk (5) : (d) : β 234 β 126 β β 124 β 256 β 346 = 0 (a) : β 134 β 256 β 234 β 156 = 0 (I) : (b) : β 124 β 356 β 123 β 456 = 0 (c) : β 125 β 346 β 126 β 345 = 0 (e) : β 234 β 125 β β 124 β 256 β 345 = 0 ( f ) : β 234 β 126 β β 123 β 256 β 346 = 0 (g) : β 234 β 125 β β 123 β 256 β 345 = 0 and (II) : (h) : β 134 β 126 β β 124 β 156 β 346 = 0 (i) : β 134 β 125 β β 124 β 156 β 345 = 0 ( j) : β 134 β 126 β β 123 β 156 β 346 = 0 (k) : β 134 β 125 β β 123 β 156 β 345 = 0. (a) (k) (a) β 134 β 256 β 234 β 156 = 0. (7) (a) Lemma Lemma 3.1 (Lemma 5.1 [10]). A C 3 n generic arrangement A(A ) {i 1, i 2,..., i 6 } [n] T = {L 1, L 2, L 3 } L 1 = {i 1, i 2, i 3, i 4 }, L 2 = {i 1, i 2, i 5, i 6 },L 3 = {i 3, i 4, i 5, i 6 } good 6-partition A(A ) β I ranka T (A ) = 2 A T (A ) 3 0 Remark 3.2. A C 3 n generic arrangement A(A ) ( n ) 4 n L = {s1 < s 2 < s 3 < s 4 } α L (x 1,..., x n ) x i j = ( 1) j β I j, I j = L \ {s j }, j = 1, 2, 3, s 1 <... < s 6 [n] A(A ) ( 6 4) 6 α L, L {s 1,..., s 6 }, L = 4 s 1,..., s 6 ( (α L ) L {s1,...,s 6 }, L =4 j j {s 1,..., s 6 } 0. C 3 n n = 6 s 1 <... < s 6 [n] 6 T = {{s 1, s 2, s 3, s 4 }, {s 1, s 2, s 5, s 6 }, {s 3, s 4, s 5, s 6 }} good 6-partition {1,... 6}
9 {{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}} {s 1,..., s 6 } good 6-partition σ.t = {{i 1, i 2, i 3, i 4 }, {i 1, i 2, i 5, i 6 }, {i 3, i 4, i 5, i 6 }} (8) i j = σ(s j ), σ S 6 S 6 {s 1,..., s 6 } i j i j > i j+1 Lemma Lemma 3.3 (Lemma 5.3 [10]). A C 3 n generic arrangement σ.t = {{i 1, i 2, i 3, i 4 }, {i 1, i 2, i 5, i 6 }, {i 3, i 4, i 5, i 6 }} s 1 <... < s 6 [n] good 6-partition ranka σ.t (A ) = 2 A β i1 i 3 i 4 β i2 i 5 i 6 β i2 i 3 i 4 β i1 i 5 i 6 = 0. (9) Remark 3.2 Lemma 3.3 Theorem 3.4 (Theorem 5.4 [10]). C 3 dependent generic arrangement Gr(3, n) [1] C. A. Athanasiadis. The Largest Intersection Lattice of a Discriminantal Arrangement, Beiträge Algebra Geom., 40 (1999), no. 2, [2] A. Bachemand and W. Kern, Adjoints of oriented matroids, Combinatorica 6 (1986) [3] M. Bayer and K.Brandt, Discriminantal arrangements, fiber polytopes and formality, J. Algebraic Combin. 6 (1997), [4] H.Crapo, Concurrence geometries, Adv. in Math., 54 (1984), no. 3, [5] M. Falk, A note on discriminantal arrangements, Proc. Amer. Math. Soc., 122 (1994), no.4, [6] Joe Harris, Algebraic Geometry: A First Course, Springer-Verlag. [7] M. Kapranov, V.Voevodsky, Braided monoidal 2-categories and Manin-Schechtman higher braid groups, Journal of Pure and Applied Algebra, 92 (1994), no. 3, [8] Y. Kawamata, Shaeikukannokikagaku (Geometry in projective space), Asakura Publishing Co., Ltd. [9] R.J. Lawrence, A presentation for Manin and Schechtman s higher braid groups, MSRI pre-print (1991): ruthel/papers/premsh.html.
10 [10] S. Sawada, S. Settepanella and S. Yamagata, Discriminantal arrangement, 3 3minors of Plücker matrix and hypersurfaces in Grassmannian Gr(3,n), C. R. Acad. Sci. Paris, Ser. I 355 (2017) [11] A. Libgober and S. Settepanella, Strata of discriminantal arrangements, arxiv: [12] Yu. I. Manin and V. V. Schectman, Arrangements of Hyperplanes, Higher Braid Groups and Higher Bruhat Orders, Advanced Studies in Pure Mathematics 17, 1989 Algebraic Number Theory in honor K. Iwasawa pp [13] P. Orlik, Introduction to arrangements, CBMS Regional Conf. Ser. in Math., 72, Amer. Math. Soc., Providence, RI, (1989). [14] P.Orlik,H.Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 300, Springer-Verlag, Berlin, (1992). [15] M. Perling, Divisorial Cohomology Vanishing on Toric Varieties, Documenta Math. 16 (2011),
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
page: 2 (2.1) n + 1 n {n} N 0, 1, 2
page: 1 1 1 ( ) ( ) ( ) ( 1 ) 1) 2 1 page: 2 2 [ 4 ] [11] ( [11] ) Chapter I 0 n ( n ) (2.1) n + 1 n {n} 0, 1, 2, 3, 4,..., { }, {, { }}, {, { }, {, { }}}, {, { }, {, { }}, {, { }, {, { }}}},... n n =
The q-commutators of braided groups
206 ( ) Journal of East China Normal University (Natural Science) No. Jan. 206 : 000-564(206)0-0009-0 q- (, 20024) : R-, [] ABCD U q(g).,, q-. : R- ; ; q- ; ; FRT- : O52.2 : A DOI: 0.3969/j.issn.000-564.206.0.002
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.
338-8570 255 e-mail: tkishimo@rimath.saitama-u.ac.jp 1 C T κ(t ) 1 [Projective] κ = κ =0 κ =1 κ =2 κ =3 dim = 1 P 1 elliptic others dim = 2 P 2 or ruled elliptic surface general type dim = 3 uniruled bir.
Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik
Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero
( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]
1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.
( ),.,,, 1, [17]. 1. 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K. 1.2. Σ g g. M g, Σ g. g 1 Σ g,, Σ g Σ g. Σ g, M g,, Σ g.. g = 1, M 1 M 1, SL(2, Z). Q. g = 2, 2000 M 2 (Korkmaz [20], Bigelow Budney [5])., Bigelow
: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00
: 2010 9 6 ( ) 9 10 : 1. 9/6( ) 10:20 12:40 GL(2) Hecke ( ) 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 16:45 18:15 GL(2) I ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 9/7( ) 7:00 9:00 9:15 10:30 GL(2)
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
IUTeich. [Pano] (2) IUTeich
2014 12 2012 8 IUTeich 2013 12 1 (1) 2014 IUTeich 2 2014 02 20 2 2 2014 05 24 2 2 IUTeich [Pano] 2 10 20 5 40 50 2005 7 2011 3 2 3 1 3 4 2 IUTeich IUTeich (2) 2012 10 IUTeich 2014 3 1 4 5 IUTeich IUTeich
a11 a A V = v 1 = a 11 w 1 + a 12 w 2 + a 13 w 3 + a 14 w 4 v 2 = a 21 w 1 + a 22 w 2 + a 23 w 3 + a 24 w 4 (A 12, A 13, A 14, A 23, A 24, A 34 ) A 6.
Το σχήμα του Hilbert ΚΩΣΤΑΣ ΚΑΡΑΓΙΑΝΝΗΣ 12 Νοεμβρίου 2014 Σημείωση Οι σημειώσεις αυτές συντάχθηκαν για να συνοδεύσουν τη δεύτερη διάλεξη του γράφοντος στο Σεμινάριο Άλγεβρας, Θεωρίας Αριθμών και Μαθηματικής
, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H
57 6 2008 6 100023290Π2008Π57 (06) Π3486208 ACTA PHYSICA SINICA Vol. 57,No. 6,June,2008 ν 2008 Chin. Phys. Soc. 3 1) 2) 1) g 1) (, 130033) 2) (, 100049) (2007 9 11 ;2007 11 14 ),Littrow,,.,., Litrrow.
11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))
Drinfeld Drinfeld 29 8 8 11 Drinfeld [Hat3] 1 p q > 1 p A = F q [t] A \ F q d > 0 K A ( ) k( ) = A/( ) A K Laurent F q ((1/t)) 1/t C Drinfeld Drinfeld p p p [Hat1, Hat2] 1.1 p 1.1.1 k M > 0 { Γ 1 (M) =
Wishart α-determinant, α-hafnian
Wishart α-determinant, α-hafnian (, JST CREST) (, JST CREST), Wishart,. ( )Wishart,. determinant Hafnian analogue., ( )Wishart,. 1 Introduction, Wishart. p ν M = (µ 1,..., µ ν ) = (µ ij ) i=1,...,p p p
([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-
5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.
Sho Matsumoto Graduate School of Mathematics, Nagoya University. Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University
Sho Matsumoto Graduate School of Mathematics, Nagoya University Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University. Kac f n (t) = n k=0 a kt k ({a k } n k=0 i.i.d. ) N n E[N n ] =
( ) Kähler X ( ),. Floer -Oh- - [6]. X Fano *, X ( = (C ) N ) W : X C ( ) (X,W). X = P, W (y) =y + Q/y. Q P. Φ:X R N, Δ=Φ(X). u Int Δ, Lagrange L(u) =
Floer Cohomologes of Non-torus Fbers of the Gelfand-Cetln System (X, ω) 2N. X N Φ=(ϕ,...,ϕ N ):X R N, Posson, Φ. Φ, Arnold-Louvlle Largange. Φ (u) = T N, ω Φ (u) =0.. Gelfand-Cetln, Gullemn-Sternberg [9]
Jean Pierre Serre. Géométrie Algébrique et Géométrie Analytique (GAGA) Annales de l institut Fourier, Tome 6 (1956), p
Jean Pierre Serre Géométrie Algébrique et Géométrie Analytique (GAGA) Annales de l institut Fourier, Tome 6 (1956), p. 1-42. 2 0 X X X X X Kähler 1 X X X Chow X n 12 1 H. Cartan [3] H. Cartan W-L. Chow
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Jordan Form of a Square Matrix
Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =
Distances in Sierpiński Triangle Graphs
Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation
第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons E. Witten Chern-
Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons 3 1 1989 E. Witten Chern-Simons 3 ( ) ([14]) Witten 3 Chern-Simons M. Kontsevich [5], S. Axerod I. M. Singer [2]
1 The problem of the representation of an integer n as the sum of a given number k of integral squares is one of the most celebrated in the theory of numbers... Almost every arithmetician of note since
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Cyclic or elementary abelian Covers of K 4
Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3
The Jordan Form of Complex Tridiagonal Matrices
The Jordan Form of Complex Tridiagonal Matrices Ilse Ipsen North Carolina State University ILAS p.1 Goal Complex tridiagonal matrix α 1 β 1. γ T = 1 α 2........ β n 1 γ n 1 α n Jordan decomposition T =
u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R
2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2
Single-value extension property for anti-diagonal operator matrices and their square
1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]
(Akihiko Inoue) Graduate School of Science, Hiroshima University (Yukio Kasahara) Graduate School of Science, Hokkaido University Mohsen Pourahmadi, Department of Statistics, Texas A&M University 1, =
L p approach to free boundary problems of the Navier-Stokes equation
L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Θεοδώρα Θεοχάρη Αποστολίδη
Θεοδώρα Θεοχάρη Αποστολίδη Καθηγήτρια Τμήμα Μαθηματικών Σχολής Θετικών Επιστημών ΠΕΡΙΛΗΠΤΙΚΟ Β Ι Ο Γ Ρ Α Φ Ι Κ Ο Σ Η Μ Ε Ι Ω Μ Α Θεσσαλονίκη 2014 ΓΕΝΙΚΑ Ετος γέννησης : 1947, Τόπος: Πύργος Ηλείας Οικογενειακή
Homomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS
Òðóäû ÁÃÒÓ 07 ñåðèÿ ñ. 9 54.765.... -. -. -. -. -. : -. N. P. Mozhey Belarusian State University of Inforatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS In this article we present
E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils
J. Jpn. Soc. Soil Phys. No. 3+, p..3 /1,**, * ** ** E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils Kaoru UENO*, Tadashi ADACHI** and Hajime NARIOKA** * The Graduate School
PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)
GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk
Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ
Βιογραφικό Σημείωμα Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Ημερομηνία Γέννησης: 23 Δεκεμβρίου 1962. Οικογενειακή Κατάσταση: Έγγαμος με δύο παιδιά. EKΠΑΙΔΕΥΣΗ 1991: Πτυχίο Οικονομικού Τμήματος Πανεπιστημίου
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
ΑΧΙΛΛΕΑΣ ΔΡΑΜΑΛΙΔΗΣ CV
ΑΧΙΛΛΕΑΣ ΔΡΑΜΑΛΙΔΗΣ CV ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΜΑΘΗΜΑΤΙΚΩΝ & ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ, ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΑΛΕΞΑΝΔΡΟΥΠΟΛΗ, adramali@psed.duth.gr Διεύθυνση κατοικίας: Εθνική οδός
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
ACHILLES DRAMALIDIS CV
ACHILLES DRAMALIDIS CV ASSOCIATE PROFESSOR OF MATHEMATICS & DATA ANALYSIS SCHOOL OF EDUCATION, DEMOCRITUS UNIVERSITY OF THRACE ALEXANDROUPOLIS, adramali@psed.duth.gr Home Address: National road Makri-Dikella,
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
THE INTERIOR C 2 ESTIMATE FOR PRESCRIBED GAUSS CURVATURE EQUATION IN DIMENSION TWO
THE INTERIOR C ESTIMATE FOR PRESCRIBED GAUSS CURVATURE EQUATION IN DIMENSION TWO CHUANQIANG CHEN, FEI HAN, AND QIANZHONG OU arxiv:5.047v [math.ap 8 Apr 06 Abstract. In this paper, we introduce a new auxiliary
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Intuitionistic Fuzzy Ideals of Near Rings
International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Monica PURCARU 1. Communicated to: Finsler Extensions of Relativity Theory, August 29 - September 4, 2011, Braşov, Romania
Bulletin of the Transilvania University of Braşov Vol 4(53), No. 2-20 Series III: Mathematics, Informatics, Physics, 79-88 ON RCOMPLEX FINSLER SPACES WITH KROPINA METRIC Monica PURCARU Communicated to:
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
1 What is CFT? 1. 3 Strange duality conjecture (G) Geometric strange duality conjecture... 5
1 1994 9 6 1 What is CFT? 1 2 Wess-Zumino-Witten model 2 2.1 (R Representation theoretic formulation of WZW model.......... 2 2.2 (G Geometric formulation of WZW model.................. 4 2.3 (R=(G.....................................
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.
Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Heisenberg Uniqueness pairs
Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
Divergence for log concave functions
Divergence or log concave unctions Umut Caglar The Euler International Mathematical Institute June 22nd, 2013 Joint work with C. Schütt and E. Werner Outline 1 Introduction 2 Main Theorem 3 -divergence
Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras
Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product
Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.
2010 4 26 2 Pure and Applied Matheatics Apr. 2010 Vol.26 No.2 Randić 1, 2 (1., 352100; 2., 361005) G Randić 0 R α (G) = v V (G) d(v)α, d(v) G v,α. R α,, R α. ; Randić ; O157.5 A 1008-5513(2010)02-0339-06
Προσωπικά στοιχεία Εκπαίδευση Αντώνης Τσολοµύτης Πανεπιστήµιο Αιγαίου 83 200 Καρλόϐασι Σάµος Τηλ. : (30 22730) 82123 Email: atsol@aegean.gr Γεν. 25 Ιουνίου 1967 στον Πειραιά. ΒIOΓPAΦIKO ΣHMEIΩMA Α. ΤΣOΛOMΥTHΣ
Dispersive estimates for rotating fluids and stably stratified fluids
特別講演 17 : msjmeeting-17sep-5i4 Dispersive estimates for rotating fluids and stably stratified fluids ( ) 1. Navier-Stokes (1.1) Boussinesq (1.) t v + (v )v = v q t >, x R, v = t >, x R, t v + (v )v = v
arxiv: v1 [math.sp] 29 Mar 2010
A CHARACTERIZATION OF PLANAR MIXED AUTOMORPHIC FORMS arxiv:1003.5520v1 [math.sp] 29 Mar 2010 A. GHANMI Department of Mathematics, Faculty of Sciences, P.O. Box 1014, Mohammed V University, Agdal, 10000
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
2 4 Έστω A= , οι υπο-πίνακες 2x2 είναι: -4-8. 2 4 η ορίζουσα είναι det. --> µε διαγραφή της 2 ης γραµµής:,, 2 4-4-8 9 18 -4-8
Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις, Βοήθεια στη λύση Εργασιών Ασκήσεις σε εύρεση του βαθµού πινάκων m x n 2 4 9 18-4 -8 2 4 --> µε διαγραφή της 3 ης γραµµής:,, 9 18 2
Maude 6. Maude [1] UIUC J. Meseguer. Maude. Maude SRI SRI. Maude. AC (Associative-Commutative) Maude. Maude Meseguer OBJ LTL SPIN
78 Maude 1 Maude [1] UIUC J. Meseguer ( 1 ) ( ) Maude Maude SRI 90 UIUC SRI Maude SRI S. Eker C++ Maude 2 Maude Meseguer OBJ 1983-84 OBJ2[3] OBJ Maude OBJ 1 CafeOBJ 3 Maude 4 Maude CafeOBJ Maude: A Computer
ΧΛΟΥΒΕΡΑΚΗ ΜΑΡΙΑ ΕΚΠΑΙΔΕΥΣΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΜΠΕΙΡΙΑ
ΧΛΟΥΒΕΡΑΚΗ ΜΑΡΙΑ Επαγγελµατική διεύθυνση Προσωπική διεύθυνση Τηλέφωνο γραφείου Τηλέφωνο οικίας Ηλεκτρονικό ταχυδροµείο Προσωπική ιστοσελίδα Ηµεροµηνία γέννησης Υπηκοότητα Οικογενειακή κατάσταση School
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
(10/ /2007) 2012.
Δρ. Κωνσταντίνα Παναγιωτίδου Βιογραφικό Σημείωμα Πολυτεχνική Σχολή Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 54124 Θεσσαλονική, Ελλάδα email: kapanagi@gen.auth.gr, konpanagiotidou@gmail.com Τηλέφωνο: 6948100730
Hecke Operators on the q-analogue of Group Cohomology
Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 42 (2001), No. 1, 59-69. Hecke Operators on the q-analogue of Group Cohomology Min Ho Lee Department of Mathematics, University
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
A Lambda Model Characterizing Computational Behaviours of Terms
A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities
ΟΛΥΜΠΙΑ ΛΟΥΣΚΟΥ ΜΠΟΖΑΠΑΛΙ ΟΥ. ιδάκτωρ Μαθηµατικών Αναπληρώτρια Καθηγήτρια ΤΕΙ υτικής Μακεδονίας ΒΙΟΓΡΑΦΙΚΟ
ΟΛΥΜΠΙΑ ΛΟΥΣΚΟΥ ΜΠΟΖΑΠΑΛΙ ΟΥ ιδάκτωρ Μαθηµατικών Αναπληρώτρια Καθηγήτρια ΤΕΙ υτικής Μακεδονίας ΒΙΟΓΡΑΦΙΚΟ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Ολυµπία Λούσκου Μποζαπαλίδου Αναπληρώτρια Καθηγήτρια e-mail:olouskou@teikoz.gr
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Global energy use: Decoupling or convergence?
Crawford School of Public Policy Centre for Climate Economics & Policy Global energy use: Decoupling or convergence? CCEP Working Paper 1419 December 2014 Zsuzsanna Csereklyei Geschwister Scholl Institute
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points
Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
SOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
Generating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
Computer & Applied Sciences Complete ΟΔΗΓΟΣ ΧΡΗΣΗΣ
Computer & Applied Sciences Complete ΟΔΗΓΟΣ ΧΡΗΣΗΣ Computer & Applied Sciences Complete (CASC) Περιεχόμενο Η βάση CASC διαθέτει περιεχόμενο για την έρευνα και την ανάπτυξη των τομέων της πληροφορικής και
arxiv: v1 [math-ph] 4 Jun 2016
On commuting ordinary differential operators with polynomial coefficients corresponding to spectral curves of genus two Valentina N. Davletshina, Andrey E. Mironov arxiv:1606.0136v1 [math-ph] Jun 2016
Diderot (Paris VII) les caractères des groupes de Lie résolubles
Βιογραφικο Σημειωμα Μ. Ανουσης Προσωπικά στοιχεία Εκπαίδευση Μιχάλης Ανούσης Πανεπιστήμιο Αιγαίου 83200 Καρλόβασι Σάμος Τηλ.: (3022730) 82127 Email: mano@aegean.gr 1980 Πτυχίο από το Τμήμα Μαθηματικών
ΑΘΑΝΑΣΙΟΣ Ι. ΠΑΠΙΣΤΑΣ
ΑΘΑΝΑΣΙΟΣ Ι. ΠΑΠΙΣΤΑΣ Καθηγητής του Τμήματος Μαθηματικών του Αριστοτέλειου Πανεπιστημίου Θεσσαλονίκης ΣΥΝΤΟΜΟ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΘΕΣΣΑΛΟΝΙΚΗ ΙΑΝΟΥΑΡΙΟΣ 2014 Προσωπικά Στοιχεία Ονοματεπώνυμο: Αθανάσιος
DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES. 1. Introduction
Unspecified Journal Volume 00, Number 0, Pages 000 000 S????-????(XX)0000-0 DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES TIN-YAU TAM AND MARY CLAIR THOMPSON Abstract. We completely describe
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1
Maxima SCORM 1 2, 1 Muhammad Wannous 1 3, 4 2, 4 Maxima Web LMS MathML HTML5 Flot jquery JSONP JavaScript SCORM SCORM Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup
de Rham Theorem May 10, 2016
de Rham Theorem May 10, 2016 Stokes formula and the integration morphism: Let M = σ Σ σ be a smooth triangulated manifold. Fact: Stokes formula σ ω = σ dω holds, e.g. for simplices. It can be used to define