ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)
|
|
- Τωβίτ Λέων Χατζηιωάννου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fa: ifo@hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou) Street GR Athes - HELLAS Tel Fa: ifo@hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα. Αν ισχύει ότι 4 5 = 0, να βρείτε την τιμή της παράστασης Η παράσταση γίνεται: ( ) ( ) Α= : 4. ( 4 5) 6 5 ( 8: 4 ) ( ) ( ) Α= = = = = 8 0 = 80. Πρόβλημα Τρίγωνο ΑΒΓ έχει πλευρές ΑΒ =, ΒΓ = + και ΓΑ= + 8,. Να βρείτε τις τιμές του για τις οποίες το τρίγωνο ΑΒΓ είναι ισοσκελές. Υπάρχει τιμή του για την οποία το τρίγωνο ΑΒΓ είναι ισόπλευρο; Το τρίγωνο ΑΒΓ είναι ισοσκελές, αν ισχύει: ΑΒ = ΒΓ ή ΑΒ = ΑΓ ή ΑΓ = ΒΓ = + ή = + 8 ή + 8= + = 4 ή = 0ή = 4 = 7 ή = 0ή = 4. Από τη λύση των παραπάνω εξισώσεων διαπιστώνουμε ότι δεν υπάρχει τιμή του που να επαληθεύει την ισότητα ΑΒ=ΒΓ=ΑΓ, οπότε το τρίγωνο ΑΒΓ δεν μπορεί να είναι ισόπλευρο. Πρόβλημα Δίνεται ορθογώνιο ΑΒΓΔ με πλευρές ΑΒ = ΓΔ και ΑΔ = ΒΓ μήκους α και β, αντίστοιχα. Αν αυξήσουμε το μήκος α κατά 0% και το μήκος β κατά 0%, να βρεθεί πόσο επί τοις εκατό θα αυξηθεί το εμβαδόν του ορθογωνίου. Το εμβαδόν του ορθογωνίου ΑΒΓΔ είναι Ε = αβ. Μετά την αύξηση του μήκους των πλευρών του τα μήκη των πλευρών του νέου ορθογωνίου είναι:
2 0α α α 0β β β α = α + = α + = και β = β + = β + = Έτσι το εμβαδόν του νέου ορθογωνίου θα είναι: α β 56αβ 56αβ 56αβ Ε= = = αβ + =Ε Ε Ε Ε 56 Ε Ε= =. 00 Ε 00 Άρα η αύξηση της τιμής του εμβαδού είναι 56% πάνω στην αρχική τιμή του. Πρόβλημα 4 Δίνεται τρίγωνο ΑΒΓ ( ΑΓ > ΑΒ) με τη γωνία Α διπλάσια της γωνίας Β και τη γωνία Β μεγαλύτερη από τη γωνία Γ κατά είκοσι μοίρες. Δίνονται ακόμα το ύψος του ΑΗ και η διχοτόμος του ΑΔ. (α) Αν Α, Β, Γ είναι τα συμμετρικά των κορυφών Α, Β, Γ του τριγώνου ΑΒΓ, ως προς ά ξονα συμμετρίας την ευθεία του ύψους ΑΗ, να αποδείξετε ότι τα τρίγωνα ΑΒΒ και ΑΓΓ είναι ισοσκελή και να βρείτε τις γωνίες τους. (β) Να βρείτε τη γωνία που σχηματίζεται από το ύψος ΑΗ και τη διχοτόμο ΑΔ. A Γ Γ B Η Δ Β (α) Από την υπόθεση έχουμε Α= ˆ Β ˆ και Γ=Β ˆ ˆ 0 0, οπότε από τη γνωστή ισότητα Α+Β+Γ= ˆ ˆ ˆ λαμβάνουμε ˆ ˆ ˆ 0 Β+Β+Β 0 = 80 4Β= ˆ 00 Β= ˆ Άρα έχουμε και Α= ˆ 00 και Γ= ˆ 0. Λόγω συμμετρίας ως προς τον άξονα ΑΗ, τα τρίγωνα ΑΒΓ και ΑΒΓ είναι ίσα ( Α Α, αφού το σημείο Α ανήκει στον άξονα συμμετρίας), οπότε θα έχουν τις αντίστοιχες πλευρές τους ίσες, δηλαδή ΑΒ = ΑΒ και ΑΓ = ΑΓ. Άρα τα τρίγωνα ΑΒΒ και ΑΓΓ είναι ισοσκελή. Επιπλέον έχουμε Β=Β= ˆ 50 0, Γ=Γ= ˆ ˆ 0 0, ˆ ΒΑΒ = = 80 και ΓΑΓ= ˆ 80 0 = 0. (β) Από το ορθογώνιο τρίγωνο ΑΗΔ έχουμε την ισότητα: ˆ ΗΑΔ = 90 ΑΔΗ ˆ () Όμως από το τρίγωνο ΑΒΔ λαμβάνουμε την ισότητα: ˆ ˆ 0 ˆ ˆ ΑΔΗ = ΑΔΒ = 80 Β ΔΑΒ = = 80. () Από τις σχέσεις () και () προκύπτει ότι: ˆ 0 0 ΗΑΔ = = 0.
3 Γ τάξη Γυμνασίου Πρόβλημα Αν ισχύει ότι a+ b=, να βρείτε την τιμή της παράστασης 4 4 Α= ( 6a+ b) ( a+ 64 b) + :. Η παράσταση γίνεται 4 4 Α= ( 6a+ b) ( a+ 64 b) + : 4 = ( a+ b) ( a+ b) 4 = ( ) ( ) = + = + = = Πρόβλημα Αν οι θετικοί πραγματικοί αριθμοί, ικανοποιούν την ισότητα να βρείτε την τιμή της παράστασης Από τη σχέση οπότε έχουμε: Δεύτερος τρόπος =, 0 + Α=. + 4 = λαμβάνουμε: = + 4 ( + ) =, = 4 ( ) = > 0, 4 ή. 8 ( + ) ( ) Α = = = Α= Α= Από τη σχέση + 4 = με διαίρεση των δύο μελών με u = λαμβάνουμε: 0 και την αντικατάσταση
4 = 0 u u+ 4= 0 u = u = ή u = u = 6 ή u =. 6+ Για u = = 6 λαμβάνουμε = 6, οπότε : Α = =. 6 + Για u = = λαμβάνουμε =, οπότε : Α = =. Πρόβλημα Να βρείτε τους διψήφιους θετικούς ακέραιους = ab= 0 a+ b, όπου ab, ψηφία, a 0,που έχουν την ιδιότητα: Το γινόμενο των ψηφίων τους αυξημένο κατά το τετραπλάσιο του αθροίσματος των ψηφίων τους, ισούται με τον αριθμό. Σύμφωνα με την υπόθεση έχουμε την εξίσωση: ab + 4( a + b) = 0a + b, όπου ab, ψηφία, a 0. Ισοδύναμα έχουμε: ab + 4a + 4b = 0a + b ab 6a + b = 0 a( b 6) + ( b 6) = 8 ( a+ )( b 6) = 8 a+ 6 b = 8. ( )( ) Από την τελευταία εξίσωση, δεδομένου ότι 4 a +, προκύπτει ότι: ( a+, 6 b) = ( 6,) ή ( 9, ) ( ab, ) = (,) ή ( 6, 4 ), δηλαδή οι αριθμοί που ζητάμε είναι οι και 64. Πρόβλημα 4 Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές ΑΒ και ΓΔ που είναι κάθετες μεταξύ τους και δεν περνάνε από το κέντρο του κύκλου. Οι δύο χορδές τέμνονται στο σημείο Κ, έτσι ώστε να είναι ΑΚ > ΚΒ. Έστω Μ το συμμετρικό του Β ως προς κέντρο συμμετρίας το σημείο Κ. Να αποδείξετε ότι το σημείο Μ είναι το σημείο τομής των υψών του τριγώνου ΑΓΔ. Έστω ότι η ευθεία ΓΜ τέμνει την πλευρά ΑΔ στο σημείο Ε. Η ΓΕ είναι ύψος του τριγώνου ΑΓΔ, αν είναι ΓΕ ΑΔ ή ΓΕΔ ˆ = 90. Αρκεί να ισχύει: ΕΓΔ ˆ + ΓΔΕ ˆ = 90. Όμως είναι ΕΓΔ ˆ = ΚΓΒ ˆ, () λόγω συμμετρίας ως προς την ευθεία ΓΔ. Επίσης έχουμε ΓΔΕ ˆ = ΓΔΑ ˆ = ΓΒΑ ˆ = ΓΒΚ ˆ, αφού οι γωνίες ΓΔΑ ˆ, ΓΒΑ ˆ είναι εγγεγραμμένες στο ίδιο τόξο του κύκλου. Άρα είναι ΓΔΕ ˆ = ΓΒΚ ˆ, () ως εγγεγραμμένες στο ίδιο τόξο του κύκλου. Με πρόσθεση κατά μέλη των () και () λαμβάνουμε:
5 ˆ ˆ ˆ ˆ 0 ˆ 0 ΕΓΔ + ΔΓΕ = ΚΓΒ + ΓΒΚ = 80 ΓΚΒ = = 90, αφού οι γωνίες ΓΒΚ ˆ και ΚΓΒ ˆ είναι οι δύο οξείες γωνίες του ορθογώνιου τριγώνου ΓΚΒ. Επειδή οι δύο χορδές είναι κάθετες θα είναι και ΑΚ ΓΔ, δηλαδή ΑΚ είναι επίσης ύψος του τριγώνου ΑΓΔ, οπότε το σημείο Μ είναι το σημείο τομής των υψών του τριγώνου ΑΓΔ. Α τάξη Λυκείου Πρόβλημα Να απλοποιήσετε την αλγεβρική παράσταση m m m+ + Α=, m m+ όπου m, ακέραιοι και, πραγματικοί αριθμοί με 0, και. m m m m+ + + Α= = m m m+ m+ m ( ) ( ) + = m = m ( + ) ( ) ( ) m m m+ ( ) m m m m m+ ( ) + m m m =. m m+ Πρόβλημα Να βρεθούν οι ακέραιοι αριθμοί α, β αν γνωρίζετε ότι ισχύουν:
6 α β = α + β και α β + α β + α β α β = 7. Από την ισότητα α β = α + β 0 προκύπτει ότι: = + ( ) α β α β α β = α + β α αβ + β = α + αβ + β αβ = αβ ( α 0 και β 0) ή ( α 0 και β 0. ) Από τη δεύτερη ισότητα λαμβάνουμε: α β + α β + α β α β = 7 α β ( α + β + ) ( α + β + ) = 5 ( α + β + )( α β ) = 5, από την οποία έχουμε ότι ο α β είναι ένας από τους παράγοντες του 5, δηλαδή έχουμε: α β =± ή α β =± 5 ή α β =± 7 ή α β =± 5 α β = ή α β = 0 ή α β = 6 ή α β = 4 ή α β = 8 ή α β = 6 ή α β = 6 ή α β = 4. Οι αποδεκτές περιπτώσεις, αφού α, β και α β 0, είναι οι: α β = 0, η οποία οδηγεί στις λύσεις ( α, β) = ( 0, 7) ή ( α, β) = ( 7,0). α β = 6 αβ = 6 (αφού α, β ετερόσημοι), η οποία οδηγεί στο σύστημα: α + β = ( α, β) = (,) ή ( α, β) = (, ). αβ = 6 Πρόβλημα Δίνεται τετράγωνο ΑΒΓΔ πλευράς α. Πάνω στις πλευρές ΒΓ και ΓΔ λαμβάνουμε σημεία Ε και Ζ τέτοια ώστε ΕΓ = ΖΔ = α. Τα ευθύγραμμα τμήματα ΒΖ και ΔΕ τέμνονται στο σημείο Κ. Αν η ευθεία ΑΚ τέμνει την ευθεία ΕΖ στο σημείο Λ, τότε: (α) Να αποδείξετε ότι: ΑΛ ΕΖ (β) Να υπολογίσετε το μήκος της ΑΛ συναρτήσει του α. (α) Τα ορθογώνια τρίγωνα ΑΔΖ και ΔΕΓ έχουν τις κάθετες πλευρές τους ίσες ( ΑΔ = ΔΓ=α, ΔZ = ΕΓ = α ). Άρα είναι ίσα και έχουν ΔΑ ˆZ =ΕΔΓ. ˆ Αν Μ είναι το σημείο τομής ΑΖ και ΔΕ, τότε έχουμε: ΜΔΖ ˆ + ΔΖΜ ˆ = ΔΑΖ ˆ + ΔΖΑ ˆ 0 ˆ 0 = 80 ΑΔΖ= = 90. Άρα είναι ΕΔ ΑΖ και ομοίως αποδεικνύουμε ότι είναι ΖΒ ΑΕ, οπότε το σημείο Κ είναι το σημείο τομής των υψών του τριγώνου ΑΕΖ. Άρα θα είναι και ΑΚ ΕΖ ή ΑΛ ΕΖ.
7 Δ (β) Έχουμε ότι α 5 ( ΑΕΖ ) = ΕΖ ΑΛ = ΑΛ και α 7α ( ΑΕΖ ) = ( ΑΒΓΔ) ( ΑΒΕ) ( ΕΓΖ) ( ΑΔΖ ) = 9α α α =, 7 5α οπότε λαμβάνουμε: ΑΛ =. 5 Πρόβλημα 4 Να προσδιορίσετε τριψήφιο θετικό ακέραιο abc = 00a + 0b + c, όπου abc,, ψηφία, a > 0, ο οποίος ικανοποιεί την ισότητα: Από τη σχέση abc ( a b c ) ( ) abc = a + b + c 00 = + + < 000 προκύπτει ότι: 0 a b c Από τη σχέση (), δεδομένου ότι {,,...,9} Επιπλέον η δεδομένη ισότητα γίνεται: Διακρίνουμε τώρα τις περιπτώσεις: Για c = 0 η εξίσωση () γίνεται: + +, () a και bc, { 0,,,...,9} { 0,,,} και b { 0,,,, 4,5}, συμπεραίνουμε ότι: c. () ( ) 00 0 ( ) abc= a+ b + c a+ b+ c= a+ b + c. () ( ) 00a+ 0b= a+ b, (4) από την οποία για b { 0,,,, 4,5} δεν προκύπτουν ab, που την επαληθεύουν. Πράγματι, τα ψηφία abπου, ικανοποιούν την εξίσωση (4) πρέπει να είναι τέτοια ώστε ο αριθμός a + b να λήγει σε 0. Έτσι πιθανά ζεύγη είναι τα (, ) ( 9,) ή ( 6, ) ή (,) ή ( 4, 4) ή ( 5,5) ab =, από τα οποία κανένα δεν ικανοποιεί την εξίσωση (4).
8 Για c = η εξίσωση () γίνεται: ( ) 00a+ 0b+ = a+ b +, από την οποία προκύπτει ότι ο αριθμός a+ b + πρέπει να λήγει σε ή 9. Έτσι πιθανά ζεύγη είναι τα ( ab, ) = ( 8,0) ή ( 7,) ή ( 9,) ή ( 4, ) ή ( 6, ) ή (,) ή 9, ή, 4 ή 4, 4 ή,5 ή 5,5, ( ) ( ) ( ) ( ) ( ) από τα οποία προκύπτει μόνο η λύση ( ab, ) = ( 4,4) και ο αριθμός abc = 44. Για c = η εξίσωση () γίνεται: ( ) 00a+ 0b+ = a+ b +, η οποία είναι αδύνατη, αφού δεν είναι δυνατόν το τετράγωνο ενός ακεραίου να τελειώνει σε. Για c = η εξίσωση () γίνεται: ( ) 00a+ 0b+ = a+ b +, η οποία είναι αδύνατη, αφού δεν είναι δυνατόν το τετράγωνο ενός ακεραίου να τελειώνει σε. Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές του πραγματικού αριθμού a για τις οποίες το σύστημα + 4 = 4a a = a έχει μία μόνο λύση. Για τις τιμές του a που θα βρείτε να λύσετε το σύστημα. Το σύστημα είναι ισοδύναμο με το σύστημα + 4 = 4a = a a = a a. a = a + 4( a a) = 4a ( + 4a ) 6a + a = 0 Το σύστημα έχει μία μόνο λύση, αν, και μόνον αν, η εξίσωση ( ) χει μία διπλή ρίζα, δηλαδή, αν, και μόνον αν, ισχύει: Για 0 Για Δ= 6a ( 4a ) = 0 a= 0 ή a= ή a=., = 0,0. a =, το σύστημα έχει τη λύση ( ) ( ) a =± η εξίσωση ( ) χει τη διπλή ρίζα αν a = και ( ) 4a 6a a = γίνεται 4a 6a a = έ- =, οπότε το σύστημα έχει τη μοναδική λύση ( ), =, 4, αν a = = και έ-, =, 4,
9 Πρόβλημα Έστω S = + + z και S = + z+ z, όπου z,, τέτοιοι ώστε να ικανοποιούν την ισότητα + z + z+ + z + = 6. ( ) ( ) ( ) (α) Να αποδείξετε ότι: z = SS 6. (β) Να προσδιορίσετε τους αριθμούς, z,, αν είναι S = και S =. (α) Έχουμε ( + z) + ( z+ ) + z ( + ) = 6 ( + z) + ( z+ ) + z( z+ z) = 6 ( S z) + ( S z) + z ( S ) = z S z = 6 z = S S 6. ( ) (β) Για S = και S = έχουμε το σύστημα: + + z = + + z = + z + z = + z + z =, z = 0 = 0 ή = 0 ή z = 0 από το οποίο εύκολα προκύπτουν οι λύσεις z,, =,,0 ή,, 0 ή,0, ή, 0, ή 0,, ή 0,,. ( ) ( ) ( ) ( ) ( ) ( ) ( ) Πρόβλημα Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με Α= ˆ 90. Αν ΑΔ είναι ύψος του τριγώνου και Κ, Κ, Κ είναι τα κέντρα των εγγεγραμμένων κύκλων των τριγώνων ΑΒΔ, ΑΓΔ, ΑΒΓ, αντίστοιχα, να αποδείξετε ότι ΑΚ = ΚΚ. Α Ε Κ Ζ Β Κ Κ Δ Γ Κ Τα σημεία Κ και Κ βρίσκονται πάνω στη διχοτόμο της γωνίας ˆΒ, ενώ τα σημεία και Κ βρίσκονται πάνω στη διχοτόμο της γωνίας ˆΒ. Έτσι έχουμε ˆ ˆ ˆ 0 Β+Γ 0 ΒΚΓ = 80 = = 5 Ομοίως λαμβάνουμε ΒΚΑ= ˆ ˆ 5 και ΓΚΑ= 5 Άρα έχουμε.
10 0 ΚΚΕ=ΚΚΕ=ΚΚΖ=ΖΚΚ ˆ ˆ ˆ ˆ = 45, 0 ως παραπληρώματα κάποιας γωνίας 5. Επομένως τα τρίγωνα ΑΕΚ, Κ ΕΚ και ΚΖΚ είναι ορθογώνια ισοσκελή, οπότε το σημείο Κ είναι ορθόκεντρο του τριγώνου ΑΚΚ. Τα ορθογώνια τρίγωνα ΑΚ Ε και Κ ΕΚ είναι ίσα, γιατί έχουν ΕΚ =ΕΚ και ΚΚΕ=ΕΑΚ ˆ ˆ, αφού έχουν τις πλευρές τους κάθετες. Άρα είναι ΑΚ =ΚΚ Πρόβλημα 4. Να προσδιορίσετε την τιμή του ακέραιου αριθμού k,< k < 0 και μη σταθερό πολυώνυμο P( ) με πραγματικούς συντελεστές, έτσι ώστε να ισχύει: ( k) P( ) k( ) P( ), = για κάθε. Έστω P( ) = a + a a+ a0, a 0, το ζητούμενο πολυώνυμο. Τότε εξισώνοντας τους συντελεστές των μεγιστοβάθμιων όρων των δύο μελών της δεδομένης ισότητας πολυωνύμων, λαμβάνουμε a = ka k =. Επειδή είναι < k < 0 οι μόνες δυνατές τιμές του είναι οι = ή = ή =. Έτσι η δεδομένη ισότητα γίνεται: P = P, για κάθε. () ( ) ( ) ( ) ( ) Για = η () γίνεται ( ) P( ) ( ) P( ) = προκύπτει P ( ) = 0. Άρα είναι P( ) = a ( ). Για =, για κάθε, από την οποία για =, για κάθε, από την οποία για = η () γίνεται ( ) P( ) ( ) P( ) προκύπτει P ( ) = 0 και P ( 9) = 0. Άρα είναι P( ) a ( )( ) Για = η () γίνεται ( ) P( ) ( ) P( ) = 9. =, για κάθε, από την οποία για προκύπτει P ( ) = 0, P ( 9) = 0 και P ( 7) = 0. Άρα είναι P( ) = a ( )( )( ) 9 7.
11 Γ τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές της παραμέτρου m για τις οποίες το εμβαδόν του τριγώνου που f = +, g( ) = m, m ορίζεται από τις γραφικές παραστάσεις των συναρτήσεων ( ) 6 και τον άξονα των ισούται με. =m Μ Ο Α(,0) Από το σύστημα = m, = + 6 προκύπτει ότι οι συντεταγμένες του σημείου Μ είναι 6 6m,, οπότε έχουμε: m+ m+ 6m 6m 6m E( ΟΑΜ ) = = = ή = m= ή m=. + m + m + m Πρόβλημα Έστω H το ορθόκεντρο και O το περίκεντρο οξυγωνίου τριγώνουabγ. Έστω ακόμη Δ, Ε και Ζ τα μέσα των πλευρών του ΒΓ, ΑΓ και ΑΒ, αντίστοιχα. Θεωρούμε τα σημεία, λ και λ, με. Δ, Εκαι Ζ έτσι ώστε: ΟΔ = λ ΟΔ ΟΕ = ΟΕ ΟΖ = ΟΖ λ >. Ο κύκλος C α που έχει κέντρο το σημείο Δ και διέρχεται από το H τέμνει την ευθεία ΒΓ στα σημεία Α και Cβ Ε, ΕΗ και Cγ Ζ, ΖΗ ορίζουν τα σημεία B, B και Γ, Γ στις ευθείες ΑΓ και ΑΒ, αντίστοιχα. Να αποδείξετε ότι τα σημεία Α, Α, Β, Β, Γ και Γ είναι ομοκυκλικά. Α. Όμοια, οι κύκλοι ( ) ( ) Έστω Η το ορθόκεντρο του τριγώνου ΑΒΓ. Επειδή τα σημεία Δ, ΕΖ, είναι τα μέσα των πλευρών του ΒΓ, ΑΓ και ΑΒ αντίστοιχα, τα τρίγωνα ΑΒΓ και ΔΕΖ έχουν τις πλευρές τους παράλληλες. Τα τρίγωνα ΔΕΖ και ΔΕΖ έχουν επίσης τις πλευρές τους παράλληλες, γιατί ΟΔ = ΟΔ, ΟΕ = λ ΟΕ και ΟΖ = λ ΟΖ. λ Η ΔΖ είναι μεσοκάθετη της κοινής χορδής ΚΗ των κύκλων C α και C γ. Επειδή η ΔΖ είναι παράλληλη με την ΑΓ, έπεται ότι ΚΗ ΑΓ. Επειδή όμως ισχύει και ότι ΒΗ ΑΓ καταλήγουμε στο συμπέρασμα, ότι τα σημεία ΒΚΗ,, είναι συνευθειακά.
12 Με όμοιο τρόπο, αν ΜΗ, ΛΗ είναι η κοινή χορδή των κύκλων C β, C γ και C α, C β, αντίστοιχα, καταλήγουμε στο συμπέρασμα ότι τα σημεία Α, ΜΗ, και τα σημεία ΓΛΗείναι,, συνευθειακά. Από τη δύναμη του σημείου Β ως προς τους κύκλους C α και C γ, έχουμε: ΒΚ ΒΓ = ΒΑ ΒΑ = ΒΓ ΒΓ, οπότε τα σημεία Α, Α, Γ, Γ είναι ομοκυκλικά στο κύκλο με κέντρο το Ο, που είναι το σημείο τομής των μεσοκαθέτων των τμημάτων ΑΑ και ΓΓ. Όμοια εργαζόμαστε και με τα άλλα ζευγάρια σημείων, οπότε τα σημεία Α, Α, Β, Β, Γ και Γ βρίσκονται σε κύκλο κέντρου Ο. Πρόβλημα Να προσδιορίσετε την τιμή του θετικού ακέραιου k και μη σταθερό πολυώνυμο ( ) βαθμού, με πραγματικούς συντελεστές, έτσι ώστε να ισχύει: k P = k P, για κάθε. ( ) ( ) ( ) ( ) P, Έστω P( ) = a + a a+ a0, a 0,, το ζητούμενο πολυώνυμο. Τότε εξισώνοντας τους συντελεστές των μεγιστοβάθμιων όρων των δύο μελών της δεδομένης ισότητας πολυωνύμων, λαμβάνουμε a = ka k =. Έτσι η δεδομένη ισότητα γίνεται: P = P,, για κάθε. () Από την () για ( ) ( ) ( ) ( ) = προκύπτει ότι ( ) ( k P ) = 0. Συνεχίζοντας έτσι λαμβάνουμε τις σχέσεις ( ) P = 0, οπότε στη συνέχεια για = προκύπτει P = 0, για k =,....
13 Επίσης από την () για = λαμβάνουμε: 0= P = 0 P = 0. ( ) ( ) ( ) k Άρα το ζητούμενο πολυώνυμο βαθμού έχει τις ρίζες, k =,,...,, οπότε P = a, a.. Πρόβλημα 4 Δίνεται η συνάρτηση f : με πεδίο ορισμού και σύνολο τιμών, το σύνολο των πραγ-. Αν για οποιουσδήποτε πραγματικούς αριθμούς, ισχύει η σχέση: f ( f ( f( ) ) f( ) ) = f( ) f ( f( ) ), () να αποδείξετε ότι η συνάρτηση f, είναι περιττή. ματικών αριθμών ( f ( ) = ) ( ) ( )( ) ( ) Θέτουμε στη δεδομένη σχέση όπου το f ( ) και έχουμε: f f f ( ) f f ( ) = f ( ) f f f ( ) Από τη σχέση () έχουμε τις ισότητες f f f f ( ( ) ( )) ( ( )) f (0) = f( ) f ( f ( f( ) )) f ( f ( f( ) )) = f( ) f(0) ( f f f )( ) = f( ) f(0) (). ( )( ) = f ( f ( ) f (0 )) ( f f f f )( ) = f ( f ( )) f (0 ) από τις οποίες προκύπτει ότι: f ( f ( ) f (0 )) = f ( f ( )) f (0 ). () Από την () για = 0 παίρνουμε: f f (0 ) f (0 ) = f f (0 ) f (0 ( ) ( ) ) f (0) = f ( f(0) ) f(0) f ( f(0) ) f(0) = (4). Από τη σχέση () για = = 0 και σε συνδυασμό με τη σχέση (4), έχουμε: f f f (0 ) f (0 ) = f (0 ) f f (0 ) ( ( ) ) ( ) f ( f(0) f(0) ) f(0) f(0) f ( f(0) ) f(0) = = (5). Από τις σχέσεις (4) και (5) έχουμε: f (0 ) = 0. Αν τώρα στη σχέση () θέσουμε = 0 καταλήγουμε στη σχέση: f f f (0 ) f ( ) = f (0 ) f f ( ) ( ( ) ) ( ) f ( f( ) ) = f ( f( ) ). Επειδή όμως σύνολο τιμών της συνάρτησης f είναι το, έπεται ότι για κάθε θα υπάρχει ένα τουλάχιστον τέτοιο, ώστε f ( ) =. Άρα έχουμε f ( ) = f ( ), για κάθε, δηλαδή η συνάρτηση f είναι περιττή.,
Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Α τάξη Λυκείου Πρόβλημα Να απλοποιήσετε την αλγεβρική παράσταση όπου mακέραιοι, και, m
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
Τηλ. 36653-367784 - Fax: 36405 Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε
B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα. Αν ισχύει ότι 4x 5y = 0, να βρείτε την τιμή της παράστασης Η
x , οπότε : Α = = 2.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Πρόβλημα Αν ισχύει ότι Γ τάξη Γυμνασίου a+ b=, να βρείτε την τιμή της παράστασης Α= ( 6a+
: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr 34, Panepistimiou (Εleftheriou
2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.
Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : ifo@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Paepistimiou (Εleftheriou Veielou) Street
: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79
2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β
Ευκλείδης Ά Λυκείου 1994-1995 1. Έχουμε στο επίπεδο 4 διαφορετικές ευθείες. Είναι γνωστό ότι κάθε άλλη ευθεία του ίδιου επιπέδου τέμνει ή ή 4 από τις ευθείες. Να βρείτε πόσες από τις ευθείες είναι παράλληλες..
β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3
Β ΓΥΜΝΑΣΙΟΥ Να βρείτε την τιμή της παράστασης: α αν δίνεται ότι: 3 β =. 3β + α α 3β 13 Α= 10 +, β α 3 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και Γ= ˆ Α ˆ. Το τετράπλευρο ΑΓΔΕ είναι
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : ifo@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 66-067784 - Fax: 0 640 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Β τάξη Λυκείου. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές του πραγματικού αριθμού a για τις οποίες το σύστημα x + 4y = 4a ax y = a έχει μία μόνο λύση. Για τις τιμές του a που θα βρείτε να λύσετε το σύστημα. Το
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fa: 0 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Panepistimiou (Εleftheriou Venizelou) Street
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 10 361653-103617784 - Fax: 10 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 10 6165-10617784 - Fax: 10 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ τάξη. Λυκείου.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Πρόβλημα Να προσδιορίσετε τις τιμές της παραμέτρου m για τις οποίες το εμβαδόν του τριγώνου
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 6 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 3645 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Paepistimiou (Εleftheriou Veizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-361774 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-677 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 036653 367784 Fax: 036405 e mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Paneistimiou (Εleftheriou Venizelou)
Θαλής Α' Λυκείου 1995-1996
Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο
B τάξη Γυμνασίου : : και 4 :
Τηλ. 10 6165-10617784 - Fax: 10 64105 Tel. 10 6165-10617784 - Fax: 10 64105 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 014 B τάξη Γυμνασίου Να βρείτε τους αριθμούς 0 4 1 1 77 16 60 19 7 : 000 : και 4 : 4 9
Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1 Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 2 24 : : 2, : και να τις συγκρίνετε.
Τηλ. 6165-617784 - Fa: 64105 Tel. 6165-617784 - Fa: 64105 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 5 5 4 : 6 5 8 8:, 11 : 1 11 7 και να τις συγκρίνετε. Ένα ορθογώνιο έχει μήκος
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου 2014. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
: :
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 19 Οκτωβρίου 013 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 16 1 74 3 1 : 4 53 3 4 :. 9 8 9 Πρόβλημα Ένας οικογενειάρχης πήρε
Για τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. α β. β (β) Το μικρότερο από τα κλάσματα που βρήκαμε στο προηγούμενο ερώτημα είναι το
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.
Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι
ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και
Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 0 Οκτωβρίου 0 Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 5 44 39 8 : Α= 5 5 5 6 3+
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79
Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και
Β ΓΥΜΝΑΣΙΟΥ. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και α + β = 4. (β) Για το μικρότερο από τα κλάσματα του προηγούμενου ερωτήματος να βρείτε την τιμή της παράστασης:
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (39) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 66-67784 - Fax: 640 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Θέματα μεγάλων τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης"
Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +.
ΣΤΑ ΜΑΘΗΜΑΤΙ- ΚΑ B τάξη Γυμνασίου (α) Να συγκρίνετε τους αριθμούς 3 3 0 3 3 1 1 1 8 3 Α= + + : και Β= : 4 +. 4 31 8 4 4 1 3 9 Μονάδες (β) Αν ισχύει ότι: 6( αβ + βγ + γα) = 11αβγ και αβγ 0, να βρείτε την
5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια
5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 7 η διδακτική ενότητα : Παραλληλόγραμμα-Είδη παραλληλογράμμων 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις: α) Οι διαγώνιοι κάθε
Αρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.
Αρχιμήδης Μεγάλοι 1996-1997 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν = 1 4 για κάθε ν φυσικό διαφορετικό του 0. ii) α n 1 α n Να αποδείξετε: α ν 1 =1 για κάθε n - ν 1 α ν α) ότι
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 9 ΑΘΗΝΑ Τηλ 36653-3684 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Ευκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α
Ευκλείδης Β' Λυκείου 993-994 ΜΕΡΟΣ Α. Δύο ίσα τετράγωνα ΑΒΓΔ και ΕΖΗΘ πλευράς 0 τοποθετούνται έτσι ώστε η κορυφή Ε να βρίσκεται στο κέντρο του τετραγώνου ΑΒΓΔ. Το εμβαδό του μέρους του επιπέδου που καλύπτεται
Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων
Λύσεις Διαγωνισμάτων Λύσεις 1 ου Διαγωνίσματος Θέμα 1 ο α) Από μία κορυφή, π.χ. την Α, φέρουμε ευθεία xy ΒΓ. Τότε ω = Β και φ = Γ, ως εντός εναλλάξ των παραλλήλων xy και ΒΓ με τέμνουσες ΑΒ και ΑΓ αντίστοιχα.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ. 665-677 - Fax: 605 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26
Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fa: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο
1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 19 Νοεμβρίου 2011 Β ΓΥΜΝΑΣΙΟΥ 2 : 2.
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ 19 Νοεμβρίου 011 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 1 17 1 1 3 7 1 : 5 1 7 14
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι
Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές
Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία
A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )
A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 4 Νοεμβρίου 007 Β ΓΥΜΝΑΣΙΟΥ ( 00 :8 00) 00 : ( 8 ) 76 3 007. Α= + + + + + + ( 5 00) ( 00 :0 76) 5 ( 0 76) = + + + + + = + + = 5 + 78 = 007.. Αν ω είναι ο αριθμός
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
Μαθηματικά προσανατολισμού Β Λυκείου
Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI
2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB
2ο ΘΕΜΑ 2845. Σε ισοσκελές τρίγωνο ΑΒΓ AB A φέρουμε τη ΑΔ και μια ευθεία (ε) παράλληλη προς τη ΒΓ, που τέμνει τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα. Να αποδείξετε ότι: α) Το τρίγωνο ΑΕΖ είναι
( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 3 06 79 ΑΘΗΝΑ Τηλ. 36653-36778 - Fax: 3605 e-mail : info@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 3, Panepistimiou (Εleftheriou Venizelou)
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.
Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα
Ασκήσεις Επανάληψης Τάξη Δ 016-017 Εν. 1: Διανύσματα 1. Να ονομάσετε τα στοιχεία ενός διανύσματος.. Δίνεται το παραλληλόγραμμο ΑΒΓΔ, όπως φαίνεται στο σχήμα. Να χαρακτηρίσετε ΣΩΣΤΟ ή ΛΑΘΟΣ τις πιο κάτω
Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος
Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι
) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A
[Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ
( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - Fax: 605 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR
ΠΑΡΑΤΗΡΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ
ΑΙΟ ΠΑΡΑΤΗΡΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ Για να είναι όμοια δυο τρίγωνα αρκεί να ισχύει ένα από τα παρακάτω: ΐ) Να έχουν 2 γωνίες ίσες μία προς μία. (Ασκήσεις: Εμπέδωσης 1). ϊϊ) Να έχουν δυο πλευρές ανάλογες και
ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου ενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 6405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 02/12/2017 Ώρα Εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο Άσκηση 1 (2_18984) Θεωρούμε δύο τρίγωνα ΑΒΓ και ΔΕΖ. (α) Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να δικαιολογήσετε
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
Α={1,11,111,1111,..., 11...1 }
Θαλής Γ' Γυμνασίου 1995-1996 1. Δύο μαθητές Α, Β χρησιμοποιούν ένα πίνακα 3x3, όπως στο σχήμα, για να παίξουν "τρίλιζα". Καθένας γράφει σ' ένα τετραγωνάκι της επιλογής του ένα σταυρό ή έναν κύκλο. (Και
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 20 Ιανουαρίου 2018 Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79 - Athens
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 20 Ιανουαρίου 2018 Β ΓΥΜΝΑΣΙΟΥ
Β ΓΥΜΝΑΣΙΟΥ. Να βρείτε την τιμή της παράστασης: 2 β + α 500 11 18 α β Α= β 3 β, α αν δίνεται ότι: 10 β =.. Ποιος είναι ο ελάχιστος αριθμός στοιχείων που πρέπει να αφαιρεθούν από το σύνολο Α= { 2, 4, 6,8,10,12,14,16,18,
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ
Τηλ. 0 36653-0367784 - Fax: 0 36405 Tel. 0 36653-0367784 - Fax: 0 36405 ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 B ΓΥΜΝΑΣΙΟΥ 3 5 Αν a = 4 και b = 5 +, να υπολογίσετε την τιμή παράστασης: 5 A = a: b b. 5a ΘΕΜΑ ο Έστω α θετικός
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Α. Άλγεβρα 1. Τι ονομάζεται ακέραια αλγεβρική παράσταση και τι είναι μονώνυμο; Ποιες από τις παρακάτω παραστάσεις είναι μονώνυμα; 3xa,, 5, x 3, 5 x a (σελ.
Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15)
Αναλογίες 2_20863. Στο παρακάτω σχήμα είναι 12 και 8. α) Να υπολογίσετε τους λόγους και. (Μονάδες 6) β) Να υπολογίσετε το ΑΓ συναρτήσει του κ. (Μονάδες 5) γ) Να υπολογίσετε τον λόγο. Σε τι λόγο λ διαιρείται
ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ
ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ 1. Να αναπτύξετε τις ταυτότητες: α. (α+8) β. (-) γ. (γ+k) δ. (+γ) ε. (3k-5λ) ζ. (5/κ - 4/λ) η. (/3-χ/4) θ. (χ - 3/χ) ι. (χ/3+3ψ/4) κ. (3χ+χ/) λ. (χ+8)(χ-8)
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
A
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΡΧΙΑΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΝΟΕΜΒΡΙΟΣ 017 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 11/11/017 Ώρα Εξέτασης: 10:00-1:00 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις σας..
B τάξη Γυμνασίου Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς (β) Αν ισχύει ότι: και αβγ 0,
7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405
Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου
Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)
ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο
Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και