PARACLISUL SFANTULUI IERARH LUCA AL CRIMEII doctor fara de arginti

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PARACLISUL SFANTULUI IERARH LUCA AL CRIMEII doctor fara de arginti"

Transcript

1 PARACLISUL SFANTULUI IERARH LUCA AL CRIMEII doctor fara de arginti Ήχος Βου de Protos. Victor Ojog um ne zeu es te Dom nul și S-au a ră tat no o uă bi ne es te cu vân tat Cel ce vi neîn tru nu me le Dom nu lui sau a[a: um ne zeu es te Dom nul și S-au a ră ta at no uă bi ne es te cu vân tat Ceel ce vi ne în tru nu me ledomnu lui 1

2 TROPARUL PARACLISULUI SFANTULUI LUCA doctor fˆrˆ de argin i Ήχος Βου pe stea ua cea dedum ne zeu cin sti tă să o mă rim pe cel ce a stră lu cit în zi le le ce le mai de pe u ur mă pe spri ji nul or to do cși lor și po doa ba cea ma a re a doc to ri lor pe cel de un nu me cu al tre i lea e van ghe list pe Lu ca a cel sfin ţit cu la u de să îl cin sti im Slav= Tat=lui [i Fiului [i Sfântului Duh. {i acum [i pururea [i în vecii vecilor. Amin 2

3 ici o da a tă nuvom tă cea Năs că toa a re de Dum ne zeu a ves ti pu te ri le ta a le noi ne vred ni cii că de nu ai fi stă tut î na i in te ru gân du te pen tru noi ci nene-ar fi mântu u it din tru a tâ tea pri mej dii sau ci ne ne-ar fi pă zit pâ nă a cum slo obozi de la ti ne Stă pâ â nă nu ne vom de păr ta că pu rurea iz bă vești pe ro bii tăi din toa te ne vo i i le e. 3

4 C^NTAREA 1 gl.8 Ήχος Γα pa tre cân d-o ca pe us cat și din ră u ta a tea e gip te ni i lor scă pând is ra e li tea nul stri ga iz bă vi to ru lui și Dum ne ze u lui nos tru să-icân tăm Stihul: fin te al LuiDum ne zeu roa a gă te pen tru noi Sau așa: fin te pă rin te Lu ca roa a gă te pen tru noi reș ti ni lor pe Lu ca să îl mă rim pe a le suldo oc tor și pe ma re le i e rarh ce rân du-i vin de ca a re și răs plă tin du-i cu fru moa a se cântări 4

5 fin te al LuiDum ne zeu roa a gă te pen tru noi e ti ne pă rin te noi te ru găm fă că to ru le de mi nuni iz vo răș te ce lor bol navi bo ga tă vin de ca a re de boa la su fle tu lui și a tru pu lui la vă Ta tă lui și Fi u lui și Sfâ ân tu lui Duh sân dit cu a de vă rat prin pă ca te mu ul te de Hri stos m-am în de păr tat a ler a cum pă ri in te la o cro ti rea ta cea prea pu ter ni că i a cum și pu rurea și în ve cii ve cilor a min rea sfântă Stă pâ nă la ti ne vin la cea mai cin sti i tă de cât o ști le în ge rești a lun gă-mi în ti na a rea ca u na sin gu ră 5

6 Mai că a Dom nu lui C^NTAREA A3-A oamne Ce la ce ai fă cut ce le de dea su pra crugu lui ce resc și ai zi dit Bi se ri ca Tu în tă re ște mă în tru dra gos tea Ta mar gi nea do ri ri lor și cre din cio și lor în tă ri re U nu le de oa meni iu bi to ru le fin te al LuiDum ne zeu roa a gă te pen tru noi u ru gă ciu ni le ta a le sfin te pă rin te Lu ca a lun gă ne ză mis li i rea și vin de că bo li le dă ru ind să nă ta te ce lor ce sca pă la ti i ne și cu cre din ţă se roa a gă pă rin te la ra cla ta 6

7 fin te al LuiDum ne zeu roa a gă te pen tru noi u râv nă și mulţu mi i re a du na rea creș ti ni lor a lear gă la ti i ne ce rând o cro ti rea ra și cu cân tări prea slă vi te pe ti ne te la u dă că am a flatîn pri me ej dii pu ter ni că pa za ta la vă Ta tă lui și Fi u lui și Sfâ ân tu lui Duh a î năl ţi mea sme re ni ei ri di că pă rin te pe ro bii tăi pe cei ce vor să pri meaas că cu nu nacea veș ni că a vân du te pe ti ne pil dă vi ede-a pu rurea ur mându-l pe Do omnul cu toa tă pu te rea ta i a cum și pu rurea și în ve cii ve cilor a min 7

8 ă rog fie bin te la ti i ne Fe cioa ră Mai ca LuiDumne zeu în cea sul mor ţii me e le pă zeș te pe ro bul tău să nu văd în ti na tul chi pul cel u rât al de mo nu lui de rai în vred ni cin du mă prin ru ga ciu ni le lui Lu ca celpreamă rit A SFANTULUI LUCA z bă ve e e e eș te de toa tă boa la și vă tă ma a rea pe cei ce a lea ar gă la ti ne Lu ca i e rar he de Dum ne zeu pur tă to ru le 8

9 A MAICII DOMNULUI a u tă cu mi los ti vi re prea cân ta a tă de Dum ne zeu Năs că toa a re la ne ca zul cel cumplit al tru pu luimeu și vin de că du re rea su fle tu lui me e eu sau așa: z bă veș te din toa tă boa la și vă tă maa rea a pe cei ce vin cu cre di in ţă și se roa gă ă î na in tea ta Lu ca i e rar he de Dum ne zeu pur tă to ru le a u tă cu mi los ti vi re Prea cân ta a tă ă de Dum ne zeu Năs că toa a re la ne ca zul cel cum plit al tru pului meu și vin de că du re rea su fle tu lui me e e e e eu 9

10 Ήχος Βου pe cei ca re zac în boa a lă cer ce tea ză-i prea sfin ţi te Lu ca dă ru i indu le tu tu ror vin de ca rea de pa a timi și de boa la cea grea că tu n-i te-ai a ră tat prea lu mi na at doc tor și al nos trumij lo ci to or prea a bu u un Ήχος Γα C^NTAREA a 4-a u zi tam Dum ne ze u le tai na rân du ie lii Ta le Bu nu le am în ţe les lu cru ri le Ta le și am prea slă vit dum ne ze i reata 10

11 fin te al LuiDum ne zeu roa a gă te pen tru noi o mul ne vo in ţe lor me e le bi ne cu vin tea ză-l cu ha rul tău să în flo reas că vir tuţi a le se pă zin du-l de tă ie rea ce lui rău fin te al LuiDum ne zeu roa a gă te pen tru noi u să ge e ţi ledu hu lui pe vrăj mașul de mon cel prea vi clean îl iz go neș te pă rin te și pe ro bii tăi pă zeș te-i de-a pu ru rea la vă Ta tă lui și Fi u lui și Sfâ ân tu lui Duh 11

12 a un do oc tor prea lu mi nat vin de că de gra bă pe ro bii tăi pe cei ce vin cu cre di in ţă și se în chi nă pă rin te la ra cla ta i a cum și pu rurea și în ve cii ve cilor a min e le tre că toa a re ne so co tind Mai că și Fe cioa a ră Stă pâ namea pedom nul sla vei cel prea pu te ernic cu iu bi re L-ai do rit în vi a ţa ta CANTAREA a 5-a ă ne lu mi naţi Însuţi Doam ne cu po runca Ta și cu bra ţul Tău cel î nalt și dă ne no uăpa cea Ta de oa meni iu bi to ru le 12

13 fin te al LuiDum ne zeu roa a gă te pen tru noi in de că a cum prea sfin ţi te ne pu tin ţa mea și a lun gă cu mi la ta toa tă boa la și în tris ta a a rea ce vi ne a su pra mea fin te al LuiDum ne zeu roa a gă te pen tru noi u ha rul cel de sus lu mi nea ză și min teamea să văd lu mi na Du hu lui Ce lui Sfânt de or bi rea du hovni cea as că pă zin du mă pu ru rea la vă Ta tă lui și Fi u lui și Sfâ ân tu lui Duh 13

14 ânt a pă ră tor al cre din ţei or to do ox e te-ai a ră tat în fa ţa ne cre dincio și lor bi ru in du le sfa a tul și u nel ti realor i a cum și pu rurea și în ve cii ve cilor a min ai calui Hri stos o cro teș te tot dea u u na și pă zeș te sub o mo fo rul tău pli nă ta teabi se e ri cii ne a tin să de cel vi clean CANTAREA a 6-a u gă ciu neamea voi văr sa că tre Do om nul și Luivoi spu ne scâr be le me le că s-a umplut de ne voi su fle tul meu și vi a ţa meade iad s-a a pro pi at ci ca I o na Ţi e mă rog din stri că 14

15 ciu ne Dum ne ze u le scoate mă fin te al LuiDum ne zeu roa a gă te pen tru noi a ju de ca a tă ce voi fa ce eu păcă to sul că ia dul mă aș tea ap tă pă rin te și LuiHristos Îm pă ra tul Cel Ma a re ce voi răs pun de eu nevredni cul de a ce ea roa gă-l ne-n ce tat pe Stă pânul să ier te pe ro bul Său fin te al LuiDum ne zeu roa a gă te pen tru noi u ploa a ia bi ne cu vân tă rii ta le vă pa ia ce ne a pa a să ostin ge și dă ne no uă ră coa re a lea a să ce iz vo răș te de la Du hul Sfânt că pu ru rea ne dă ru iești vin de ca re 15

16 de pa timi cu ha rul tău la vă Ta tă lui Fi u lui și Sfâ ân tu lui Duh i se e e ri ca o po vă ţu ieș te prea fe ri ci te și o în va ţă prea sfin ţi i te pă rin te cu dra goste și pa ce în Doomnul să vie ţu ias că de-a pu ru rea pă zin du o ne în ce tat de rup tu ra a du să de cel vi clean i a cum și pu rurea și în ve cii ve cilor a min ă ca a tul mi-a în ti nat cu ră ţi a și lu mi na tru pu lui Prea cu ra tă Mai că dar că tre ti ne vincu cre di in ţă ro gu te fier bin te Stă pâ na mea cu ră ţeș te-acum pe ro bul tău în că ma ra de nun tă sa vin și eu 16

17 CONDACUL Ήχος Βου fi ind în toc mai cu slă vi ţii doc tori fă ră de ar ginţi și a se me nea a ces to ra lu crând vin de cări mi nu na te dă ru ieș te Lu ca tămă du iri ce lor ce se roa gă ţi i e ca un îm pre u u năpă ti mi to or cu ei Ήχος Βου u mea în trea a gă cu ti ne se la u dă fe ri ci te pă rin te că ai pe tre cut vi a ţă sfân tă cin sti i te și pen tru Doomnul Îm pă ra tulcelma re gre le su fe ri in ţe și ne cazuri airăbdat 17

18 pen tru a ceastahris to osdumne zeu te-a mă rit iar noi creș ti i nii te lă u dăm ce rând o cro ti rea ta C^NTAREA a 7-a i ne rii cei ce mers au din Iu de ea în Ba bi lo onoa re când cu cre din ţa Tre i mii vă pa ia cup to ru lui au căl ca to cân tând a șa: Bi ne cu vân tat eștidum ne ze ul pă ri in ţi lor no ștrii fin te al LuiDum ne zeu roa a gă te pen tru noi rea fe ri ci te pă rin te moș te ni tor al bu nă tă ţo lor fi ind cle rul și po po o rul bi ne cu vin tea a ză-l cu ha rul tău 18

19 și le dă pă rin te moș te ni rea mi nu u nilor ta le fin te al LuiDum ne zeu roa a gă tepen tru noi pri ji ni re prea ta re te-ai a ră tat ce lor ce cu cre din ţă temă resc dă ru ieș te vin de ca a re ce lor ce te roa a gă cu dra gos te că de la Dom nul ai pu te re și boa la să o vin deci la vă Ta tă lui Fi u lui și Sfâ ân tu lui Duh e ne cre din ţă iz bă veș te ne ce la ce ești a pă ră to o rul creș ti ni lor blas fe mi a și e re zi i a de par te de la no oi tu a lun gă le și de tul bu ra re iz bă veș te Bi se 19

20 ri ca cea sfân tă i a cum și pu rurea și în ve cii ve cilor a min ur tă toa re de vi a ţă te-ai a ră tat prea fe ri ci tă Ma ai ca LuiDumne zeu iz vor iu te de pa a re pentru cei ce vi in la so li rea ta că că dă ru iești a le se da ruri Fe cioa ră ne nun ti tă C^NTAREA a 8-a e Îm pă ra a tul ce resc pe Ca re Îl la u dă în ge re 20

21 ști le ce te cân ta ţi-l x și prea Î năl ţaţi-lno roa de tot dea u na fin te al LuiDum ne zeu roa a gă tepen tru noi mi nu u ni le și a ju to rul pă rin te pe ca re îl a ră ăţitot dea u na x ce lor ce se roagă la ti necu cre din ţă fin te al LuiDum ne zeu roa a gă tepen tru noi u cre di in ţă și i ni mă sme ri tă că tre a ta i coa nă vin a cum pă rin te x și să rut cu dra gos te ra cla ta cea sfân tă la vă Ta tă lui Fi u lui și Sfâ ân tu lui Duh o m ne eș te în Li tur ghi a ce rească pe cei ce a lea ar 21

22 gă la ti ne x ca la slu ji to rulstă pâ nu lui Cel ma re i a cum și pu rurea și în ve cii ve cilor a min ân tu i i rii te-ai a ră tat pri mă va ră Prea sfân tă Fe cioa a ră și Doamnă x dă ne Prea cu ra tă lu mi nă tot dea u na e Îm pă ra a tul ce resc pe Ca re Îl la u dă în ge re ști le ce te cân taţi-l x și prea Î năl ţaţi-l no roa de tot dea u na m=rim. Pe N=sc=toarea de Dumnezeu [i Maica Luminii întru cântari cinstindu-o s= o 22

23 ân tu iţi prin ti ne fi ind Fe cioa ră pe ti ne ves ti i mu te toţi de Dum ne zeu Năs că toa re veș nicmă rin du te fin te al LuiDum ne zeu roa a gă tepen tru noi i ne cu vin tea a ză ce la ce ești al Ru si ei vlăstar și o dor preasfânt pe cre din cio șii ce te mă resc și te la u dă fin te al LuiDum ne zeu roa a gă te pen tru noi rea sfin ţi te Lu u ca în cea sul mor ţii lân gă mi i ne să fii și să nu îl treci cu ve de rea sfin te pe ro bul tău la vă Ta tă lui și Fi u lui și Sfâ ân tu lui Duh ru pulmeu bo le eș te și su fe ră din pri ci na pă ca te lor 23

24 dar tu pă rin te dă-mi bu cu ri a Du hu lui Ce luisfânt i a cum și pu rurea și în ve cii ve cilor a min co pe ră Fe cioa a ră și o cro teș te grab nic pe ro bii tăi mân tu ind pe o mul cel ce a fost iz go nit din rai Ήχος Γα 24

25 u vi ne se cu a de vă rat să te fe ri cim Năs că toa re dedum ne zeu cea pu ru rea fe ri ci tă și preane vi no va tă și Ma ai ca Dum ne ze u lui no stru e ea ce eștimai cin sti tă de cât He ru vi mii și mai slă vi tă fă ră de a se mă na re de cât Se ra fi mii ca re fă ră stri că ciu ne pe Dum ne zeucu vân tulai năs cut pe ti ne ceacu a devă rat Nă scă toa re dedumne ze eu te mă rim MEGALINARIILE Ήχος Γα 25

26 e Lu ca mă ri tulsă îl cin stim pe ce la ce e es te Lui Hris tos vred nic slu ji tor pe cel ce dă ru ieș te grab nic vin de ca a re să îl mă ri imcredin cio șii cu la u de e bu cu ră în Domnul cei din Sim fe ro o pol că au pă rin te la dân șii co moa a ra din ra cla ta și se în chi nă cu dragos te mă rin du te pu ru rea ol na vi lor doc torprea iu bi tor bu cu ră te Lu u ca vlă ta ru le sfin ţit cel din Ru si a că tu ai a lun gat ne cre di in ţa și bi ne cu vân ta rea mi nu nilor dă ru iești a ti ne cu cre din ţă Lu ca fe ri ci i te ve nim cu to tii pă rin te a ju tă ne cu mi la ta și a lun gă cum pli ta boa a 26

27 lă a cum de la ro bii tăi A MAICII DOMNULUI u sfân tul i e rarh Lu ca cel prea mă rit cu bo te ză to o rul cu a pos to lii lui Hri stos și cu sfin ţii toţi fe cioa a ră mai că ne în ce ta at mân tu i re so leș te ne e e e. alta: u toa te oș ti ri le în ge rești cu bo te ză to o rul cu a pos to liiluihris tos și cu i e ra ar hul Lu ca a a a a a aprea cu ra a tă ne în ce ta at mân tu i re so leș te ne e e e 27

28 Ήχος Βου rep tul ca fi ni culva în flo rii și ca ce drul din Li ban se va în mul ţii rep tul ca fi ni culva în flo rii și ca ce drul din Li ban se va în mul ţii rep tul ca fi ni culva în flo rii și ca ce druldin Liban se va în mul ţii i i la vă Ta tă lui și Fi u lui și Sfân tu lui Duh en truru gă ciu ni le ar hi e re u luităulu ca a Mi los ti ve cu ră ţe eș te mul ţi mea gre șa a le lor noas tre 28

29 i a cum și pu rurea și în ve cii ve ci lor a min en truru gă ciu ni le Năs că toarei de Dumne zeumi i los ti i ve cu ră ţe eș te mul tţ mea gre șa a le lor noas tre Miluie[te-m= Dumnezeule dup= mare mila Ta [i dup= mul]imea înduarilor Tale cur=]e[te f=r=delegile noastre SLUJBˆ POTRIVITˆ ASTFEL PE NOTATIE BIZANTINˆ DE CˆTRE PSALTUL BOGDAN MARIN UCENIC AL PROTOPSALTULUI MIHAIL BUCˆ 29

30 luna octombrie 2012 NOTˆ: IN ALCˆTUIREA SLUJBEI AM FOLOSIT TEXTUL PARACLISULUI SFANTULUI LUCA PUBLICAT DE MITROPOLIA MOLDOVEI SI BUCOVINEI CU BINECUVANTAREA MITROPOLITULUI TEOFAN 30

pa tre cân d-o ca pe us cat și din ră u ta a tea e gip te ni

pa tre cân d-o ca pe us cat și din ră u ta a tea e gip te ni Ήχος Γα pa tre cân d-o ca pe us cat și din ră u ta a tea e gip te ni i lor scă pând is ra e li tea nul stri ga: iz bă vi to ru lui și Dum ne ze u lui nos tru să-icân tăm fin ţi lor mu ce nici ru ga a ţi

Διαβάστε περισσότερα

Dumnezeu este Domnul. Glas 4 T. bi ne es te cu vân tat Cel ce vi ne în tru nu me le Dom nu lui

Dumnezeu este Domnul. Glas 4 T. bi ne es te cu vân tat Cel ce vi ne în tru nu me le Dom nu lui 1 CANON DE MÂNGÂIERE către Sfântul Ioan Rusul Dumnezeu este Domnul. Glas 4 T. Dum ne zeu es te Dom nul şi S a a ră ta at no uă bi ne es te cu vân tat Cel ce vi ne în tru nu me le Dom nu lui Troparul Sfântului,

Διαβάστε περισσότερα

podobia: < ca pe un viteaz >

podobia: < ca pe un viteaz > Ήχος Βου podobia: < ca pe un viteaz > e ni ţi a cum i bi to rilor de prăz nu i i re ve ni iţi a du na rea or to doc și lor să î năl ţămcân tări de la u de ve niţi cu fri i că să să ru tăm și cu bu cu ri

Διαβάστε περισσότερα

PARACLISUL SFANTULUI CUVIOS DIMITRIE BASARABOV

PARACLISUL SFANTULUI CUVIOS DIMITRIE BASARABOV PARACLISUL SFANTULUI CUVIOS DIMITRIE BASARABOV 1 Binecuv/ntat este Dumnezeul nostru totdeauna acum [i pururea [i \n vecii vecilor. Amin. Slav= }ie Dumnezeul nostru, slav= }ie. Împ=rate ceresc, Mângâietorule,Duhul

Διαβάστε περισσότερα

re sfân tă Năs că toa rededumne zeu mân tu ieș te ne penoi re vo ie vo o zii cei tari pe ce le treipărţia le su fletului Ce la ce

re sfân tă Năs că toa rededumne zeu mân tu ieș te ne penoi re vo ie vo o zii cei tari pe ce le treipărţia le su fletului Ce la ce Ήχος Βου re sfân tă Năs că toa rededumne zeu mân tu ieș te ne penoi re vo ie vo o zii cei tari pe ce le treipărţia le su fletului Ce la ce din Fe cioa răte-ai năs cut Hris toa seîm pă a te pe dâ ân șii

Διαβάστε περισσότερα

CANONUL AL DOILEA AL SFANTULUI IERARH SPIRIDON AL TRIMITUNDEI

CANONUL AL DOILEA AL SFANTULUI IERARH SPIRIDON AL TRIMITUNDEI CANONUL AL DOILEA AL SFANTULUI IERARH SPIRIDON AL TRIMITUNDEI Ήχος Πα Irmos: > sfin te pă rin te Spi ri doa a ne ân tu i to rul Hris tos te-a a les pe ti i ne păs tor din pânte

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

vecii vecilor. Bunule, sufletele noastre. viclean.

vecii vecilor. Bunule, sufletele noastre. viclean. Binecuv/ntat este Dumnezeul nostru totdeauna acum [i pururea [i \n vecii vecilor. Amin. Slav= }ie Dumnezeul nostru, slav= }ie. Împ=rate ceresc, Mângâietorule,Duhul adev=rului, Care pretutindenea e[ti [i

Διαβάστε περισσότερα

CATISMA A 17-A psalmul 118-starea intai

CATISMA A 17-A psalmul 118-starea intai CATISMA A 17-A psalmul 118-starea intai Ήχος Βου se canta cu glas domol in tact indoit astfel: 1 e ri ci iţi sunt cei fă ră pri ha nă în ca le ca re um blă în le gea Domnu u lui a a li lu u i i ia a 2

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

Meren virsi Eino Leino

Meren virsi Eino Leino œ_ œ _ q = 72 Meren virsi Eino Leino Toivo Kuua o. 11/2 (1909) c c F c Kun ne F iu L? c œ J J J J œ_ œ_ nœ_ Min ne rien nät, vie ri vä vir ta? Kun ne c c F c Kun ne F iu L? c œ J J J J œ_ œ_ nœ_ Min ne

Διαβάστε περισσότερα

Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU:

Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU: Ch : HÀM S LIÊN TC Ch bám sát (lp ban CB) Biên son: THANH HÂN - - - - - - - - A/ MC TIÊU: - Cung cp cho hc sinh mt s dng bài tp th ng gp có liên quan n s liên tc cu hàm s và phng pháp gii các dng bài ó

Διαβάστε περισσότερα

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG Khó học LTðH KT-: ôn Tán (Thầy Lê á Trần Phương) THỂ TÍH KHỐ HÓP (Phần 4) ðáp Á À TẬP TỰ LUYỆ Giá viên: LÊ Á TRẦ PHƯƠG ác ài tập trng tài liệu này ñược iên sạn kèm the ài giảng Thể tich khối chóp (Phần

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

Problemas resueltos del teorema de Bolzano

Problemas resueltos del teorema de Bolzano Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

SONATA D 295X245. caza

SONATA D 295X245. caza SONATA D 295X245 caza 01 Γωνιακός καναπές προσαρμόζεται σε όλα τα μέτρα σε όλους τους χώρους με μηχανισμούς ανάκλησης στα κεφαλάρια για περισσότερή αναπαυτικότητα στην χρήση του-βγαίνει με κρεβάτι η χωρίς

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí

Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí Tru cập website: hoc36net để tải tài liệu đề thi iễn phí ÀI GIẢI âu : ( điể) Giải các phương trình và hệ phương trình sau: a) 8 3 3 () 8 3 3 8 Ta có ' 8 8 9 ; ' 9 3 o ' nên phương trình () có nghiệ phân

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Προσωπική Αλληλογραφία Επιστολή

Προσωπική Αλληλογραφία Επιστολή - Διεύθυνση Andreea Popescu Str. Reşiţa, nr. 4, bloc M6, sc. A, ap. 12. Turnu Măgurele Jud. Teleorman 06102. România. Ελληνική γραφή διεύθυνσης: Όνομα Παραλήπτη Όνομα και νούμερο οδού Ταχυδρομικός κώδικας,

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Kinh tế học vĩ mô Bài đọc

Kinh tế học vĩ mô Bài đọc Chương tình giảng dạy kinh tế Fulbight Niên khóa 2011-2013 Mô hình 1. : cung cấp cơ sở lý thuyết tổng cầu a. Giả sử: cố định, Kinh tế đóng b. IS - cân bằng thị tường hàng hoá: I() = S() c. LM - cân bằng

Διαβάστε περισσότερα

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n Cơ sở Toán 1 Chương 2: Ma trận - Định thức GV: Phạm Việt Nga Bộ môn Toán, Khoa CNTT, Học viện Nông nghiệp Việt Nam Bộ môn Toán () Cơ sở Toán 1 - Chương 2 VNUA 1 / 22 Mục lục 1 Ma trận 2 Định thức 3 Ma

Διαβάστε περισσότερα

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π

Διαβάστε περισσότερα

..,..,.. ! " # $ % #! & %

..,..,.. !  # $ % #! & % ..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,

Διαβάστε περισσότερα

Η γεωργία στην ΕΕ απαντώντας στην πρόκληση των κλιματικών αλλαγών

Η γεωργία στην ΕΕ απαντώντας στην πρόκληση των κλιματικών αλλαγών Ευρωπαϊκή Επιτροπή Γε ν ι κ ή Δ ι ε ύ θ υ ν σ η Γε ω ρ γ ί α ς κ α ι Αγ ρ ο τ ι κ ή ς Α ν ά π τ υ ξ η ς Ευρωπαϊκή Επιτροπή Γεωργία και αγροτική ανάπτυξη Για περισσότερες πληροφορίες 200 Rue de la Loi,

Διαβάστε περισσότερα

Vn 1: NHC LI MT S KIN TH C LP 10

Vn 1: NHC LI MT S KIN TH C LP 10 Vn : NHC LI MT S KIN TH C LP 0 Mc ích ca vn này là nhc li mt s kin thc ã hc lp 0, nhng có liên quan trc tip n vn s hc trng lp. Vì thi gian không nhiu (khng tit) nên chúng ta s không nhc li lý thuyt mà

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU Tà lệ kha test đầ xân 4 Á ÔNG THỨ Ự TỊ ĐỆN XOAY HỀ GÁO VÊN : ĐẶNG VỆT HÙNG. Đạn mạch có thay đổ: * Kh thì Max max ; P Max còn Mn ư ý: và mắc lên tếp nha * Kh thì Max * Vớ = hặc = thì có cùng gá trị thì

Διαβάστε περισσότερα

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada

Διαβάστε περισσότερα

M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ).

M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ). ài tập ôn đội tuyển năm 015 Nguyễn Văn inh Số 5 ài 1. ho tam giác nội tiếp () có + =. Đường tròn () nội tiếp tam giác tiếp xúc với,, lần lượt tại,,. Gọi b, c lần lượt là trung điểm,. b c cắt tại. hứng

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

œj œ œ œ œ œ œ b œ œ œ œ œ œ w

œj œ œ œ œ œ œ b œ œ œ œ œ œ w Osmogasnik - as 5 - Jutrewe 1 16.. Na O treni j Bog= o - spod' i - vi - sq nam=, n b w ba - go - so-ven= grq-dyj vo i -mq o-spod - ne. Bog= o-spod' i -vi - sq nam=, ba - go - so - n > b w ven= grq - dyj

Διαβάστε περισσότερα

(2), ,. 1).

(2), ,. 1). 178/1 L I ( ) ( ) 2019/1111 25 2019,, ( ), 81 3,,, ( 1 ), ( 2 ),, : (1) 15 2014 ( ). 2201/2003. ( 3 ) ( ). 2201/2003,..,,. (2),..,,, 25 1980, («1980»),.,,. ( 1 ) 18 2018 ( C 458 19.12.2018,. 499) 14 2019

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Π Α Ρ Α Ρ Τ Η Μ Α ΠΑΙΧΝΙΔΙΑ ΜΕ ΤΟΥΣ ΜΟΥΣΙΚΟΥΣ ΣΩΛΗΝΕΣ BOOMWHACKERS

Π Α Ρ Α Ρ Τ Η Μ Α ΠΑΙΧΝΙΔΙΑ ΜΕ ΤΟΥΣ ΜΟΥΣΙΚΟΥΣ ΣΩΛΗΝΕΣ BOOMWHACKERS Π Α Ρ Α Ρ Τ Η Μ Α ΠΑΙΧΝΙΔΙΑ ΜΕ ΤΟΥΣ ΜΟΥΣΙΚΟΥΣ ΣΩΛΗΝΕΣ BOOMWHACKERS Ελισσάβετ Περακάκη & Μαρίνα Μίντζα 1 σελ. 18 Δαχτυλίδι Παιδικό τραγούδι 2 2 σελ. 19 Twinkl Twinkl Παιδικό τραγούδι 3 3 σελ. 20 Frèr Jacqus

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ) ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

Chương 2: Đại cương về transistor

Chương 2: Đại cương về transistor Chương 2: Đại cương về transistor Transistor tiếp giáp lưỡng cực - BJT [ Bipolar Junction Transistor ] Transistor hiệu ứng trường FET [ Field Effect Transistor ] 2.1 KHUYẾCH ĐẠI VÀ CHUYỂN MẠCH BẰNG TRANSISTOR

Διαβάστε περισσότερα

Vers un assistant à la preuve en langue naturelle

Vers un assistant à la preuve en langue naturelle Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.

Διαβάστε περισσότερα

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA ài tập ôn đội tuyển năm 015 guyễn Văn inh Số 6 ài 1. ho tứ giác ngoại tiếp. hứng minh rằng trung trực của các cạnh,,, cắt nhau tạo thành một tứ giác ngoại tiếp. J 1 1 1 1 hứng minh. Gọi 1 1 1 1 là tứ giác

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Batigoal_mathscope.org ñược tính theo công thức

Batigoal_mathscope.org ñược tính theo công thức SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa

Διαβάστε περισσότερα

Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα

Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα Κεφάλαιο 8 Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα 1. H απαγορευτική αρχή του Pauli 2. Η αρχή της ελάχιστης ενέργειας 3. Ο κανόνας του Hund H απαγορευτική αρχή του Pauli «Είναι αδύνατο να υπάρχουν

Διαβάστε περισσότερα

œ œ œ œ œ œ œ œ œ l Bo/g Go-spo/d' i «- vi/ - sq na/m=, bla - go -

œ œ œ œ œ œ œ œ œ l Bo/g Go-spo/d' i «- vi/ - sq na/m=, bla - go - J 1 Jutrewe - as 1 16. Na O treni Bog o-spod' i «- vi - sq nam=, ba - go -. J w so -ven= grq -dyj vo i -mq o-spod - ne. 17. " rob= tvoj Spa - se vo - i - ni stre - gu? - w i, b mer - tvi - bi -sta - n

Διαβάστε περισσότερα

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA I. Vcto không gian Chương : VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯ BA PHA I.. Biể diễn vcto không gian cho các đại lượng ba pha Động cơ không đồng bộ (ĐCKĐB) ba pha có ba (hay bội ố của ba) cộn dây tato bố

Διαβάστε περισσότερα

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b huỗi bài toán về họ đường tròn đi qua điểm cố định Nguyễn Văn inh Năm 2015 húng ta bắt đầu từ bài toán sau. ài 1. (US TST 2012) ho tam giác. là một điểm chuyển động trên. Gọi, lần lượt là các điểm trên,

Διαβάστε περισσότερα

GRČKO SRPSKA SVITA Milan T Ilic

GRČKO SRPSKA SVITA Milan T Ilic Soprano A Allegro GRČKO SRPSKA SVI Milan T Ilic 7 & # 8 5 Mezzosoprano 7 & # 8 0 & # Θἀ λασ σα Θἀ λασ σα τους Θα λασ σι νούς Θα λασ σἁ κι μου LA SA LASA TUS LA SI MUS LA SA KI MU & # 5 & # Θἀ λασ σα Θἀ

Διαβάστε περισσότερα

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3. . F/ /3 3. I F/ 7 7 0 0 Mo ode del 0 00 0 00 A 6 A C00 00 0 S 0 C 0 008 06 007 07 09 A 0 00 0 00 0 009 09 A 7 I 7 7 0 0 F/.. 6 6 8 8 0 00 0 F/3 /3. fo I t o nt un D ou s ds 3. ird F/ /3 Thi ur T ou 0 Fo

Διαβάστε περισσότερα

@IVOTI PESNIKA. Iz biografije Viktora Igoa (od do 1861)

@IVOTI PESNIKA. Iz biografije Viktora Igoa (od do 1861) @IVOTI PESNIKA Grejem Rob GODINE IZGNANSTVA Iz biografije Viktora Igoa (od 1856. do 1861) Qu di oku pqe ni u go mi li u ti {i ni su po ski da li {e {i re dok se Igo is kr ca vao u Sent Pi ter Por tu, glav

Διαβάστε περισσότερα

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση του αριθμού του οικονομικά ενεργού

Διαβάστε περισσότερα

O 2 I = 1 suy ra II 2 O 1 B.

O 2 I = 1 suy ra II 2 O 1 B. ài tập ôn đội tuyển năm 2014 guyễn Văn inh Số 2 ài 1. ho hai đường tròn ( 1 ) và ( 2 ) cùng tiếp xúc trong với đường tròn () lần lượt tại,. Từ kẻ hai tiếp tuyến t 1, t 2 tới ( 2 ), từ kẻ hai tiếp tuyến

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο απασχολούμενου πληθυσμού - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού υπολογίζεται με τη διαίρεση του αριθμού του ισοδύναμου πλήρως

Διαβάστε περισσότερα

Teorema Rezidurilor şi Bucuria Integralelor Reale

Teorema Rezidurilor şi Bucuria Integralelor Reale Torma Ridurilor şi Bucuria Intgrallor Ral Prntar d Alandru Ngrscu Intgral cu funcţii raţional c dpind d sin t şi cos t u notaţia it, avm: cos t ( + sin t ( i dt d i, iar intgrara s va fac d-a lungul crcului

Διαβάστε περισσότερα

#57 STYLE. June, July, August. arqiteqtura interieri dizaini

#57 STYLE. June, July, August. arqiteqtura interieri dizaini #57 2016 June, July, August arqiteqtura interieri dizaini STYLE A R C H I T E C T U R E I N T E R I O R D E S I G N sertificirebulia sertificirebulia gamomcemeli - saqartvelos arqiteqtorta asociacia mtavari

Διαβάστε περισσότερα

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.

Διαβάστε περισσότερα

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Ο γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση της ετήσιας αύξησης του οικονομικά ενεργού πληθυσμού

Διαβάστε περισσότερα

Το τρέχον παγκόσμιο επιχειρηματικό κλίμα είναι στο ίδιο επίπεδο του Δεκεμβρίου 2013

Το τρέχον παγκόσμιο επιχειρηματικό κλίμα είναι στο ίδιο επίπεδο του Δεκεμβρίου 2013 VaughanVaughanVaughan Econ-Cast AG Rigistrasse 9 CH-8006 Ζυρίχη Δελτίο τύπου Econ-Cast Global Business Monitor Δεκέμβριος 2014 Stefan James Lang Εταίρος Διαχειριστής Rigistrasse 9 Τηλ. +41 (0)44 344 5681

Διαβάστε περισσότερα

A R ID CRO P J O U RNAL O F NA TU RAL R ESO U RC ES

A R ID CRO P J O U RNAL O F NA TU RAL R ESO U RC ES 12 3 1997 7 J O U RNAL O F NA TU RAL R ESO U RC ES Vol. 12 No. 3 J uly, 1997 ARID CROP Ξ ( 210093) A R ID CRO P, Yq, Yw, Q (Q = ( Yw - Yq) / Yq), 3 750 9 750 kg/ hm 2,, 3 750 kg/ hm 2,, 5 % 10 %, 75 %

Διαβάστε περισσότερα

Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο

Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών υπολογίζεται με

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο

Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών υπολογίζεται με τη διαίρεση

Διαβάστε περισσότερα

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

SINH-VIEÂN PHAÛI GHI MAÕ-SOÁ SINH-VIEÂN LEÂN ÑEÀ THI VAØ NOÄP LAÏI ÑEÀ THI + BAØI THI

SINH-VIEÂN PHAÛI GHI MAÕ-SOÁ SINH-VIEÂN LEÂN ÑEÀ THI VAØ NOÄP LAÏI ÑEÀ THI + BAØI THI SINHVIEÂN PHAÛI GHI MAÕSOÁ SINHVIEÂN LEÂN ÑEÀ THI VAØ NOÄP LAÏI ÑEÀ THI BAØI THI THÔØI LÖÔÏNG : 45 PHUÙT KHOÂNG SÖÛ DUÏNG TAØI LIEÄU MSSV: BÀI 1 (H1): Ch : i1 t 8,5 2.sin50t 53 13 [A] ; 2 i3 t 20 2.sin50t

Διαβάστε περισσότερα

Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο

Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το μερίδιο εργοδοτουμένων με μερική ή/και προσωρινή απασχόληση

Διαβάστε περισσότερα

COMPLICITY COLLECTION autumn / winter

COMPLICITY COLLECTION autumn / winter COMP LI C I TY COLLE C TI ON a ut umn / winte r 2 0 1 7 1 8 «T o ρ ο ύ χ ο ε ί ν α ι τ ο σ π ί τ ι τ ο υ σ ώ μ ατ ο ς». Τ ο σ ώ μ α ν τ ύ ν ε τα ι μ ε φ υ σ ι κ ά ν ή μ ατα κ α ι υφά σ μ ατα α π ό τ η

Διαβάστε περισσότερα

Japanese Fuzzy String Matching in Cooking Recipes

Japanese Fuzzy String Matching in Cooking Recipes 1 Japanese Fuzzy String Matching in Cooking Recipes Michiko Yasukawa 1 In this paper, we propose Japanese fuzzy string matching in cooking recipes. Cooking recipes contain spelling variants for recipe

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

L P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC).

L P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC). ài tập ôn đội tuyển I năm 015 Nguyễn Văn inh Số 7 ài 1. (ym). ho tam giác nội tiếp đường tròn (), ngoại tiếp đường tròn (I). G là điểm chính giữa cung không chứa. là tiếp điểm của (I) với. J là điểm nằm

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,

Διαβάστε περισσότερα

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του

Διαβάστε περισσότερα

ΚΑΤΑΤΑΞΗ ΟΜΙΛΩΝ ΜΕΤΑ ΑΠΟ ΚΛΗΡΩΣΗ (Α ΦΑΣΗ)

ΚΑΤΑΤΑΞΗ ΟΜΙΛΩΝ ΜΕΤΑ ΑΠΟ ΚΛΗΡΩΣΗ (Α ΦΑΣΗ) ΚΑΤΑΤΑΞΗ ΟΜΙΛΩΝ ΜΕΤΑ ΑΠΟ ΚΛΗΡΩΣΗ (Α ΦΑΣΗ) ΠΑΝΤΕΙΟ-1 BA Α ΟΜΙΛΟΣ ΠΑΝ.ΔΥΤ.ΑΤΤ.-2 ΤΕΙ ΣΤΕΡ.ΕΛΛΑΔ.-1 DE ΕΜΠ-6 LI Β ΟΜΙΛΟΣ ΤΕΙ ΣΤΕΡ.ΕΛΛΑΔ.-2 MD ΠΑΝΤΕΙΟ-3 MC ΠΑΝ.ΔΥΤ.ΑΤΤ.-1 NO ΕΜΠ-4 RU Γ ΟΜΙΛΟΣ ΠΑΝ.ΔΥΤ.ΑΤΤ.-3

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα