Answers to Selected Exercises
|
|
- ψυχή Στεφανόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Answers to Selected Eercises Chapter. second, fifth, fifth, forty-second a i. yes, it is a ii. no, it is not a iii. no b i. no b ii. yes b iii. no c i. yes c ii. no c iii. no d i. no d ii. no d iii. yes e i. no e ii. yes e iii. yes f i. no f ii. no f iii. yes g i. no g ii. yes g iii. yes h i. yes h ii. yes h iii. yes a i. no a ii. yes a iii. no b i. no b ii. no b iii. yes c i. yes c ii. no c iii. no d i. no d ii. no d iii. yes 5b i. 9 5b ii. 5 5c i. y = + 9 5c ii. y = + 5 6b i. y = e 6b ii. y = e 7b i. y = cos) + sin) 7b ii. y = sin) 8a i. 7 8a ii. No, because then 7 = y ) =. d 8a iii. y = d d + y +, y ) = 9 8a iv. Of course. 8b i. y 0) = and y 0) = 8b ii. No. 9a. 00/7 sec. 9b. 0 meters/second 9c i. y 0) = 0 is replaced with y 0) = 9c ii..9t + t c iii. dv 90 meters/second 0a. /dt = 9.8 κv ) 0b i. 000κ 0b ii. v hit + 9.8t hit )/000 b. + 5 ln c. Because y) is not continuous at = 0. Chapter a. Yes, it is directly integrable. b. No, it is not directly integrable. c. No d. Yes e. No f. Yes g. Yes h. No i. No a. + c b. 5e + c c. ln + c d. + + c e. sin ) + c f. sin) + cos) + c g. ln 9 + c h. 6 ln + + c i c j. sin) + c + c k c + c l. + c + c + c + c a. + 5e for < < b. + 6) / + for < < c. ln for < < d. ln + for 0 < < e. ln cos) + for π < < π f. arctan) + for < < g. ln ) for 0 < < 5a. cos + + y0) 5b i. 5b ii. 5 5b iii. 7 6a. + ) / + y) 6 6b i. 5 6b ii
2 66 Answers to Selected Eercises 7 6b iii. 7a. e 7b c. arctan π { } π 7d. 6 erf) + 7e. Si) + 7f. Si ) 0 if < 0 ) 9a. if 0 { } if < 0 if < 9b. 9c. if + if if < 9d. + c if s + + c if < s Chapter a. = 6 y, nonautonomous, const. solns.: y = d sin + y) b. =, nonautonomous, const. solns.: none d y c. d = y + 8, autonomous, const. solns.: y = d. d = y, nonautonomous, const. solns.: y = and y = e. d = + y, nonautonomous, const. solns.: none f. d = 5y y, autonomous, const. solns.: y = 0, y = 5 and y = 5 g. d = y +, nonautonomous, const. solns.: y = h. d =, nonautonomous, const. solns.: none y i. d = y y, autonomous, const. solns.: y = + and y = j. d = y + 8)y 8, nonautonomous, const. solns.: y = 8 5b. Because F / y with F, y) = y is not continuous at the point, 0). 6a. + 6b c a b Chapter a. d = sin))y b. Not separable c. Not separable d. Separable e. d = y) f. = y) g. Not separable d h. d = )y ) i. Not separable j. d = e y e y a. y = ± + c b. y = tan + c) c. y = ± A 9 d. y = tanc + arctan)) e. y = arcsinc cos)) f. y = ln e + c 5a. y = + 8 5b. y = e 5c. y = 5e / 5d. y = + ) 9 6a. y = 6b. y = / 6c. y = and y = 6d. y = 0,±π,±π,±π,... 6e. No constant solution 6f. y = 0 and y = 00 7a. y = + A ep ) 7b. y = c cos) ) and y = 0
3 Answers to Selected Eercises 67 ) 7c. y = + A ep 7d. y = arcsin Ae ) 7e. y = A 7f. y y = + + c 7g. y = tanarctan) + c) 7h. implicit: y + y = + c, eplicit: y = c ± c ) ; also y = 0 7i. y = ln + c 7j. y = ln Ae 7k. y = ± c ) / and y = 0 7l. y + y / = + / + c 7m. y = ± + Ae 7n. y = tan + c ) 7o. y = 00Ae00 + Ae 00 8a. y = 5 + e 8b. y = 8 cos) 8c. y = ) 8d. y = 0 8e. y ln y = + 8f. y = + 9a. y = 0 and y = β β / γ 9b. y = γ Ae β and y = 0 0a., ) ) 0b., ) 0c., ) 0d. e, ) 0e., Chapter 5 a. d + y = sin) b. Not linear c. Not Linear d. Not Linear e. d + )y = f. d y = 8 g. d + 0 y = e h. d sin) y = 0 i. Not linear j. d 87 y = cos ) a. + ce b. e + ce c. ce d. ce e. + c f. c cos ] g. c 5 h. + c] cos) i. + ce 5] j. / + ce a. 7e b. c. e e 5] d. + 6 e. sin) ] f ) ] / a. e + e s sins) ds b. 0 + sins) s ] ds c a. µ ) = µ)p) and y ) = f ) p) µ) Chapter 6 0 ] e s ds µ 0 )y ] µs) f s) ds a i. + y + = tany + C) a ii. y = ± Ae a iii. y = + arcsin8 + c) b. y = a i. y = ln + c) and y = 0 a ii. y = ± c + ln a iii. y = arcsina ) b. y = a i. y = ± + ce 6) / and y = 0 a ii. y = C ) and y = 0 a iii. y = sin) + c ) and y = 0 b. y = sin) a. u = y / ; y = ln + c) / b. u = + y + ; y = + c ) and y = + ) c. u = y / ; y = + c / ) and y = 0 d. u = y ; y = arccos + c) e. u = y ; y + ln y + = c and y = + f. u = y / ; y ln y cy = and y = 0
4 68 Answers to Selected Eercises g. u = y / ; y = ± ln + c h. u = y ; y = ± c ) / and y = 0 i. u = + y ; y = + c) + and y = j. u = + y ; + y ln + ) + y = + c ) k. u = y / ; y = ln + c and y = l. u = y ; y = ± 8e + ce ) / m. u = y + ; y = + + Ae ) Ae + ) and y = + n. u = y + ; y = c + c and y = o. u = siny) ; y = arcsin c + )e ) p. u = y ; y = tanc + ln ) 5. du /d + n)p)u = n) f ) Chapter 7 a. y + d = 0, y = c b. 6 y + y ] d = 0, y = ± c + 6 c. ] y y + y ] d = 0, y y = c d. Arctany) + c ) + y d = 0, y = tan b. y = ± + c a. φ, y) = y + y, y = ± + C b. φ, y) = y +, y = c ) / c. φ, y) = + y, y = c + ) / d. φ, y) = y + + y c, y = ± e. φ, y) = y + 5 y5, y 5 y5 = c f. φ, y) = ln y, y = e c g. φ, y) = + e y, y = ln c h. φ, y) = e y + y, e y + y = c 5a. µ =, y y = c 5b. µ = y, y + y = c 5c. µ = y, y y = c 5d. µ = cosy), cosy) + siny) = c 5e. µ =, y = ± + C 5f. µ = e, y = Ce 5g. µ =, y = ± c ) / 5h. µ = y, y 5/ + y / = c 5i. µ = y /, y 7 / + y / = c Chapter 8 b. y0) should be within / 6 of.. a., b. y8) /
5 Answers to Selected Eercises 69. a., bi. y) /, bii. y), biii. y) 6 / 5. ai. & bi., aii. The ma. is approimately 6 / and is at., aiii. y0) /, bii. y0) / 6. ai. & bi., aii. The ma. is approimately 5 and is at., aiii. y0) /, aii. The ma. is approimately and is at 6 /., bii. y0) / 7. ai. & bi., aii. y) /, bii. y0) 9a. y = appears to be an asymptotically stable constant solution. 9b. y = appears to be an unstable constant solution. 9c. y = appears to be a stable but maybe not asymptotically stable) constant solution. 9d. y = appears to be an unstable constant solution. 9e. y = appears to be an unstable constant solution, and y = appears to be an asymptotically stable constant solution. 9f. y = appears to be a stable but not asymptotically stable) constant solution.
6 60 Answers to Selected Eercises Chapter 9 a. k k y k 0 / / 5 / 5 / b. k k y k / 0 / 5 / 0 0 c. k k y k 0 0 / / 9 / 985 /8 d. k k y k 0 8 / / / 6 /5 5 7 / /7 a. k k y k b. k k y k c. k k y k d. k k y k a..088 b c d a. y) with error =.0568 ± b. y) with error =.5976 ± c. y) with error =.0097 ± d. y) with error =.56 ± e. y) 0.9 with error =.05 ± f. y) 0.57 with error =.00 ± g. y) with error =.000 ± a. y) =, y) = c i. y) with error = 99.8 ± c ii. y). with error =.69 ± c iii. y) with error = 0.0 ± c iv. y) with error = 0.00 ± a i. y k = ) k 7a ii. It does not. 7a iii. y) 0 as ; y k y k ) 7b i. y k = 7b ii. yes 8d. The solution becomes infinite. 8e. They are nonsense. The solution to the initial-value problem is not valid for > 7 /. Chapter 0 ) k 5 a. 6,58,05 b. for each, the answer is 0.8 ln 0.55) month c. for each, the answer is 0.8 ln 0.8) months d.. months a. It) = e βt with β = ln50) b.,500 c..78 days 5a. 0.0/year 0 5b i grams 5b ii.. grams 5b iii..98 grams 6a /year 6b i % 6b ii % 6b iii % 6b iv. 5.6 % 6b v. 9.8 %
7 Answers to Selected Eercises 6 6b vi. 0. % 6c. 9,95 years ago 6d., years ago 6e. 570 ) ln ln A A 0 7b i. 6.8 rabbits 7b ii., 95,.8 rabbits 7b iii. 9, 999, 995. rabbits e 7c. κ = R 0 Rt) βt R 0 Rt)e βt 7d i.,8.5 rabbits 7d ii.,7.6 rabbits d R 8a. = 5 R 500 8b. y = 00 is the equilibrium solution. If we start with more, dt the population increases. If we start with less, the population decreases rapidly!) 8c. Rt) = 00 + R 0 00)e 5t/ d R 9a. = R 9b. There is no equilibrium dt solution; if we start with a positive number of rabbits, the population constantly increases. 9c. Rt) = R 0 e t/ d R 0a. = β R γ R h 0 dt d R 0b. = β ) R γ R a. = 50 y initial condition: y0) = 00 ) dt dt 0 b. 000 warriors c. yt) = e t/0 d. 0 ln 8 weeks about.5 weeks) a. = 9 dt 000 y c. y = e t/000 d i.. gallons d ii..6 gallons d iii. 7.7 gallons e. When t = 000 ln 66. a. = 9 dt y 000 c. y = e t/000 d i. 9. gallons d ii. 07. gallons d iii gallons e. When t = 000 ln a i. = dt 00 y a iii. yt) = e t/00 b i..8 b ii. 8.6 b iii..7 c. oz. salt/gal. water d. When t = 00 ln 9. 5a i. = dt 00 y 5a iii. yt) = 00 00e t/00 5b i..6 5b ii b iii c. / oz. salt/gal. water 5d. Never 6a. 500 t 6b i. = dt 500 t y 6b ii. y = 500 t) 0 t ] 6c i c ii c iii d i. t = 99 6d ii ounces 7. Arrest the butler. The time of death was only about about :0, over an hour after the butler reported finding the bo. Besides, his fingerprints were on the bottle. Chapter a. y = + c + c b. y = A + c c. y = Ae + c d. y = e + c e + c e. y = Ae + c f. y = C arctan) + C a. y = c + c + c b. Equation contains y. c. y = c ± + c ) / d. y = ln + A + C, y = c and y = + c A e. y = 6 + c + c f. Equation contains y. g. y = + Ae + C h. Equation contains y. i. y = e + Ae + B j. y = B ln A + e a. y = Ae + B + C b. y = A ln + B + C c. y = + A) + B + C d. y = Ae + B + C + D a. y = Be a b. y = A + c) c. y = arccosc A) d. y = Ae + c e. y = ± Ae + C f. y + y = A + C 5a. not autonomous 5b. y = ± A + c 5c. y = c ± + c ) / 5d. not autonomous 5e. not autonomous 5f. y = Be A + A and y = c 5g. y = + Ae + C 5h. y = + Be A 5i. not autonomous 5j. y = ln A + Be
8 6 Answers to Selected Eercises 6a i. y = a ii. y = + 8 6a iii. y = 5e + 6a iv. y = e + e 6a v. y = e a vi. y = ln + + 6b i. y = + 6b ii. y = + ) / 7a i. y = 5e 7a ii. y = 8 + ) 7a iii. y = ) 7b i. y = e + 5 7b ii. y = ln e 8a i. y = arctan) + 8a ii. y = 8a iii. y = 8a iv. y = ln b. y = A arctana) + c, y = c and y = a ln a + c 9a i. y = tan) + a 9a ii. y = 9a iii. y = 9a iv. y = e + e 9b. y = A tana + B), y = c Chapter and y = c + Bec Be c a. second-order, linear, nonhomogeneous b. second-order, linear, homogeneous c. second-order, linear, homogeneous d. second-order, nonlinear e. first-order, linear, nonhomogeneous f. third-order, linear, homogeneous g. second-order, nonlinear h. second-order, linear, nonhomogeneous i. fourth-order, linear, nonhomogeneous j. third-order, nonlinear k. third-order, linear, homogeneous l. fifty-fifth-order, linear, nonhomogeneous a. L = d d + 5d d + 6 b i. 5 sin) + 5 cos) b ii. e b iii. 0 b iv c. e a. L = d d 5d d + 9 b i. 8 sin) 5 cos) b ii. 5 cos) b iii. e b iv. sin) cos)] e 5a. L = d 5b i. 6 sin) + 5 cos) sin) d + 5 d d + 6 5b ii ] e 5b iii. 7 6a. L = d d sin) d + cos) 6b i. cos) 6b ii. + sin) d 6b iii. cos) sin) 7a. y) = cos) + sin) 7b. y) = e e 7c. y) = e + 5e 7d. y) = e + e 7e. y) = 5 / + / 7f. y) = 5 ln 7g. y) = cos ) sin ) π 7h. y) = + 8a. y) = cos) + sin) 8b. y) = + sin ) + 8 sin) cos) 8c. y) = sin) + sinh) a. L L = d d ], L L = d d + ] b. L L = d d + + ] d d + + 5], L L = d d + + ] d d + + 5] c. L L = d d + + ] d d + 6, L L = d d + + ] d d + 8 d. L L = d d L L = d d + 6 d d + 6, L L = d d + d d e. L L = d d, f. L L = sin) d d, L L = sin) d d + cos)d d sin) a. d d + 5d d + 6
9 Answers to Selected Eercises 6 b. d d + 6 d d + 6 c. d d + 5d d + d d. d + + ] d d + ] d e. d + + ] d d + 8 d f. d + 0 d d ] d g. d + + ] d d + d d d h. d + + ] d d + + ] d + + ]. y) = ce d. y) = ce 5. y) = c Chapter a. Ae + Be b. Ae 5 + Be 5 c. A + B d. A ln + B e. A e + Be f. Ae + Be g. A cos) + B sin) h. A e + B i. A sin) + B sin) j. A cos) + B sin) k. A cosln ) + B sinln ) l. A / cos) + B / sin) a. Ae + Be e b. Ae + Be e c. A + B d. A 5 + B + 5 ln e. y = e + A + Be ] f. y = + + B + Ae a. y = Ae + Be + C e b. y = e cos) + Ae + Be + C e c. y = Ae + Be + C e + D e d. y = A ln + B + C Chapter a. gen. soln.: y) = c e + c e, i.v. soln.: y) = e + e b. gen. soln.: y) = c e + c e, i.v. soln.: y) = e e c. gen. soln.: y) = c e + c e 9, i.v. soln.: y) = e e 9 d. gen. soln.: y) = c + c e 5, i.v. soln.: y) = a. c + c e + c e b. c e + c e + c e + c e Chapter 5 c. Yes, {y, y } is linearly dependent on any subinterval of either 0, ) or, 0). Chapter 6 a. Ae + Be 5 5 a i. e e5 a ii. e + e5 a iii. e + e 5 b. Ae + Be 6 b i. 5 e + 5 e 6 b ii. 7e + e 6 c. Ae 5 + Be 5 c i. e5 + e 5 c ii. 0 e5 0 e 5 c iii. e 5 + e 5 d. A + Be d i. d ii. e d iii. 6 + e a. Ae 5 + Be 5 a i. e 5 5e 5 a ii. e 5 a iii. e 5 + e 5 b. Ae + Be b i. e + e b ii. e b iii. 8e + 0e c. Ae / + Be / c i. e / e/ c ii. e / c iii. 6e / e / a. A cos5) + B sin5) a i. cos5) a ii. 5 sin5) a iii. cos5) sin5) b. Ae cos) + Be sin) b i. e cos) + e sin) b ii. e sin)
10 6 Answers to Selected Eercises b iii. 5e cos) + 7e sin) a. y) = e cos) b. y) = e cos) 5a. y) = c e + c e 5b. y) = c cos) + c sin) 5c. y) = c e + c e 5d. y) = c e + ) + c e ) 5e. y) = c e / + c e / 5f. y) = c e cos) + c e sin) 5g. y) = c e cos6) + c e sin6) 5h. y) = c e + c e / 5i. y) = c e 5 + c) e 5 ) 5j. y) = c e / + c e / 5k. y) = c cos + c sin ) ) 5l. y) = c + c e /9 5m. y) = c e cos + c e sin 5n. y) = c e cos) + c e sin) 5o. y) = c e + c e 5p. y) = c e + c e 5 5q. y) = c + c e ) ) 5r. y) = c e + c e 5s. y) = c cos + c sin 5t. y) = c e / cos) + c e / sin) Chapter 7. kg/sec a. kg/sec ) b. ω 0 =, ν 0 = π, p 0 = π c i. A =, φ = 0 c ii. A =, φ = π c iii. A =, φ = π c iv. A =, φ = π a. 88 kg/sec ) b. ω 0 =, ν 0 = 6 π, p 0 = π 6 c i. A = c ii. A = 7 π c iii. A = 5a. 8π 5b. π 5c b. α =, ω =, p = π, ν = 7c i. A = 7c ii. A = 7c iii. A = 5 π 9. ν decreases from the natural frequency of the undamped system, ν 0, down to zero. p increases from the natural period of the undamped system, p 0, up to. 0b. yt) = + t]e t 0c. yt) = te t b. yt) = 8 e t e t c. yt) = e t e t Chapter 8 a. c + c + c + c e b. c + c + c cos) + c sin) c. c e + c e + c e 5 + c e 5 d. c e + c e + c cos) + c sin) e. c + c ]e + c + c ]e f. c + c + c ] cos) + c + c 5 ] sin) a. c e + c cos) + c sin) b. c e + c e + c e c. c e + c e cos) + c e sin) d. c + c ]e + c cos) + c sin) a. 6 cos) + sin) b. ] e c. cos) sin) + cos5) 5 sin5) ) ) a. c e + c e cos + c e sin b. c cos) + c sin) + c cos) + c sin) c. c + c + c ] e + c + c 5 + c 6 ] e d. c + c ]e + c + c ]e / cos Chapter 9 ) + c 5 + c 6 ]e / sin a. y = c + c b. y = c + c c. y = c + c d. y = c + c e. y = c + c ln f. y = c + c ln )
11 Answers to Selected Eercises 65 g. y = c + c ln h. y = c cos ln ) + c sin ln ) i. y = c cos5 ln ) + c sin5 ln ) j. y = c cosln ) + c sinln ) k. y = c / + c l. y = c cos ln ) + c cos ln ) m. y = c + c ln n. y = c 5 + c 5 a. y = 5 b. y = / 6 / c. y = 6 6 ln d. y = 9 cos ln ) 5 sin ln ) a. y = c + c + c b. y = c + c cosln ) + c sinln ) c. y = c + c + c ln d. y = c + c + c + c e. y = c + c ln + c ln ) + c ln ) 5c. Replace each k y k) in the differential equation with rr )r ) r k ]) Chapter 0 a. 0e b. 9 ) e c. 0e a b. c. a. No, because y + y = 0 when y) = sin). b. cos) b. c cos) + c sin) c. e + c cos) + c sin) d i. e + cos) d ii. e 5 cos) sin) 5b. c e + c e 5c. + c e + c e 5d i. + e e 5d ii. + e + e 6b. + c e + c e 6c. + 7e + 5e 7b. e + c e 5 + c e 7c. e + e 5 + e 8b. e 5 + c e 5 + c e 8c. e 5 + e 5 + 9e 9b. 5 sin) cos) + c e + c e 9c. 5 sin) cos) + e + 5e 0b c + c 0c b. + c + c + c cos) + c sin) c cos) sin) a. y p ) = 7 e5, y) = 7 e5 + c 5 + c b. y p ) = e 5 + e, y) = e 5 + e + c 5 + c c. y p ) = 5e 5 e, y) = 5e 5 e + c 5 + c a i. g) = a ii. g) = 8 a iii. g) = 5 b i. y p ) = + + 5, y) = c + c 5 b ii. y p ) =, y) = + c + c 5 a i. g) = cos) + sin) a ii. g) = cos) sin) b i. y p ) = 5 cos) 5 sin), y) = 5 cos) 5 sin) + c e + c e b ii. y p ) = 5 cos) 5 sin), y) = 5 cos) 5 sin) + c e + c e Chapter a i. y p ) = e, y) = e + c cos) + c sin) a ii. y p ) = e 6, y) = e 6 + c e + c e a iii. y p ) = 6e, y) = 6e + c e + c e 5 a iv. y p ) = 7 e/, y) = 7 e/ + c + c e b. y) = e + e + e5 a i. y p ) = cos) + sin), y) = cos) + sin) + c cos) + c sin) a ii. y p ) = 9 cos6) sin6), y) = 9 cos6) sin6) + c e + c e
12 66 Answers to Selected Eercises a iii. y p ) = 9 cos ) + 7 sin ), y) = 9 cos ) + 7 sin + c + c e ) a iv. y p ) = sin) cos), y) = 6 sin) 6 cos) + c e + c e 5 b. y) = cos) sin) + 6e + e5 a i. y p ) = 0, y) = 0 + c e + c e 5 a ii. y p ) = , y) = c e +c e 5 a iii. y p ) = + +, y) = c e + c e a iv. y p ) = 9 7, y) = c cos) + c sin) b. y) = sin) a i. y p ) = 5 cos)+ sin), y) = 5 cos)+ sin)+c cos)+c sin) a ii. y p ) = e cos), y) = e cos) + c e + c e a iii. y p ) = e e + e, y) = e e + e +c cos)+c sin) a iv. y p ) = sin) cos) + cos)]e, y) = sin) cos) + cos)]e + c + c a v. y p ) = cos) + sin), y) = cos) + sin) + c e + c e a vi. y p ) = e5, y) = e5 + c e + c e b. y) = e e + 5 cos) 5 sin) 5a. y p ) = 7 e, y) = 7 e + c e + c e 5 5b. y p ) = 5, y) = 5 + c + c e 5c. y p ) = 6 +, y) = c + c e 5d. y p ) = cos), y) = cos) + c cos) + c sin) 5e. y p ) = 5 e, y) = 5 e + c e + c e 5f. y p ) = e e, y) = e e + c + c e 6a. y) = 6 ) e + c e + c e 5 6b. y) = 9 ) e 6 + c e + c e 5 6c. y) = 6 50 e 5 + c e 5 + c e 5 6d. y) = e 5 + c e 5 + c e 5 6e. y) = 9 5 cos) 5 sin) + c e cos) + c e sin) 6f. y) = e + c e cos) + c e sin) 6g. y) = e cos) + c e cos) + c e sin) 6h. y) = 9 e cos) + e sin) + c e cos) + c e sin) 6i. y) = + )e cos) + + 5)e sin) + c e cos) + c e sin) 6j. y) = 0 + c e cos) + c e sin) 6k. y) = 0 e + c e cos) + c e sin) 6l. y) = c e cos) + c e sin) 6m. y) = 0 e sin) 0 e cos) + c cos) + c sin) 6n. y) = cos) + sin) + c cos) + c sin) 6o. y) = cos) + sin) + c cos) + c sin) 7a. y p ) = ] A 0 + A + A + A e sin) + ] B 0 + B + B + B e cos)
13 Answers to Selected Eercises 67 7b. y p ) = A 0 + A + A + A ] e sin) + B 0 + B + B + B ] e cos) 7c. y p ) = A + B + C ] e 7 7d. y p ) = A + B + C 7e. y p ) = Ae 8 7f. y p ) = Ae 7g. y p ) = A + B + C ] e 7h. y p ) = A + B + C ] cos) + D + E + F ] sin) 7i. y p ) = A + B + C ] e cos) + D + E + F ] e sin) 7j. y p ) = Ae sin) + Be sin) 7k. y p ) = Ae sin) + Be cos) 7l. y p ) = A + B + C + D ] sin) + E + F + G + H ] cos) 8a. y p ) = e 8b. y p ) = e 8c. y p ) = 8 sin) cos) 8d. y p ) = 8e. y p ) = 8f. y p ) = cos) sin) 8g. y p ) = e 9a. y p ) = A + B + C ] e 9b. y p ) = A 5 + B + C ] cos) + D 5 + E + F ] sin) 9c. y p ) = A + B + C ] e cos) + D + E + F ] e sin) 9d. y p ) = A + B] cos) + C + D] sin) 9e. y p ) = A + B ] cos) + C + D ] sin) 9f. y p ) = A + B] e cos) + C + D] e sin) 9g. y p ) = A 5 + B + C + D + E + F ] e 0a. y p ) = e cos6) sin6) 0b. y p ) = 5 cos) + sin) cos) 0c. y p ) = 6 cos) + sin) 0d. y p ) = 5e e equiv., y p ) = 6 sinh) + cosh) ) Chapter a..9 kg/sec b. ω 0 = 7 0 /sec, ν 0 = 7 0 hertz a i. 50 kg/sec pi 98 a ii. 98 /sec) a iii..58 times per second b i..99 meter π 5 b ii. 5 /sec b iii. 5.6 times per second c. 7.5 kg π d. 9 kg meter/sec, a i. 6π t sinπt) a ii. t = 8π 5. seconds) b i. 7π cos6πt) b ii. No. The amplitude of the oscillations is less than.00 meter. c. 6 δ µ 6 + δ where δ = π F 0 5a. y η t) = m ω 0 ) η ] cosηt) cosω 0 t) ] 5b. y η t) = F 0 t sinω 0 t) mω 0 7b. No Chapter a. y = + c + c b. y = sin) ln csc) cot) + c cos) + c sin) c. y = cos) + sin) ln sin) + c cos) + c sin) d. y = e + c e + c e 5 e. y = + ] e + c e + c e f. y = ln + c + c g. y = 8 e + c e + c e h. y = ln ) + c + c ln i. y = e + c + c e ] j. y = + + c + c e a. y = 5 ln
14 68 Answers to Selected Eercises b. y = e e + e a. y = e + c e + c e b. y = ln + c + c + c a. u + v + w = 0 u + v + w = 0 v + 6w = e b. e u + cos)v + sin)w = 0 e u sin)v + cos)w = 0 e u cos)v sin)w = tan) c. e u + e u + cos)u + sin)u = 0 e u e u sin)u + cos)u = 0 e u + e u cos)u sin)u = 0 e u e u + sin)u cos)u = 8 sinh) d. u + u + u + u = 0 u u + u u = 0 u + u u = 0 u + u 0 6 u = sin ) Chapter 6a. s for s > 0 6b. s for s > 6c. ] e s 6d. s s e s for s > 0 6e. e s) 6f. e s e s)] 6g. e s s s s s e s 6h. s + ] s e s for s > 0 7a. s for s > 0 7b. 9! 5 s 0 for s > 0 7c. s 7 for s > 7 7d. s + 7 for s > 7 7e. s i7 for s > 0 8a. s + 9 for s > 0 8b. s s + 9 for s > 0 8c. 7 s for s > 0 s 8d. s 9 for s > 8e. s 6 for s > 8f. 6 s 8 s + 7 for s > 0 s 6 8g. s + 8 s + for s > 8h. s s + + s + 6 for s > 0 8i. s 8 s + for s > 0 π 9a. s 5 / 5 π ) for s > 0 9b. s 7 / for s > 0 9c. Ŵ s / for s > 0 ) 8 5 9d. Ŵ s 5 / for s > 0 9e. s e s 0b. e s a. s s ) for s > b. s ) for s > c. 5 s ) + 9 for s > d. s s ) + 9 for s > π e. s ) / for s > f. s e s ) for s > a. piecewise continuous b. piecewise continuous c. piecewise continuous d. piecewise continuous e. not piecewise continuous f. piecewise continuous g. not piecewise continuous h. piecewise continuous i. not piecewise continuous j. piecewise continuous k. piecewise continuous 6a. of eponential order 6b. of eponential order < 0 6c. of eponential order < 6d. not of eponential order 6e. of eponential order 0 7a. The maimum occurs at t = α σ and is M α,σ = ) α α e α. σ
15 Answers to Selected Eercises 69 Chapter 5 a. s + b. s + 6 s s ) c. e s ss + ) d. s + s + 6 s s ) s e. 8 s ) s + ) f. s + 5 s + + s + ) 5 g. s + + e s s s + ) s + 5 h. s + 5s s ) s + 5s + 6 ) i. s 5s s ) s 5s + 6 ) s 6 j. s 5s s s 5s + 6 ) k. s s s + + s s + ) s + 9 l. s + s + + s s + s + ) + 6 s s + ) s + s + ) s m. + s + + s 7 s + ) s 7 ) a. s 9 s + 9 ) 8s b. 5 s + 9 ) c. 6 + d. e. e s C b. Ys) = s + 7) s c. Y0) = s + d. Ys) = s + 5a. 6b. s e αs for s > 0 7. ) s 8b. ln for s > s 8e. ln ) for s > s ωs ) s ) s ] + ω ) 5b. ω s ] + ω ) 5c. ) s arctan 8a. ln + ) for s > 0 s ) s s 8c. ln for s > 8d. s + ln + ) ) s 8f. arctan for s > 0 s Chapter 6 ) a. e 6t b. e t c. t d. t e. sin5t) f. cos πt s + 7) s s ) e s ) for s > 0 a. 6e t b. 6 t c. 8e t d. t πt 6 t e. cos5t) + 5 sin5t) f. step t) a. y) = e 9t b. cost) + sint) 5a. e t + e t 5b. e t e t 5c. et e t 5d. + sint) 5e. 6 et t 6 5f. 8 cost) + e t + e t 5g. e 6t + cost) sint) 5h. cost) + sint) 5i. e t + 5e t e 7t 7 6a. et + e t 6b. t t + sint) 6c. e t + e 7t + e t 7a. t e 7t 7b. 6 et sin6t) 7c. e t cos6s) + ] sin6t) 7d. e t 7e. te t 7f. cost) + sint)]e 6t πt 7g. sint)e 6t 7h. t + t + 8 t ] e t 8a. e t cost) 8b. et t 8c. e t cost) + 7 sint)] 8d. e t cost) 9a. ] + t cost)e t 9b. e t + sin6t) cos6t)] e t 9c. e t te t + e t 9d. t ] cost) 9 ) 6 8 sint) e t 0a. 9 cost)] 0b. e t ] 0c. ] + t )e t 9 Chapter 7. 6 e7t + tet 6 et a. e 5t e t] 6 b. 5 t 5 / c. t / d. e t t ] e. 9 0 t 5 f. sint) t g. sint) t cost)] h. 0 if t <, and e t ) ] if < t i. 0 if t <, and t t + 9t 9 if
16 60 Answers to Selected Eercises < t a. e t e t b. e t ] c. cost)] d. e t sint) cost) ] e. sint) t cost)] 0 5 f. sint) + t cost)] g. 0 if t <, and cost ) if < t t h. e t e d 5a. h) = π 0 sin), yt) = t sin) f t ) d 0 5b. h) = e e ], yt) = t e e ] f t ) d 0 t 5c. h) = e, yt) = e f t ) d 0 5d. h) = e sin), yt) = t e sin) f t ) d 0 5e. h) = t cos)], yt) = cos)] f t ) d a. cost)] 6b. 8 sint)] 6c. e t cost) ] sint) 6d. 8 sint) t cost)] 6e. α 8) α sint) sinαt)] 7a. te t e t + ] 7b. te t e t + t + ] 7c. 9 7 t e t 7d. 6te t e t + e t] 7e. α) α)te t e t + e αt] 6 8a. 6 t sint)] 8b. 8t + cost) ] 56 8c. 6e t cost) sint) ] 8d. t sint) cost)] e. 6a a 6 )] 6 cosat) + a 6 a cost) ] Chapter 8 a. s e 6s ) b. s e 6s + 6 s e 6s a. t ) step t) b. e t ) step t) c. t step t) d. sinπt) step t) e. t ) e 5t ) step t) f. e t 5) cost 5)) step 5 t) { } t if t < 0 if t <. cost )] step t) 5a. 5b. if < t < if < t if < t { } { } { } t if t < sinπt) if t < e t ) if t < 5c. 5d. 5e. if < t 0 if < t e t ) if < t 0 if t < t if < t < 5f. 6a. t ) step t) 6b. + t ) step t) 6 t if < t < 6 0 if 6 < t 6c. t ) step t) 6d. 6t + + t ) step t) ] π 6e. cost 0]) step0 t) 7a. 9 s e 6s ) 7b. ] s e s 7c. s e 6s + 6 s e 6s 7d. s + e 6 s 7e. e s s ) s + s + 6 ] s
17 Answers to Selected Eercises 6 7f. e t 7g. e πt/ 7h. e πt/ s 7i. s + s + s + e πt/6 s + + s ] s + 8a. Fs) = ] e 6s 8b. Fs) = ] + e s ] e s s + s s 8c. Fs) = ] e s + s s + e s 8d. Fs) = π ] + e s s + π 8e. Fs) = s s + 6 ] e s 8f. Fs) = e s e s] s s 8g. Fs) = + e s + e s] 8h. Fs) = π e s + e s] s s + π 8i. Fs) = s e s s + ] e s 8j. Fs) = e s + e s] s s 9a. step n t) 9b. e ns 9c. s s e s] n=0 n=0 0a. t ) rect,) t) + step t) 0b. t ) rect,) +t ] step t) ] 0c. cost ]) rect,) t) + 9 ] cost ]) cost ]) step t) 9 { } 0 if t < 0 if t < a. b. c. e. f. g. h. b. c. d. e. f. t t + 9t 9 if < t t if < t { } sint) if t < π 0 if t < d. e t if < t < sint) if π < t e 6 t e t if < t 0 if t < 7 e 5t e 7 t if < t < e t e 7 t if < t 0 if t < π sint) + π t) cost) if π < t < π π cost) if < t { } t 5/ if t < 5 8 0t + 5t if < t cost) if t < π t π) sint) if π < t < π a. π sint) cost) if π < t ) e s s e s) equivalently, s + e s) e s + e s s e e s) equivalently, s s + e s) or s ) ) s tanh + e s) s e s) equivalently, s s coths) ) s e s + e s s e e s) equivalently, s s + e s) or ) s tanhs) ) ) + e πs s + ) e πs) equivalently, πs s + coth e 6 e s s + ) e s)
18 6 Answers to Selected Eercises a. i) yt + π) yt) = cosπt π) π m a. ii) yt) = π m y 0τ) n cosπt)] with y 0 τ) = { cosπτ) if 0 τ < cosπt) if < τ < Y a. iii) T b. i) yt + π) yt) = π m cos πt π ) b. ii) yt) = sinπτ) cosπτ)] n π m π m sinπt) Y b. iii) T c. i) yt + π) yt) = 0 No resonance!) Y c. ii) yt) = π m sinπt) sinπt)] c. iii) T Chapter 9 a kg meter/sec b..6 kg meter/sec a i. 0 a ii. 0 a iii. 0 b i. 8 b ii. 8 b iii. 8 c i. 0.5 kilogram c ii. kilogram a. 6 b. 0 c. d. e. 9 f. 0 6a. yt) = step t) 6b. yt) = rect,) t) 6c. yt) = t ) step t) 0 if t < 6d. yt) = t if < t < 6e. e t ) stept ) if < t { sint) if t < π 6f. yt) = 6g. cost) step t π ) 0 if t < π 7a. e t + e t ) stept ) 7b. ] e t 7c. e t + ] e t )t stept ) 7d. sint )) step t) 7e. e t 0) e t 0)] step 8 0 t) 7f. 0 7g. e t e 6t] 8 7h. e t ) e 6t )] step 8 t) 7i. t )e t ) step t) 7j. e6t sint) 7k. 9 cost ))] step t) 7l. e t ) e t ) + ] sint )) step t)
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Chapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2
SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin
10.7 Performance of Second-Order System (Unit Step Response)
Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
= 0.927rad, t = 1.16ms
P 9. [a] ω = 2πf = 800rad/s, f = ω 2π = 27.32Hz [b] T = /f = 7.85ms [c] I m = 25mA [d] i(0) = 25cos(36.87 ) = 00mA [e] φ = 36.87 ; φ = 36.87 (2π) = 0.6435 rad 360 [f] i = 0 when 800t + 36.87 = 90. Now
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence
Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1
Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.
ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα
Surface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Solutions Manual for A Course in Ordinary Differential Equations. by Randall J. Swift Stephen A. Wirkus
Solutions Manual for A Course in Ordinary Differential Equations by Randall J. Swift Stephen A. Wirkus Preface This solutions manual is a guide for instructor s using A Course in Ordinary Differential
Surface Mount Aluminum Electrolytic Capacitors
FEATURES CYLINDRICAL V-CHIP CONSTRUCTION LOW COST, GENERAL PURPOSE, 2000 HOURS AT 85 O C NEW EXPANDED CV RANGE (up to 6800µF) ANTI-SOLVENT (2 MINUTES) DESIGNED FOR AUTOMATIC MOUNTING AND REFLOW SOLDERING
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Chapter 7 Analytic Trigonometry
Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding
Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)
C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006
ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση
Part III - Pricing A Down-And-Out Call Option
Part III - Pricing A Down-And-Out Call Option Gary Schurman MBE, CFA March 202 In Part I we examined the reflection principle and a scaled random walk in discrete time and then extended the reflection
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist