Τεχνολογία Γ Γυμνασίου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνολογία Γ Γυμνασίου"

Transcript

1 Τεχνολογία Γ Γυμνασίου Ονοματεπώνυμο μαθήτριας: Τμήμα:Γ 2 Σχολικό έτος:

2 Περιεχόμενα Κεφάλαιο Σελίδες Χρονοδιάγραμμα εργασίας 3 Περίληψη 4 Παρουσίαση του προβλήματος 4,5 Υπόθεση της έρευνας 5 Σκοπός της έρευνας 5 Παράγοντες που δεν επηρεάζουν τα αποτελέσματα της έρευνας 5 Μετρήσεις 6,7,8,9,10 Συμπεράσματα 11 Προτάσεις για το Μέλλον 11 Αυτοαξιολόγηση 11 2

3 Χρονοδιάγραμμα εργασίας Εβδομάδες μαθημάτων Εργασίες 1 η 2 η 3 η 4 η 5 η Εξώφυλλο Χρονοδιάγραμμα εργασιών Πίνακας περιεχομένων Περίληψη Εισαγωγή Θεωρητικό μέρος Έρευνα σο κοινό ΠΡΟΔΙΑΓΡΑΦΕΣ- ΑΡΑΧΝΟΕΙΔΕΣ ΔΙΑΓΡΑΜΜΑ ΣΧΕΔΙΑΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ ΠΕΡΙΓΡΑΦΗ ΔΙΑΔΙΚΑΣΙΑΣ ΠΕΙΡΑΜΑΤΟΣ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΣΜΑΤΩΝ ΣΥΜΠΕΡΑΣΜΑ ΒΙΒΛΙΟΓΡΑΦΙΑ 3

4 Περίληψη Η εργασία αυτή πραγματοποιήθηκε με την επίβλεψη του καθηγητή Στέλιου Καραπιπέρη και την συμμετοχή όλων των μαθητών της Γ Γυμνασίου του σχολείου μας και εντάσσεται στα πλαίσια του μαθήματος της Τεχνολογίας Γ Γυμνασίου. Στην Εισαγωγή αναφέρεται το χρονοδιάγραμμα των εργασιών. Το θεωρητικό μέρος περιλαμβάνει την διαδικασία που ακολούθησα και το Ερευνητικό μέρος περιλαμβάνει την διαδικασία που ακολουθήσαμε για να βρούμε τα αποτελέσματα. Το συμπέρασμα αφορά στο εάν τελικά ισχύουν οι θεωρίες του Leonardo Da Vinci. Παρουσίαση του προβλήματος Το πρόβλημα είναι αν ισχύουν οι θεωρίες του Leonardo Da Vinci. Δηλαδή αν αφαλός ενός ανθρώπου βρίσκεται στην χρυσή τιμή του ύψους του και αν το μήκος των χεριών του ισούται με το ύψος του. Τι είναι ο Βιτρούβιος άνθρωπος και πως τον μελέτησε ο Leonardo Da Vinci: Ο Άνθρωπος του Βιτρούβιου είναι διάσημο σχέδιο με συνοδευτικές σημειώσεις του Λεονάρντο ντα Βίντσι, που φτιάχτηκε περίπου το 1490 σε ένα από τα ημερολόγιά του. Απεικονίζει μία γυμνή αντρική φιγούρα σε δύο αλληλοκαλυπτόμενες θέσεις με τα μέλη του ανεπτυγμένα και συγχρόνως εγγεγραμμένη σε ένα κύκλο και ένα τετράγωνο. Το σχέδιο και το κείμενο συχνά ονομάζονται Κανόνας των Αναλογιών. 4

5 Σύμφωνα με τις σημειώσεις του ντα Βίντσι στο συνοδευτικό κείμενο, οι οποίες είναι γραμμένες με καθρεπτιζόμενη γραφή, το σχέδιο έγινε ως μελέτη των αναλογιών του (ανδρικού) ανθρώπινου σώματος όπως περιγράφεται σε μια πραγματεία του Ρωμαίου αρχιτέκτονα Βιτρούβιου. Τι είναι οι χρυσές αναλογίες: Στα Μαθηματικά και την τέχνη, δύο ποσότητες έχουν αναλογία χρυσής τομής αν ο λόγος του αθροίσματος τους προς τη μεγαλύτερη ποσότητα είναι ίσος με το λόγο της μεγαλύτερης ποσότητας προς τη μικρότερη. Η εικόνα αναπαριστά τη γεωμετρική ερμηνεία των παραπάνω. 5

6 Υπόθεση της έρευνας Το αποτέλεσμα που περιμένουμε είναι να αποδείξουμε ότι ισχύει η χρυσή τομή και οι θεωρίες του Da Vinci. Σκοπός της έρευνας Οι μετρήσεις αυτές έγιναν ώστε να βρούμε αν τελικά ισχύουν οι θεωρίες του Leonardo Da Vinci.Όλοι οι μαθητές της Γ τάξεις μέτρησαν ο ύψος τους,το ύψος των ποδιών τους και το μήκος των χεριών τους. Έτσι με τις απαραίτητες πράξεις θα ελέγξουμε αν έχει δίκιο Παράγοντες που δεν επηρεάζουν τα αποτελέσματα της έρευνας Οι παράγοντες που δεν επηρεάζουν τα αποτελέσματα είναι ότι δεν αλλάζουν οι αριθμοί και δε αυξάνονται οι μετρήσεις άλλα ούτε και οι μαθητές τις Γ Γυμνάσιου. Μετρήσεις 6

7 α/α Δειγματική Ερευνητική Εργασία ΑΝΑΛΟΓΙΕΣ ΑΝΘΡΩΠΙΝΟΥ ΣΩΜΑΤΟΣ (ΒΙΤΡΟΥΒΙΟΣ - LEONARDO DA VINCI) απόσταση τμή όνομ β=ύψος επώνυμο ΦΥΛΟ α=ύψος χεριών σε μα α αφαλού έκταση φ=α/β 1 Γ1 ΑΑ ΑΑ Α 1,66 1,02 1,67 1,63 2 Γ1 ΑΒ ΑΒ Κ 1,60 1,00 1,60 1,60 3 Γ1 ΑΓ ΑΓ Α 1,59 1,02 1,57 1,56 4 Γ1 ΑΔ ΑΔ Α 1,78 1,09 1,72 1,63 5 Γ1 ΑΕ ΑΕ Κ 1,66 1,02 1,67 1,63 6 Γ1 ΑΖ ΑΖ Α 1,72 1,09 1,70 1,58 7 Γ1 ΑΗ ΑΗ Κ 1,66 1,05 1,69 1,58 8 Γ1 ΑΘ ΑΘ Κ 1,59 1,08 1,52 1,47 9 Γ1 ΑΙ ΑΙ Α 1,52 0,93 1,59 1,63 10 Γ1 ΑΚ ΑΚ Α 1,62 0,99 1,65 1,64 11 Γ1 ΑΛ ΑΛ Α 1,68 1,03 1,73 1,63 12 Γ1 ΑΜ ΑΜ Α 1,73 1,07 1,75 1,62 13 Γ1 ΑΝ ΑΝ Α 1,78 1,06 1,82 1,68 14 Γ1 ΑΞ ΑΞ Α 1,81 1,16 1,86 1,56 15 Γ1 ΑΟ ΑΟ Κ 1,68 1,03 1,61 1,63 16 Γ1 ΑΠ ΑΠ Κ 1,58 0,97 1,57 1,63 17 Γ1 ΑΡ ΑΡ Α 1,75 1,09 1,82 1,61 18 Γ1 ΑΣ ΑΣ Α 1,77 1,05 1,78 1,69 19 Γ1 ΑΤ ΑΤ Α 1,74 1,05 1,69 1,66 20 Γ1 ΑΥ ΑΥ Κ 1,60 0,86 1,61 1,86 21 Γ1 ΑΦ ΑΦ Α 1,80 1,07 1,78 1,68 22 Γ2 ΒΑ ΒΑ Α 1,60 1,02 1,53 1,57 23 Γ2 ΒΒ ΒΒ Α 1,73 1,06 1,73 1,63 24 Γ2 ΒΓ ΒΓ Κ 1,64 1,02 1,66 1,61 25 Γ2 ΒΔ ΒΔ Κ 1,58 0,95 1,60 1,66 26 Γ2 ΒΕ ΒΕ Κ 1,57 0,91 1,52 1,73 27 Γ2 ΒΖ ΒΖ Κ 1,63 1,02 1,62 1,60 28 Γ2 ΒΗ ΒΗ Κ 1,62 0,95 1,57 1,71 29 Γ2 ΒΘ ΒΘ Α 1,82 1,08 1,82 1,69 30 Γ2 ΒΙ ΒΙ Κ 1,65 1,05 1,72 1,57 31 Γ2 ΒΚ ΒΚ Κ 1,50 0,96 1,44 1,56 32 Γ2 ΒΛ ΒΛ Κ 1,62 0,97 1,66 1,67 33 Γ2 ΒΜ ΒΜ Α 1,76 1,10 1,81 1,60 34 Γ2 ΒΝ ΒΝ Κ 1,57 0,95 1,57 1,65 35 Γ2 ΒΞ ΒΞ Κ 1,61 0,96 1,65 1,68 7

8 36 Γ2 ΒΟ ΒΟ Α 1,53 0,94 1,52 1,63 37 Γ2 ΒΠ ΒΠ Κ 1,70 1,03 1,70 1,65 38 Γ2 ΒΡ ΒΡ Κ 1,69 1,02 1,66 1,66 39 Γ2 ΒΣ ΒΣ Α 1,68 0,97 1,68 1,73 40 Γ2 ΒΤ ΒΤ Κ 1,58 1,03 1,63 1,53 41 Γ2 ΒΥ ΒΥ Α 1,69 1,04 1,75 1,63 42 Γ2 ΒΦ ΒΦ Α 1,66 1,03 1,66 1,61 43 Γ3 ΓΑ ΓΑ Α 1,65 1,06 1,63 1,56 44 Γ3 ΓΒ ΓΒ Α 1,75 1,05 1,80 1,67 45 Γ3 ΓΓ ΓΓ Α 1,72 1,11 1,72 1,55 46 Γ3 ΓΔ ΓΔ Α 1,76 1,03 1,73 1,71 47 Γ3 ΓΕ ΓΕ Α 1,67 1,04 1,67 1,61 48 Γ3 ΓΖ ΓΖ Κ 1,64 1,00 1,64 1,64 49 Γ3 ΓΗ ΓΗ Α 1,69 1,01 1,68 1,67 50 Γ3 ΓΘ ΓΘ Κ 1,62 0,99 1,57 1,64 51 Γ3 ΓΙ ΓΙ Α 1,74 1,03 1,70 1,69 52 Γ3 ΓΚ ΓΚ Κ 1,58 0,96 1,54 1,65 53 Γ3 ΓΛ ΓΛ Α 1,82 1,16 1,86 1,57 54 Γ3 ΓΜ ΓΜ Α 1,58 0,98 1,57 1,61 55 Γ3 ΓΝ ΓΝ Α 1,74 1,05 1,69 1,66 56 Γ3 ΓΞ ΓΞ Α 1,67 1,00 1,60 1,67 57 Γ3 ΓΟ ΓΟ Α 1,62 0,97 1,58 1,67 58 Γ3 ΓΠ ΓΠ Α 1,77 1,16 1,74 1,53 59 Γ3 ΓΡ ΓΡ Κ 1,65 0,99 1,63 1,67 60 Γ3 ΓΣ ΓΣ Κ 1,66 0,98 1,66 1,69 61 Γ3 ΓΤ ΓΤ Κ 1,70 1,02 1,69 1,67 62 Γ3 ΓΥ ΓΥ Κ 1,60 0,98 1,56 1,63 63 Γ3 ΓΦ ΓΦ Α 1,68 1,00 1,74 1,68 Μ.Ο. ΥΨΩΝ ΣΥΝΟΛΟΥ 1,67 μέτρα Μ.Ο. ΥΨΩΝ ΑΦΑΛΩΝ ΣΥΝΟΛΟΥ 1,02 μέτρα Μ.Ο. ΕΚΤΑΣΗΣ ΤΩΝ ΧΕΡΙΩΝ ΣΥΝ. 1,67 μέτρα Μ.Ο.ΥΨΩΝ ΑΓΟΡΙΩΝ 1,70 μέτρα Μ.Ο.ΥΨΩΝ ΚΟΡΙΤΣΙΩΝ 1,62 μέτρα Μ.Ο. ΥΨΩΝ ΑΦΑΛΩΝ ΑΓΟΡΙΩΝ 1,04 μέτρα Μ.Ο. ΥΨΩΝ ΑΦΑΛΩΝ ΚΟΡΙΤΣΙΩΝ 0,99 μέτρα Μ.Ο. χρυσών αναλογιών φ (ΑΓΟΡΙΑ) 1,63 8

9 Μ.Ο. χρυσών αναλογιών φ (ΚΟΡΙΤΣΙΑ) 1,64 Μ.Ο. χρυσών αναλογιών φ (σύνολο) 1,64 Μ.Ο. ΕΚΤΑΣΗΣ ΤΩΝ ΧΕΡΙΩΝ ΑΓΟΡΙΩΝ 1,70 μέτρα Μ.Ο. ΕΚΤΑΣΗΣ ΤΩΝ ΧΕΡΙΩΝ ΚΟΡΙΤΣΙΩΝ 1,61 μέτρα ΣΥΝΟΛΟ ΑΓΟΡΙΑ ΚΟΡΙΤΣΙΑ ΥΨΟΣ (1,67)=ΕΚΤΑΣΗ ΧΕΡΙΩΝ (1,67) ΥΨΟΣ (1,70)=ΕΚΤΑΣΗ ΧΕΡΙΩΝ (1,70) ΥΨΟΣ (1,62)=ΕΚΤΑΣΗ ΧΕΡΙΩΝ (1,61) 9

10 ΒΘ ΑΞ ΑΔ ΑΣ ΒΜ ΑΡ ΑΤ ΓΝ ΒΒ ΓΓ ΓΤ ΒΥ ΑΛ ΒΣ ΓΕ ΑΑ ΑΗ ΓΣ ΓΑ ΒΓ ΒΖ ΒΗ ΓΘ ΒΞ ΑΥ ΓΥ ΑΘ ΒΔ ΓΚ ΒΕ ΒΟ ΒΚ 2,00 Ύψος μαθητών 1,80 1,60 1,40 1,20 1,00 0,80 0,60 0,40 0,20 0,00 10

11 Ταξινόμηση από το μεγαλύτερο στο μικρότερο αριθμό 2,00 1,80 1,60 1,40 1,20 1,00 0,80 0,60 0,40 0,20 0,00 ΒΘ ΑΦ ΑΣ ΓΔ ΑΤ ΑΜ ΓΓ ΒΡ ΑΛ ΓΦ ΑΑ ΒΦ ΓΑ ΓΖ ΒΗ ΓΟ ΑΥ ΑΓ ΒΔ ΓΜ ΒΟ Συμπέρασμα 11

12 Συμπεραίνουμε ότι ισχύουν οι θεωρίες του Da Vinci. H έκταση των χεριών στο σύνολο στα αγόρια και στα κορίτσια ισούται με ο ύψος τους. Επίσης συμπεραίνουμε ότι υ χρυσή τομή σο σύνολο, στα αγόρια και στα κορίτσια είναι πολύ κοντά στο φ=1,618. Προτάσεις για το μέλλον Η έρευνα αυτή τελικά μας οδήγησε στο επιθυμητό αποτέλεσμα οπότε υποστηρίζω ότι αξίζει να την εφαρμόσουν και οι επόμενες τάξεις. Αυτοαξιολόγηση Πιστεύω ότι η έρευνα μπορεί να περιέχει κάποια λάθη, αλλά άξιζε τον κόπο, γιατί συνεργαστήκαμε ώστε να πετύχουμε αυτό που μας ζητήθηκε. Βιογραφία 12

7 ο Γυμνάσιο Κερατσινίου

7 ο Γυμνάσιο Κερατσινίου 7 ο Γυμνάσιο Κερατσινίου Τεχνολογία Γ Γυμνασίου Όνομα μαθητή:. Τμήμα Γ1 Σχολικό έτος: 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ Α/Α ΚΕΦΑΛΑΙΟ ΣΕΛΙΔΑ 1 Χρονοδιάγραμμα Εργασιών 3 2 Περίληψη 3 3 Παρουσίαση του προβλήματος 4 4

Διαβάστε περισσότερα

Ο Βιτρούβιος Άντρας του Λεονάρντο Ντα Βίντσι

Ο Βιτρούβιος Άντρας του Λεονάρντο Ντα Βίντσι Ο Βιτρούβιος Άντρας του Λεονάρντο Ντα Βίντσι Ο Άνθρωπος του Βιτρούβιου είναι ένα διάσημο σχέδιο με συνοδευτικές σημειώσεις του Λεονάρντο Ντα Βίντσι, που φτιάχτηκε περίπου το 1490 σε ένα από τα ημερολόγιά

Διαβάστε περισσότερα

Aula 00. Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes

Aula 00. Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes Aula 00 Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes ! # # % & () ++,. /0,1 234,5 0 6 +7+,/ /894,5 8 5 8,045, :4 50,8,59;/0 8,04 + 8 097,4 8,0?5 4 59 8,045, :4 50,8,

Διαβάστε περισσότερα

8 ) / 9! # % & ( ) + )! # 2. / / # % 0 &. # 1& / %. 3 % +45 # % ) 6 + : 9 ;< = > +? = < + Α ; Γ Δ ΓΧ Η ; < Β Χ Δ Ε Φ 9 < Ε & : Γ Ι Ι & Χ : < Η Χ ϑ. Γ = Φ = ; Γ Ν Ι Μ Κ Λ Γ< Γ Χ Λ =

Διαβάστε περισσότερα

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΩΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Θεωρούμε το ισόπλευρο τρίγωνο ΑΒΓ και έστω ένα σημείο της πλευράς ΑΓ. Κατασκευάζουμε το παραλληλόγραμμο ΒΓΕ και έστω Ζ η τομή της Ε με την ΑB. Ονομάζουμε

Διαβάστε περισσότερα

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ;

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; Γιώργου Τσαπακίδη Είναι εύκολο να παρατηρήσουμε ότι τα συμμετρικά σχήματα έχουν πολύ περισσότερες ιδιότητες από τα μη συμμετρικά σχήματα. Το ισοσκελές τρίγωνο, που έχει άξονα

Διαβάστε περισσότερα

8 9 Θ ] :! : ; Θ < + ###( ] < ( < ( 8: Β ( < ( < ( 8 : 5 6! 5 < 6 5 : ! 6 58< 6 Ψ 5 ; 6 5! < 6 5 & = Κ Ο Β ϑ Β > Χ 2 Β ϑβ Ι? ϑ = Α 7

8 9 Θ ] :! : ; Θ < + ###( ] < ( < ( 8: Β ( < ( < ( 8 : 5 6! 5 < 6 5 : ! 6 58< 6 Ψ 5 ; 6 5! < 6 5 & = Κ Ο Β ϑ Β > Χ 2 Β ϑβ Ι? ϑ = Α 7 ! # % & ( # ) ( +,,. # ( # / 0 1 2 4 5! 6 7 8 9 9 8 : ; 5 ? Α Β Χ 2Δ Β Β Φ Γ Β Η Ι? ϑ = Α? Χ Χ Ι? ϑ Β Χ Κ Χ 2 Λ Κ >? Λ Μ Λ Χ Φ Κ?Χ Φ 5+Χ Α2?2= 2 Β Η Ν Γ > ϑβ Ο?Β Β Φ Γ Π Λ > Κ? Λ Α? Χ?ΠΛ

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων Λύσεις Διαγωνισμάτων Λύσεις 1 ου Διαγωνίσματος Θέμα 1 ο α) Από μία κορυφή, π.χ. την Α, φέρουμε ευθεία xy ΒΓ. Τότε ω = Β και φ = Γ, ως εντός εναλλάξ των παραλλήλων xy και ΒΓ με τέμνουσες ΑΒ και ΑΓ αντίστοιχα.

Διαβάστε περισσότερα

! # % & ( ) & + #, +. ! # + / 0 / 1 ! 2 # ( # # !! ( # 5 6 ( 78 ( # ! /! / 0, /!) 4 0!.! ) 7 2 ## 9 3 # ## : + 5 ; )!

! # % & ( ) & + #, +. ! # + / 0 / 1 ! 2 # ( # # !! ( # 5 6 ( 78 ( # ! /! / 0, /!) 4 0!.! ) 7 2 ## 9 3 # ## : + 5 ; )! ! # % & ( ) + ! # % & ( ) & + #, +.! # + / 0 / 1! 2 # ( # 1 3 4 3 #!! ( # 5 6 ( 78 ( # 6 4 6 5 1! /! #! / 0, /!) 4 0!.! ) 7 2 ## 9 3 # 78 78 0 ## : + 5 ; )! 0 / )!! < # / ).

Διαβάστε περισσότερα

Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΖΩΓΡΑΦΙΚΗ

Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΖΩΓΡΑΦΙΚΗ Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΖΩΓΡΑΦΙΚΗ Τα µαθηµατικά και η τέχνη, αν και φαινοµενικά τουλάχιστον, αποτελούν δύο ξεχωριστά πεδία της ανθρώπινης δραστηριότητας, είναι δυνατόν να συνδυαστούν και να δώσουν δηµιουργίες

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Όµοια λέγονται δύο πολύγωνα που έχουν τις πλευρές τους ανάλογες και τις αντίστοιχες γωνίες τους ίσες. Λόγος οµοιότητας δύο όµοιων πολυγώνων λέγεται ο λόγος δύο

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & ΒΑΘΜΟΛΟΓΙΑΣ (άρθρο 21 παρ.11 του Ν.2190/94) ΥΠΟΨΗΦΙΩΝ ΚΑΤΗΓΟΡΙΑΣ YΕ ΚΩΔΙΚΟΣ ΘΕΣΗΣ : 101. Ειδικότητα: ΥΕ ΚΑΘΑΡΙΟΤΗΤΑΣ ΚΡΙΤΗΡΙΑ

ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & ΒΑΘΜΟΛΟΓΙΑΣ (άρθρο 21 παρ.11 του Ν.2190/94) ΥΠΟΨΗΦΙΩΝ ΚΑΤΗΓΟΡΙΑΣ YΕ ΚΩΔΙΚΟΣ ΘΕΣΗΣ : 101. Ειδικότητα: ΥΕ ΚΑΘΑΡΙΟΤΗΤΑΣ ΚΡΙΤΗΡΙΑ sort 26 Κ Σ -- Τ051676 Οχι 8 37 67 0 400 0 0 0 727 0 0 134 Οχι 1.261,00 1 68 Χ Π -- Σ134727 Οχι 14 2 72 225 0 0 60 0 972 0 0 0 Οχι 1.257,00 2 32 Κ Μ -- Σ617814 Οχι 10 5 3 39 175 250 0 60 0 741 0 0 0 Οχι

Διαβάστε περισσότερα

Εργασία στο μάθημα της Τεχνολογίας

Εργασία στο μάθημα της Τεχνολογίας 5 ο Γυμνάσιο Αγίας Παρασκευής Σχολ. Έτος 2017-18 Εργασία στο μάθημα της Τεχνολογίας Πληκτρολόγησε τον τίτλο της Έρευνας Ο τίτλος μιας έρευνας θα πρέπει να δίνει στον αναγνώστη τη δυνατότητα να αντιληφθεί

Διαβάστε περισσότερα

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ.

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ. 1. Θεωρούµε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Στο µέσο της πλευράς ΑΒ φέρουµε κάθετη ευθεία που τέµνει την ΑΓ στο Ε. Από το Ε φέρουµε ευθεία παράλληλη στη βάση ΒΓ που τέµνει την ΑΒ στο Ζ. α) Να αποδείξετε

Διαβάστε περισσότερα

α και γ και να 3. Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= 2ΟΑ αποδείξετε ότι ΓΑ = 2ΕΔ ΛΥΣΗ Έχουμε: ΓΑ = ΓΟ + ΟΑ = γ + α

α και γ και να 3. Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= 2ΟΑ αποδείξετε ότι ΓΑ = 2ΕΔ ΛΥΣΗ Έχουμε: ΓΑ = ΓΟ + ΟΑ = γ + α 3 Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= ΟΑ Αν Δ και Ε είναι τα μέσα των ΑΒ και ΒΓ αντίστοιχα, να βρείτε τα διανύσματα ΓΑ, ΑΒ και ΕΔ συναρτήσει των α και γ και να αποδείξετε ότι ΓΑ = ΕΔ ΛΥΣΗ Έχουμε:

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα

Διαβάστε περισσότερα

! # % & # ( ) +, . + / ! + & 56789! 4 6::; # < = ? 1 1 ( , 2, ::Α

! # % & # ( ) +, . + / ! + & 56789! 4 6::; # < = ? 1 1 ( , 2, ::Α ! # % & # ( ) +, +. + /! + & 0 1 1 23 4 0 56789! 4 6::; # < = >? 1 1 ( 1 0 1 4, 2, 9 571 6::Α ! #! % & ( ) ( % + , & ( ). / 0 % 1! ( 2 3 & %3 # % 4!, ( 56 4 7889 ! : 0 % 0 ; % ( < 4 4 =! & ; ; >& % ;

Διαβάστε περισσότερα

Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +.

Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +. ΣΤΑ ΜΑΘΗΜΑΤΙ- ΚΑ B τάξη Γυμνασίου (α) Να συγκρίνετε τους αριθμούς 3 3 0 3 3 1 1 1 8 3 Α= + + : και Β= : 4 +. 4 31 8 4 4 1 3 9 Μονάδες (β) Αν ισχύει ότι: 6( αβ + βγ + γα) = 11αβγ και αβγ 0, να βρείτε την

Διαβάστε περισσότερα

Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H

Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H, Z,. Τα τμήματα ΑΓ και ΗΕ έχουν κοινό μέσο γ. Το κέντρο του παραλληλογράμμου είναι

Διαβάστε περισσότερα

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών Μαθηματικά Β Γυμνασίου Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών 1. Να χρησιμοποιήσετε μεταβλητές για να εκφράσετε με μια αλγεβρική παράσταση τις παρακάτω φράσεις: a. Η διαφορά δυο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ

ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ 09.00 -.00 5 ZE MI WA 0 0 0 9 0,95 9 ΑΓ ΓΕ ΠΑ 0 0 0 0 0 0 95 ΑΔ ΡΟ ΙΩ 0 0 0 0 0 0 97 ΑΙ ΚΩ ΠΑ 0 0 0 0 0 0 5 507 ΑΛ ΕΥ ΤΖ 0 0 0 0 0 0 6 99 ΑΝ ΟΡ ΚΩ 7 5 0 0 0,65 7 95 ΑΝ ΙΩ ΟΡ 9 9 9 6

Διαβάστε περισσότερα

Από την αρχική σχέση έχουµε: ΑΒ + ΑΓ = ή ΑΓ = ΑΒ Άρα ΑΓ = ΑΓ = 2

Από την αρχική σχέση έχουµε: ΑΒ + ΑΓ = ή ΑΓ = ΑΒ Άρα ΑΓ = ΑΓ = 2 Ερωτήσεις ανάπτυξης 1. i. Από το ορθογώνιο τρίγωνο ΑΗ, µε εφαρµογή του Πυθαγορείου Θεωρήµατος, έχουµε: ΑΗ Α - Η 7-49 - 4 45. Άρα ΑΗ 45 3 5cm. K ii. ια το τρίγωνο ΑΒ έχουµε: (ΑΒ) ΒΚ Β ΑΗ Β ΑΗ Α Α ΒK, άρα

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

ΜΑΝΟΣ ΔΟΥΚΑΣ ΓΙΩΡΓΟΣ ΚΟΥΡΕΜΠΑΝΑΣ

ΜΑΝΟΣ ΔΟΥΚΑΣ ΓΙΩΡΓΟΣ ΚΟΥΡΕΜΠΑΝΑΣ ΜΑΝΟΣ ΔΟΥΚΑΣ ΓΙΩΡΓΟΣ ΚΟΥΡΕΜΠΑΝΑΣ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.. Να συμπληρώσετε τα κενά : i) (α μ ) ν = ii) (κ.λ) ν = iii) α μ.α ν = iv) α μ : α ν =. v) (α : β) ν =.. vi) α -ν = a vii)... viii) a...

Διαβάστε περισσότερα

ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΊΝΤΣΙ 1452-1519 ΒΑΣΙΛΕΙΟΥ ΕΥΤΥΧΙΑ ΓΚΕΚΑΣ ΤΡΥΦΩΝ ΑΡΣΕΝΙΔΗΣ ΕΥΘΥΜΙΟΣ

ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΊΝΤΣΙ 1452-1519 ΒΑΣΙΛΕΙΟΥ ΕΥΤΥΧΙΑ ΓΚΕΚΑΣ ΤΡΥΦΩΝ ΑΡΣΕΝΙΔΗΣ ΕΥΘΥΜΙΟΣ ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΊΝΤΣΙ 1452-1519 ΒΑΣΙΛΕΙΟΥ ΕΥΤΥΧΙΑ ΓΚΕΚΑΣ ΤΡΥΦΩΝ ΑΡΣΕΝΙΔΗΣ ΕΥΘΥΜΙΟΣ 1 Ο Λεονάρντο ντα Βίντσι ήταν Ιταλός αρχιτέκτονας, ζωγράφος, γλύπτης, μουσικός, εφευρέτης, μηχανικός, ανατόμος, γεωμέτρης

Διαβάστε περισσότερα

3. Μία τεθλασµένη γραµµή αποτελείται από πέντε διαφορετικά ευθύγραµµα

3. Μία τεθλασµένη γραµµή αποτελείται από πέντε διαφορετικά ευθύγραµµα 1. Να συγκρίνεις το µήκος της γραµµής ΑΒΓ Ε µε το µήκος του ευθύγραµµου τµήµατος ΖΗ, όπως φαίνονται στο διπλανό σχήµα. Μετρώντας µε το υποδεκάµετρο βρίσκουµε ΑΒ = 1,3cm, ΒΓ = 1,3cm, Γ = 1,4cm και Ε = 2,4cm

Διαβάστε περισσότερα

! % & % & ( ) +,+ 1 + 2 & %!4 % / % 5

! % & % & ( ) +,+ 1 + 2 & %!4 % / % 5 ! #! % & % &( ) +,+.+)! / &+! / 0 ) &+ 12+! )+& &/. 3 %&)+&2+! 1 +2&%!4%/ %5 (!% 67,+.! %+,8+% 5 & +% #&)) +++&9+% :;&+! & +)) +< %(+%%=)) +%> 1 / 73? % & 10+&(/ 5? 0%)&%& % 7%%&(% (+% 0 (+% + %+72% 0

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

) (+ 89 / >9691 /) 01)> 59 )2 >9691 /) (=12) (=12) 2 1< /. )1,9 Ε 1(Χ(,)2 /,.96 Β ) 2 8=,. Ι

) (+ 89 / >9691 /) 01)> 59 )2 >9691 /) (=12) (=12) 2 1< /. )1,9 Ε 1(Χ(,)2 /,.96 Β ) 2 8=,. Ι ! # % & & # () + (,.)/ 01)0)2,34 2 # ) (.,5)2678,()2 9: 695 1/9/ # ) /,3;) ( 22,(,. # 9=.)6)8,9 ).19/,3;) )., 8? (,9 # =,596? (,92678,(92 # % & % 6

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΙΙ

ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΙΙ University of Athens Pedagogical Department P.Ε. Science, Technology and Environment Section / Laboratory 13a Navarinou str, Athens, GR-10680 Πανεπιστήμιο Αθηνών Παιδαγωγικό Τμήμα Δ.Ε. Τομέας / Εργαστήριο

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3 Β ΓΥΜΝΑΣΙΟΥ Να βρείτε την τιμή της παράστασης: α αν δίνεται ότι: 3 β =. 3β + α α 3β 13 Α= 10 +, β α 3 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και Γ= ˆ Α ˆ. Το τετράπλευρο ΑΓΔΕ είναι

Διαβάστε περισσότερα

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x ΘΕΜΑ A ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. Δίνεται η συνάρτηση f με τύπο: f ( ) ln,,. Να δείξετε ότι η f είναι αντιστρέψιμη και να βρείτε το πεδίο ορισμού της αντίστροφής της.. Να δικαιολογήσετε ότι η εξίσωση f ( ) a, a,

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι ΓΕΩΜΕΤΡΙΑ 90 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Ερωτήσεις πολλαπλής επιλογής 1. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ έχει Α = 90, β = 9 cm, γ = 1 cm και την ΑΜ διάµεσο. Το µήκος του ΑΜ ισούται µε: Α. 9. 9 Ε. 1 15 Β. 6 Γ..

Διαβάστε περισσότερα

ΑΠΑΙΤΟΥΜΕΝΑ ΔΙΚΑΙΟΛΟΓΗΤΙΚΑ ΓΙΑ ΤΗΝ ΑΣΚΗΣΗ ΤΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΗΣ ΕΠΑ. Στην περίπτωση που η αναγγελία έναρξης υποβάλλεται από φυσικό πρόσωπο

ΑΠΑΙΤΟΥΜΕΝΑ ΔΙΚΑΙΟΛΟΓΗΤΙΚΑ ΓΙΑ ΤΗΝ ΑΣΚΗΣΗ ΤΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΗΣ ΕΠΑ. Στην περίπτωση που η αναγγελία έναρξης υποβάλλεται από φυσικό πρόσωπο ΑΠΑΙΤΟΥΜΕΝΑ ΔΙΚΑΙΟΛΟΓΗΤΙΚΑ ΓΙΑ ΤΗΝ ΑΣΚΗΣΗ ΤΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΗΣ ΕΠΑ Στην περίπτωση που η αναγγελία έναρξης υποβάλλεται από φυσικό πρόσωπο Αίτηση αναγγελίας για έναρξη παρ.2 άρθρου 123 Ν. 4052/2012, και

Διαβάστε περισσότερα

Α/Α Περιγραφή Ποσότητα Τεχνικές προσδιαγραφές

Α/Α Περιγραφή Ποσότητα Τεχνικές προσδιαγραφές 1 2 3 4 Αα ΛΑΒΙΔΑ ΗΛΕΚΤΡΟΣΥΓΚΟΛΗΣΗΣ ΚΑΙ ΔΙΑΤΟΜΗΣ Αβ ΛΑΒΙΔΑ ΗΛΕΚΤΡΟΣΥΓΚΟΛΗΣΗΣ ΚΑΙ ΔΙΑΤΟΜΗΣ Αγ ΛΑΒΙΔΑ ΗΛΕΚΤΡΟΣΥΓΚΟΛΗΣΗΣ ΚΑΙ ΔΙΑΤΟΜΗΣ Αδ ΑΥΤΟΜΑΤΟ ΕΡΓΑΛΕΙΟ ΕΥΘΕΙΑΣ ΣΥΡΡΑΦΗΣ 5 Αε ΑΥΤΟΜΑΤΟ ΕΡΓΑΛΕΙΟ ΕΥΘΕΙΑΣ ΣΥΡΡΑΦΗΣ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ. Να αποδείξετε ότι: 4 4. Αν x, να υπολογίσετε την τιμή της παράστασης: x x. Να απλοποιήσετε τις παρακάτω παραστάσεις: 8 8 8, 7 48 4. 4. Να υπολογίσετε τα αναπτύγματα: i. x ii. α β

Διαβάστε περισσότερα

Aν οι ευθείες ΚΒ και ΓΛ τέμνονται στο σημείο Μ, τότε η ΑΜ είναι μεσοκάθετος του ευθυγράμμου τμήματος ΚΛ

Aν οι ευθείες ΚΒ και ΓΛ τέμνονται στο σημείο Μ, τότε η ΑΜ είναι μεσοκάθετος του ευθυγράμμου τμήματος ΚΛ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ ΙΟΥΝΙΟΥ 2017 ΓΕΩΜΕΤΡΙΑ A ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 26/5/2017 ΘΕΜΑ 1 ο Α 1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται

Διαβάστε περισσότερα

Διανύσματα ΚΑΤΗΓΟΡΙΑ 6. Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Ασκήσεις προς λύση Παράλληλα διανύσµατα. Οµόρροπα διανύσµατα.

Διανύσματα ΚΑΤΗΓΟΡΙΑ 6. Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Ασκήσεις προς λύση Παράλληλα διανύσµατα. Οµόρροπα διανύσµατα. Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης Διανύσματα ΚΑΤΗΓΟΡΙΑ 6 Παράλληλα διανύσµατα. Οµόρροπα διανύσµατα. Αντίρροπα διανύσµατα. Συνθήκη παραλληλίας διανυσµάτων (όλες της οι µορφές). Συνευθειακά

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 2 ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΠΙΜΕΛΕΙΑ ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΔΙΑΝΥΣΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Διάνυσμα λέγεται ένα προσανατολισμένο ευθύγραμμο

Διαβάστε περισσότερα

α Εφαρµογές στα τρίγωνα Από τις (1), (2) έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. είναι Οµοίως στο τρίγωνο BM είναι ZE // M

α Εφαρµογές στα τρίγωνα Από τις (1), (2) έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. είναι Οµοίως στο τρίγωνο BM είναι ZE // M Απαντήσεις 51 5. Εφαρµογές των παραλληλογράµµων α Εφαρµογές στα τρίγωνα α.1 Στο τρίγωνο AB Γ είναι Ε // (1) Επίσης Ζ, ΕΗ, άρα Ζ // ΕΗ () Από τις (1), () έχουµε ότι το ΕΗΖ είναι παραλληλόγραµµο. α. Στο

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2) ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fa: 0 6405 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)

Διαβάστε περισσότερα

1.3 Εσωτερικό Γινόμενο

1.3 Εσωτερικό Γινόμενο 1 Εσωτερικό Γινόμενο 1 Αν α = ( 1, ) i α β iii και β = ( 1, ), να υπολογίσετε τα εσωτερικά γινόμενα: ii ( α )( β ) α β α + β α iv Αν α =, β = 1 και ( αβ, ) = 15 ο, να υπολογίσετε το α β Με βάση το διπλανό

Διαβάστε περισσότερα

Ασκήσεις - Πυθαγόρειο Θεώρηµα

Ασκήσεις - Πυθαγόρειο Θεώρηµα Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1 (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι:

1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι: Ερωτήσεις ανάπτυξης 1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι: α) ΑΜ = 1 2 ( ΑΒ + ΑΓ ) β) ΜΝ = 1 2 ΒΑ 2. ** ίνονται τα διανύσµατα ΑΒ και Α Β. Αν Μ και Μ

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ύο τρίγωνα είναι ίσα όταν µε κατάλληλη µετατόπιση, το ένα συµπίπτει µε το άλλο. Β. Κριτήρια ισότητας τριγώνων Πρώτο κριτήριο Αν όλες οι πλευρές του ενός τριγώνου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ 1 ο Θεώρημα διαμέσου ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ Σε κάθε τρίγωνο, το άθροισμα των τετραγώνων δύο πλευρών τριγώνου ισούται με το διπλάσιο του τετραγώνου της περιεχόμενης διαμέσου, αυξημένο κατά το μισό του τετραγώνου

Διαβάστε περισσότερα

ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ Αριθμός Πρωτοκόλου Ηλεκτρονικής Α/Α Αίτησης

ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ Αριθμός Πρωτοκόλου Ηλεκτρονικής Α/Α Αίτησης ΚΩΔ. ΘΕΣΗΣ: 251 ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ 1 21/29449 ΕΛΛΙΠΗ Ή ΕΣΦΑΛΜΕΝΑ ΔΙΚΑΙΟΛΟΓΗΤΙΚΑ 2 21/24230 X373738 ΕΛΛΙΠΗ Ή ΕΣΦΑΛΜΕΝΑ ΔΙΚΑΙΟΛΟΓΗΤΙΚΑ 3 21/3495

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ.

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ. 1 Δινεται τριγωνο ΑΒΓ και η διχοτομος ΒΕ της γωνιας B του τριγωνου Απο το Α φερνουμε παράλληλη της ΒΕ, που τεμνει τη ΒΓ 3 Να δειχτει οτι α + 11 α Ποτε ισχυει ΑΔ ΒΕ το ισον; οποτε οι γωνιες 3 3 Aν α, β

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

µ =. µονάδες 12+13=25

µ =. µονάδες 12+13=25 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β 1 ΓΕΝΙΚΗ ΑΣΚΗΣΗ 1. ίνεται τρίγωνο ΑΒΓ µε α=7, β=5, γ=4. Να βρείτε: 1. το είδος του τριγώνου. την προβολή της β πάνω στη γ 3. το µήκος της διαµέσου ΒΜ 4. την προβολή

Διαβάστε περισσότερα

α) Να υπολογίσετε τις γωνίες των τριγώνων Β Ε γ) Να υπολογίσετε τη γωνία ΕΖ.

α) Να υπολογίσετε τις γωνίες των τριγώνων Β Ε γ) Να υπολογίσετε τη γωνία ΕΖ. 1. Σε ισοσκελές τρίγωνο ΑΒΓ µε ΑΒ=ΑΓ είναι Â =80. Παίρνουµε τυχαίο σηµείο Ε στην πλευρά ΒΓ και κατόπιν τα σηµεία και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε Β =ΒΕ και ΓΕ=ΓΖ. α) Να υπολογίσετε τις

Διαβάστε περισσότερα

ΑΕ = ΑΓ από τα δεδομένα ΒΑΕ=Α+ΓΑΕ=Α+ΒΑ = ο φυλλάδιο ΛΥΣΕΙΣ (Version )

ΑΕ = ΑΓ από τα δεδομένα ΒΑΕ=Α+ΓΑΕ=Α+ΒΑ = ο φυλλάδιο ΛΥΣΕΙΣ (Version ) 3.-3. ο φυλλάδιο ΛΥΣΕΙΣ (Version -0-06) Ε.Στο εξωτερικό ενός τριγώνου ΑΒΓ θεωρούμε τμήματα ΑΔ = ΑΒ και ΑΕ = ΑΓ, ώστε ΒΑ = ΓΑΕ. Να αποδείξετε ότι ΒΕ = ΓΔ. Λύση Τα τρίγωνα ΑΒΕ και ΑΔΓ έχουν: ΑΒ = Α από τα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2012 Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 1 ΙΑΝΟΥΑΡΙΟΥ 01 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 20 Ιανουαρίου 2018 Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 20 Ιανουαρίου 2018 Β ΓΥΜΝΑΣΙΟΥ Β ΓΥΜΝΑΣΙΟΥ. Να βρείτε την τιμή της παράστασης: 2 β + α 500 11 18 α β Α= β 3 β, α αν δίνεται ότι: 10 β =.. Ποιος είναι ο ελάχιστος αριθμός στοιχείων που πρέπει να αφαιρεθούν από το σύνολο Α= { 2, 4, 6,8,10,12,14,16,18,

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια

5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 7 η διδακτική ενότητα : Παραλληλόγραμμα-Είδη παραλληλογράμμων 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις: α) Οι διαγώνιοι κάθε

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

Διαίρεση ευθυγράμμου τμήματος σε ν ίσα τμήματα

Διαίρεση ευθυγράμμου τμήματος σε ν ίσα τμήματα ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ 7. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ Ίσα τμήματα μεταξύ παραλλήλων ευθειών Αν παράλληλες ευθείες ορίζουν ίσα τμήματα σε μια ευθεία, τότε θα ορίζουν ίσα τμήματα και σε οποιαδήποτε

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

1 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ο ΤΡΙΓΩΝΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

1 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ο ΤΡΙΓΩΝΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ο ΤΡΙΓΩΝΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 η Έστω ΑΒΓ ένα ισοσκελές τρίγωνο (ΑΒ = ΑΓ), Δ, Ε σημεία της πλευράς ΒΓ τέτοια, ώστε ΒΔ = ΔΕ = ΕΓ και Μ, Ρ τα μέσα των πλευρών ΑΒ, ΑΓ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

Σχολ. έτος Λεονάρντο Ντα Βίντσι. Γιάννης Ανθόπουλος, Εργασία στην Ιστορία

Σχολ. έτος Λεονάρντο Ντα Βίντσι. Γιάννης Ανθόπουλος, Εργασία στην Ιστορία Σχολ. έτος 2014-15 Λεονάρντο Ντα Βίντσι Γιάννης Ανθόπουλος, Β1 Εργασία στην Ιστορία Σχολ. έτος 2014-15 1 2 Leonardo da Vinci Ο Da Vinci γεννήθηκε στο Βίντσι της Ιταλίας στις 15 Απριλίου του 1452. Το πλήρες

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

Γεωμετρία. Κεφ 1 ο : Γεωμετρια.

Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μαθηματικά Γ Γυμνασίου Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μέρος Α Θεωρία. 1. Με τι είναι ίσο το άθροισμα των γωνιών ενός τριγώνου; 2. Ποιο τρίγωνο λέγετε οξυγώνιο αμβλυγώνιο ορθογώνιο. 3. Ποιο τρίγωνο λέγετε

Διαβάστε περισσότερα

ΘΕΜΑ 4 Δίνεται τρίγωνο ΑΒΓ (ΑΒ < ΑΓ) και η διχοτόμοσ του ΑΔ. Φζρουμε από το Β κάθετη ςτην ΑΔ που τζμνει την ΑΔ ςτο Ε και την πλευρά ΑΓ ςτο Η.

ΘΕΜΑ 4 Δίνεται τρίγωνο ΑΒΓ (ΑΒ < ΑΓ) και η διχοτόμοσ του ΑΔ. Φζρουμε από το Β κάθετη ςτην ΑΔ που τζμνει την ΑΔ ςτο Ε και την πλευρά ΑΓ ςτο Η. Δίνεται τρίγωνο ΑΒΓ (ΑΒ < ΑΓ) και η διχοτόμοσ του ΑΔ. Φζρουμε από το Β κάθετη ςτην ΑΔ που τζμνει την ΑΔ ςτο Ε και την πλευρά ΑΓ ςτο Η. Αν Μ είναι το μζςο τησ πλευράσ ΒΓ, να αποδείξετε ότι: α) Το τρίγωνο

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το 1. ίνεται ισοσκελές τρίγωνο ΑΒΓ µε ΑΒ=ΑΓ, Â =36o και η διχοτόµος του Β. α) Να αποδείξετε ότι: i) Τα τρίγωνα Β Γ και ΑΒΓ είναι όµοια. ii) A 2 =ΑΓ Γ β) Αν θεωρήσουµε το ΑΓ ως µοναδιαίο τµήµα (ΑΓ=1), να υπολογίσετε

Διαβάστε περισσότερα

Κατηγορία χειρουργικής. Χρονική κατάταξη

Κατηγορία χειρουργικής. Χρονική κατάταξη ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ 4η Υ.ΠΕ. ΜΑΚ-ΘΡΑΚΗΣ ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΔΙΔΥΜΟΤΕΙΧΟΥ ΛΙΣΤΑ ΧΕΙΡΟΥΡΓΕΙΟΥ 18-10-2019 ΧΕΙΡΟΥΡΓΙΚΟ ΤΜΗΜΑ Κωδικός Τμήμα Ημέρα & ώρα θεράποντα Χαρακτηρι σμός σημειώματ Κατηγορία

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 50. Ύλη: Βασικές γεωμετρικές έννοιες Θέμα 1 ο : Α. Τι ονομάζουμε κυκλικό δίσκο; (5 μον.)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 50. Ύλη: Βασικές γεωμετρικές έννοιες Θέμα 1 ο : Α. Τι ονομάζουμε κυκλικό δίσκο; (5 μον.) ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 50 Ον/μο:.. Α Γυμνασίου Ύλη: Βασικές γεωμετρικές έννοιες 13-02-17 Θέμα 1 ο : Α. Τι ονομάζουμε κυκλικό δίσκο; (5 μον.) Β. Ποιες είναι οι σχετικές θέσεις μιας ευθείας κι ενός κύκλου;

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

κατάταξη ασθενούς εξέτασης ιατρού ιατρού πράξης περιστατικού χειρουργείου ού χειρουργείου αξης

κατάταξη ασθενούς εξέτασης ιατρού ιατρού πράξης περιστατικού χειρουργείου ού χειρουργείου αξης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ 4η Υ.ΠΕ. ΜΑΚ-ΘΡΑΚΗΣ ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΔΙΔΥΜΟΤΕΙΧΟΥ ΛΙΣΤΑ ΧΕΙΡΟΥΡΓΕΙΟΥ 13-9-2019 ΧΕΙΡΟΥΡΓΙΚΟ ΤΜΗΜΑ Νέα χρονική κατάταξη Τμήμα Χαρακτηρισμ ός Κατηγορία Χρονική Προτεινόμενη

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο Άσκηση 1 (2_18984) Θεωρούμε δύο τρίγωνα ΑΒΓ και ΔΕΖ. (α) Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να δικαιολογήσετε

Διαβάστε περισσότερα

8 ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version )

8 ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version ) 8 ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version 3-8-205) Σ.Να αποδείξετε ότι δύο τραπέζια με ανάλογες βάσεις και τις προσκείμενες σε δύο ομόλογες βάσεις τους γωνίες ίσες μία προς μία, είναι όμοια. Θεωρούμε τα τραπέζια ΑΒΓΔ

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες

Διαβάστε περισσότερα

! # ( ) +!,!!!,!!, ## % & ( ,, ( (!, ) #! + ) #, ( %%&

! # ( ) +!,!!!,!!, ## % & ( ,, ( (!, ) #! + ) #, ( %%& ! # % % & () +!,!!!,!!,,, ((!, ## %& ( )#! + )#, ( %%& .! #/ )!(( ( (0! 1.!( (2 333333333333333333333333333.! ! # # %& % # %# ( & )%& % +&,%&.,% )%& %/ )%& %0 1 % %2 3 %%&,%2,%34 5 +,% % %6 &. & %.7 %&

Διαβάστε περισσότερα

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία.

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία. Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç Σε όλα τα παρακάτω αντικείµενα σχηµατίζονται διάφορες γωνίες ανάλογα µε τη σχετική θέση, κάθε φορά, δύο ηµιευθειών που έχουν ένα κοινό ση- µείο, όπως π.χ. είναι οι δείκτες του ρολογιού,

Διαβάστε περισσότερα

Βήµα 1 - Λύσεις ασκήσεων

Βήµα 1 - Λύσεις ασκήσεων Βήµα 1 - Λύσεις ασκήσεων Σκακιέρα / Ονόµασε τα τετράγωνα: Α 1) ζ3 α8 γ6 2) η8 ε7 γ3 3) η4 δ5 γ2 4) γ5 θ5 β2 5) ε3 δ6 β7 6) δ4 ζ5 γ2 7) ζ6 β1 δ5 8) δ8 η4 ε6 9) η5 β4 γ6 10) ζ4 ε6 β7 11) γ3 θ5 ε2 12) ζ7

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ

Διαβάστε περισσότερα