d 2 y dt 2 xdy dt + d2 x
|
|
- Κίμων Ράγκος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y y 4 + t t + 5 t Ae cos + Be sin 5t y + t / m_nadjafikhah@iustacir
2 y k f y y yk y y yk y n y n y k n y k f y y yk y y yk y n y n y k n y k n n f n y y yk n y y yk n y n y n y k n n a k + k + + k n y y lny y e y y y y a + 3 k k y y y + e y y y lny + y y 3 y y 3 y + y y y y y 4 y 3y 3 + y k 3 k 4 k 3 y 3 y y 3 y + y y 4 y y y y 3 y 3 y y f y y y n y f y y y n y n f n y y y n d y y 3 y 3 y y 3 : y 3 3 y
3 d + p + q y : y pty qt < t < t lnt /t t t t + lnt t t t t 3 t t 3 t tt 4 t lnt + lnt + lnt + t E S { / t E : / + t/t { / e E : t / e { / y 3 E : / y / { / z /z 4 E : dz/ y { /t S : t lnt { t S : e t { e S : t y e t { y + e S : y e f n f f E A y y y n yn y y D n+ y n y y f i D E ε + ε φ n φ φ ε > φ y φ n y n φ φ n n 4
4 t d d 3 s λ λ 3 Ae t + Be 3t Ae t + Be 3t + Ae t 3Be 3t Ae t Be 3t S Ae t + Be 3t Ae t Be 3t : A B R } 4 t t Ae t Be 3t A + b t t Ae t + Be 3t B A A B 4 t e t + e 3t t e t e 3t y y y d d d y d + ± i λ + t Acost + Bsint B y A y y yt Asint + Bcost y t cost + y sint yt sint + y cost t + yt cos t + sin t + y cos t + sin t + y y + y t yt
5 gy y y n g g/ y n g/ y g/ D y n y y g D g t gy y y n c gt t D { t : t t R } R 3 t + t t At t At + Bt gt t t t At + Bt At B D B gy y n D g n + k f k y y y n g y k / gt arctan / t / / / f t / f t / g t + f g + f g g D { t } { Ae t + Be 3t Ae t Be 3t { + 4Ae t 4Be 3t { 4A e t + 4B e 3t D R g t e 3t g t e t + g g
6 Acost + Bsint y Bcost Asint sint + ycost B cost ysint A D R 3 g t cost ysint g t sint + ycost n y n y y y n y y Fy y y n i y i n y y y n y y y n n : y y y n y n y n y n n y n y y n S : g y y y n A g n y y y n A n A n A g t e 3 y + t + y g e t t e y g + e y t + y g + y t g + y + t n f t n f t n f n t n
7 n k h k t n n t d f t + f + + f n n n n n n t n n + y + y + t y + y + y + λ p + h + Ae t + Be t p h Ae t + Be t y Ae t + Be t y S : + Ae t + Be t y Ae t + Be t 3 + 8y 3y t d d d 3 + 8y y 3 8 4y d y A t Be t 3Ae t 3Be t Ae t 4 Bet S : t C e t + 4C e t yt C e t C e t t Ae t + Be t C C
8 t + yt t + yt y + t t + t + d t t + t + d + + t t d t / y t At + B d t y + t A + t At + B A + B t S : At + B y A + B t t 9 y + t 3 3 4y 4 + 5y t sint d 6 + y z 7 y + z 8 d y 5y y 4 3y y + y cost z dz + z + z dz + y d y 9 d + + d 3 + y d + y + d y + y
9 n u F tudu/ n n 4t t t + + 4t t + du tu u + g +t A + u +t A t g u + t B u S : + + t A + t B + t g g g g g g + + D { t ± } g B g A S : t A + B t A t B t B A t A t B t E : 3 t 3 t 3 + t
10 u / E A A du E : A 3 t 3 A + E t A + t + B E A At + B t ln At + B +C S : + A ln At + B +C 3 A + t + B E E : y y t y t y t u ty d t ty y + t E ty A du y Bep t A y A E t A y t + A B e t/a y Be t/a E A B y A B A B S : t + e t y e t
11 + y 3 y 5 sin cos y cos sin 7 cos cos y + sin sin y f t n f t n y 4 y y 6 e t y y y et sinsiny y n f t n a b a b a n b n λ a + λ a + + λ n a n λ b + λ b + + λ n b n λ n λ λ lnt lnt lnt lnt lnt lnt + tlnt + A dt lnt t + lnt lnt + + dt + + y t + + y B S : tlnt + A + y + t B E : 4y 5 5t 3y 3 4t 3 3 4y 5 t t 4y t 3y t 5t 3y y y 3 4t t + + y
12 dt + + y d3t + + 5y t + + y B 3t y A S : 3t y A t + + y B t y 3 y dp p dq p 5 y yt t 4 t yt y t y t ty 6 t y 7 3t 4y y 3 4 t y 3 + y y a + a y + f t a + a y + f t t f f a a a a f t f t a a X A f F y a a f Y X A X + F gt ht Y A Y + F t a;b a;b a;b Z Y Z Y a;b Wt y t z t y t z t y z y z t a;b
13 U Z Y A B X U + A Z + B Y A X A X C E : detλi A X A X C E X X λ λ C E A X e λ t +A X e λ t X A X A X λ X A X λ X A A X i λ λ C E X A X A X i X i + λ X i A X i λ X i X i U i X i + t X i A A { A U + A U } e λ t X i ± i X i α ± i C E X i X i A X i + i X i α ± i X i + i X i U i X i +i X i V AU + BU V V +iv V +V X A X A B E : y + y X t yt A X A X C E : detλi A : λ λ : λ3 λ λ α A X λ X X λ λ { α α α α X α + α AX λ X X { α α α α α X α +
14 E S : y Ae t + Be t : A + Be t y A Be t A + Be t E : + 3y + y A 3 X X C E : λ 3 λ : λ λ 6 λ λ 4 E γ α A X λ X A X λ X X X θ 3 α 3 γ 3 θ α γ θ 4 { α + 3 α α + { γ + 3θ 4γ γ + θ 4θ α X θ 3 3 γ X E γ θ S : y Ae t + Be 4t 3 : Ae t + 3Be 4t y Ae t + Be 4t B A E : y + 3y X AX A C E : λ λ 3 3 C E : λ 4λ + 4 C E : λ λ
15 γ A X λ X X θ α X 3 3 γ θ θ γ θ γ θ + α γ θ γ γ + 3θ θ α γ + α α + 3 θ + A X X + λ X { θ γ α + θ X S : X X y γ γ X A U + B U e t { U + t } γ U { A + B : t A + B + Bte t yt A Bte t E } + Bt e t E : + y 4y E X AX A C E : λ 4 λ + : λ 6λ + 9 λ λ 3 AX AX 3X X γ 4 θ α 4 γ 3 θ γ θ X + 3 α X γ θ X α γ + θ 3γ 4γ θ 3θ α + γ + 3α 4α θ X + 3 { θ γ γ + α α γ α γ U t
16 S : X y X { } A U + B U e 3t α γ U { A E } + B + Bt e 3t : t A + Bte 3t yt A + B + Bte 3t E : 5y y 5 X A X A C E : λ 5 λ + : λ + 9 λ ± 3i c a A X +i X X X d 3 α b 5 a + ci b + di a + ci 3i b + di { a 5b 3c c 5d 3a a b 3d c d 3b + 3i X + i X { a 5b + c 5di 3c + 3ai a b + c di 3d + 3bi { a 5b 3c d c 3b d a 3 c b bc X 3 X U e t cos3t + isin3t X + i X 3 + i 3cos3t sin3t + cos3t 3sin3ti U cos3t + isin3t i sin3t + cos3ti X 5 X 3 5 3i U cos3t + isin3t d 3 a 5 c b U e t cos3t + isin3t X + i X 5cos3t + 5isin3t cos3t + 3sin3t + sin3t 3cos3ti V + V E V A U + B U V + i V 3cos3t 3sin3t V A sin3t cos3t 3sin3t V A + B cos3t + B 5cos3t cos3t + 3sin3t 5sin3t sin3t 3cos3t
17 S : y V + V : t A + 5Bcos3t + 6A + 5Bsin3t yt A + 4Bsin3t + A Bcos3t E : 3 3y 3 y X X A C E : λ λ + : λ λ + 6 λ ± 5i c a A X + i X + X X d b 5i X + i X 3 3 a + ci + +ci 5i 3 b + di b + di { 3a + ci 3b + di + 5ia + ci 3a + ci b + di + 5ib + di { { 3 3b a 5c3 b b 5d 3c 3d 5 + c3c d d + a 3b c 5/ 5b d 3c b 5/ X 5 d 3 a 5 c b bc X U 3 e t cos 5t + ie t sin { } 5 5t + i 3 + ie t 5sin 5t + cos 5t cos 5t U e t 5cos 5t sin 5t 3sin 5t X 3 U e t X 3cos 5t cos 5t + 5sin 5t V A U + B U V + V d 5 a 3 c b U 5 e t cos 5t + isin { } 3 5t + i 5 + ie t 3sin 5 sin 5t 5cos 5t V Ae t 5cos 5 sin 5t 3sin 5t V Ae t 5sin 5t + cos 5t cos 5t V + V E + Be t 3cos 3t cos 5t + 5sin 5t + Be t 3sin 5t sin 5t 5cos 5t
18 3 y y y y 4 5y 9 + 4y y + y 3 y y 4 + y y y + y y y + 3y 5 4 3y y 3 y 9 8y y / + 3y B A 3 y y y y y 4 y 9 3y y + 4y 6 / + 3y y y 5 + 3y y y + y y 3 + y + y y 3 y + 4y y 5 + y + 3y y 4 3y 4 3y y 5 5 y 3 y y y 4 y y + y y y 9 y + 4y y 5 8y 3 + 3y y y + y/6 y y 3 + y y 4 5 y 4 + 3y y 4 y 6 4y y 7 + y 4 + 7y y 8 + 9y + y y 5y 3 y y 9 + 6y X A X F X AX X X c X + c X F c c X p c X + c X E : A 4y + 4t + 4 X y + y + 3 t 4t + F 3 t X AX + F E C E : λ + 4 λ λ + λ 6 λ +λ 3 α A X X X { 4 α α α 4 α α X α +
19 α A X 3 X X α α 4 α α 3 { α 4 3α α + 3 α 4 X 4 E X h A X e t + B X e 3t X p c X e t + c X e 3t B A c X e t + c X e 3t F e t 4e 3t e t e 3t c c 4t + 3 t c et + 4c e 3t 4 + c et + c e 3t 3 t c 5 6t 4t e t c 3t + 8t + e 3t c t 5 t + 3t e t c t t + te 3t X p c X e t + c X e 3t 5 3t + t S : X X p + X h t + t t / + Ae t E + t + t 4 + Be 3t 4 : t t + t + Ae t + 4Be 3t yt t Aet + Be 3t B A E : 3 + t + t 3y + t + A 3 3 F X AX + F t t + C E : λ + 3
20 γ α A X X 3 X A X 3 X X X θ 3 γ 3 θ 3 α 3 γ 3 θ γ α 3 θ 3γ + θ 3γ 3θ 3θ 3α + γ 3α 3 θ 3 { θ γ X X α α U X X U + t α S h : h y h { Ae 3t U + Be 3t U : h t Ae 3t + Bte 3t y h t Be 3t + B E k } e 3t + Bte 3t c c X p c e 3t U + c e 3t U c e 3t + c e 3t t { c + tc te3t c t + e3t t t + { c t e 3t c t + e3t c e 3t U + c e 3t U F c 7 9t 6t + c 3t + 9 X p c e 3t U + c e 3t U 4 6t 7 3t + 9 E S : X X p + X h : 4t 4 y 7 9t Ae 3t + Be 3t t : t Ae 3t + Be 3t t 4 7 yt Be 3t + t 3 + 9
21 E : y + sect A X AX + F sect F E C E : λ λ : λ + : λ ± i c a A X + i X i X + i X X X d b a + ci b + di a + ci + i b + di { b di c + ai a + ci d + bi { d a b c X X X X b d c a c a { } U e at cost + isint + i cost sint U + i sint cost { U e t cost + isint U b d c a } + i cost + i sint sint cost V + V E E h Acost Bsint Asint + Bcost V + i V A U + B U + i Asint + Bcost Acost + Bsint cost + sint sint + cost X p V + V A + B sint cost cost + sint X p c cost + sint sint cost + c sint + cost cost + sint c cost + sint sint cost + c sint + cost cost + sint c c sect
22 { { c tant c ln cost c c t X p t cost sint ln cost t sint + cost ln cost E S : X X p + X h t cost sint ln cost : y t sint + cost ln cost : cost + sint + A sint cost Acost + sint + Bcost sint + t cost sint ln cost y Asint cost + Bcost + sint + t sint + cost ln cost E sint + cost + B cost + sint 4 + y e t y + 3 y 6e t y /e t y 6 + 3y 3/e t 5 + y cost y + y + cost + sint y y + /cost 3 6 { y + tan t y + tant 3 4y + y 3y + t E : 7 + y + 5 5y 37t y sl } 7L } + L { y } + 5 s sl { y } y L } 5L { y } 37 s + 7X + 7Y 5 s X + s + 5Y 37 s Xs 5s + 5s 37 s s Ys 47s 59 s s + s + 37 Y L {y} X L }
23 t L { Xs } { L s } s s + 6 s { t e 6t L s } s t e 6t cost + yt L { Ys } { L s 7 } s s + 6 s s { 7t e 6t L s } { } s + e 6t L + s + E : 7t e 6t cost + e 6t sint + 3y + t 3 + y y Y L {y} X L } sl } L { X } + 3L { y } + s sl { y } y 3L } + L { y } s Xs 3Ys + s 3Xs + s Ys Xs s + s s s + 4s + 3 3s + Ys s s + 4s + 3 t L { Xs } { L 3 s s s + s } 56 3 s s + 5 { 3 e t L s } s { } 56 e t L 3 s t e t cos3t e t sin3t yt L { Ys } L { 69 s 3 3 s 69 s + s s t 69 e t cos3t 7 69 e t sin3t E : d d y 9y y y }
24 Y L {y} X L } s L } s + sl { y } y 4L } 4sL } 4 s L { y } + sy + y 9L { y } { s Xs 4X + sy 4sX s + 9Y s s s s + 9s 36 Ys s s 4 s + 9s 36 t L { Xs } L 5 s s s s s 3 5 cos sin t + 3 3t 3 e 3 3 e 3t yt L { Ys } L 6 5 s s s s s 3 S : + 3 4y cost y 3y + t y sl } + 3L } 4L { y } sl { y } y 3L { y } + L } s s s + s + 3X 4Y s s + X + s 3Y + s s Xs 7/ s 5 s + + 3s + Ys 7/ s 5/ s + + Y L {y} X L } s + 4 s s s + s 3 s t L { Xs } 7 et 5 t + 3 cost + sint 4t yt L { Ys } 7 et 5 e t + cost 3t
25 3y + z y y y y z z z z s X 3Y X + Z s Y + X + Y s Z s Z t 3 4 t 3 4 cost sint 3s X s s + 4 3s Y s s + +4 s + s Z s + yt 3 4 t + 4 cost sint cost 8 zt cost 3 y + y t + y + y y y + + y 5y + 4y y y + 9 y y 3y y + y 5y y y y y + y + y + z + e t z + y + z + 4 z t + y + z + t ty y + z + t 3 y tz + y + z + 4 z + y sinht y + z e t y + z e t + e t z y + e t y + y + e t y y z y z y z y z 3t + y z ty + 3y + z y 6tz + 7y + 5z z E : φ + φ + e t φ t + sinh tφ t tφ t e t φ t
26 Φ s s + s + Φ s + s Φ s Φ s s + s + Φ s s Φ s Φ i L { φ i } s + s Φ s ss s + s 3 s + Φ s s s + s + φ L { Φ s } { L s + s + s + 3 } s s + + e + sin 3 cos φ L { Φ s } { L s s + + s s } s + cos sin + cosh φ φ 4 φ e + φ φ + φ φ e φ φ φ 4 φ φ e t φ t + φ t + 4 e t φ t tφ t + φ t + e t φ t + φ t + 4 φ t tφ t e t φ t tφ t e t φ t + tφ t + φ t + 3 tφ t φ t e t φ t tφ t 4 φ t φ t φ t tφ t φ t tφ t
27
L A TEX 2ε. mathematica 5.2
Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
iii) x + ye 2xy 2xy dy
ΕΚΠΑ - Τμήμα Μαθηματικών Διαφορικές Εξισώσεις Ι Χειμερινό Εξάμηνο 2016-2017 Παραδόσεις Ε. Κόττα-Αθανασιάδου Ασκήσεις (Είναι οι ασκήσεις που αφήνονται για «λύση στο σπίτι» στις παραδόσεις της διδάσκουσας.
Αρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
> ##################### FEUILLE N3 237 ###################################### Exercice 1. plot([cos(3*t), sin(2*t), t=-pi..pi]);
##################### FEUILLE N3 37 ###################################### Exercice. plot([cos(3*t), sin(*t), t=-pi..pi]); ###################################### Exercice. restart:plot([*t^4-*t^3,t^-t,
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20
3 + tanx 100 Differentiate G(t) = Answer: G (t) = Differentiate f (x) = lnx + ex 2. Differentiate F(s) = ln ( cos(2s) + 2 ) Answer: F (s) =
Differentiate y xcos(2x 2 ( x 1 2 3 Differentiate f (x sinx f (x cos(1 + x - 2*xˆ2 + x*(-1 + 4*x*sin(1 + x - 2*xˆ2 Differentiate y -24*cot(x*csc(xˆ3 3 + tanx 100 Differentiate G(t (cost 4 1 (sec(xˆ2/(2*sqrt(3
= (2)det (1)det ( 5)det 1 2. u
www.maths.gr, Ενδεικτικές Λύσεις ης Εργασίας ΦΥΕ4 έτους -. Οι Λύσεις είναι για την βοήθεια των φοιτητών, σε ΘΕΜΑ ο 5 6 4 6 4 5 det 4 5 6 ()det ()det ()det 8 9 7 9 7 8 7 8 9 ()( ) ()( 6 ) ()( ) 5 4 4 det
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
< h < +. σ (t) = (sin t + t cos t, cos t t sin t, 3), σ (t) = (2 cos t t sin t, 2 sin t t cos t, 0) r (t) = e t j + e t k. σ (t) = 1 2 t 1 2 k
ΛΥΣΕΙΣ 1. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 3.1(3)(a) Είναι r (t) = sin ti + 2 cos(2t)j, r (t) = cos ti 4 sin(2t)j για κάθε t, r (0) = 2j, r (0) = i. Η εξίσωση της εφαπτομένης στο r(0)
Κεφάλαιο 7. Μετασχηματισμός Laplace. 7.1 Εισαγωγή στον μετασχηματισμό Laplace
Κεφάλαιο 7 Μετασχηματισμός Laplace Σε αυτο το κεφάλαιο θα μελετήσουμε τη μέθοδο του μετασχηματισμού Laplace, η οποία αποτελεί μία από τις βασικές τεχνικές μαθηματικών προβλημάτων: μετασχηματίζει δύσκολα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή
Επίλυση Δ.Ε. με Laplace
Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή
α. y = y x 2 β. x + 5x = e x γ. xy (xy + y) = 2y 2 δ. y (4) + xy + e x = 0 η. x 2 (y ) 4 + xy + y 5 = 0 θ. y + ln y + x 2 y 3 = 0 d 3 y dy + 5y
Ασκήσεις στα Μαθηματικά ΙΙΙ Τμήμα Χημ. Μηχανικών ΑΠΘ Μουτάφη Ευαγγελία Θεσσαλονίκη 2018-2019 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΙΣΑΓΩΓΗ 1. Στις παρακάτω Δ.Ε. να προσδιορίσετε: α) την ανεξάρτητη και την εξαρτημένη
Μετασχηματισμοί Laplace. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας
ιαφορικές Εξισώσεις Μετασχηματισμοί Laplace Μανόλης Βάβαλης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας Βόλος, 11 Μαΐου 2015 Περιεχόμενα Μετασχηματισμοί Laplace Ορισμός μετασχηματισμού
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018
ΝΙΚΟΛΑΟΣ M. ΣΤΑΥΡΑΚΑΚΗΣ: «Μερικές Διαφορικές Εξισώσεις & Μιγαδικές Συναρτήσεις: Θεωρία και Εφαρμογές» η Έκδοση, Αυτοέκδοση) Αθήνα, ΜΑΡΤΙΟΣ 06, Εξώφυλλο: ΜΑΛΑΚΟ, ΕΥΔΟΞΟΣ: 5084750, ISBN: 978-960-93-7366-
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
σ (9) = i + j + 3 k, σ (9) = 1 6 k.
Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις
Answers to Selected Exercises
Answers to Selected Eercises Chapter. second, fifth, fifth, forty-second a i. yes, it is a ii. no, it is not a iii. no b i. no b ii. yes b iii. no c i. yes c ii. no c iii. no d i. no d ii. no d iii. yes
Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 203 ιδάσκων : Π. Τσακαλίδης Λύσεις Πέµπτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/05/203 Ηµεροµηνία
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.08: Υπερβολικές Συναρτήσεις Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.08: Υπερβολικές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ασκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.
ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής
Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................
Παραμαγνητικός συντονισμός
Παραμαγνητικός συντονισμός B B teˆ teˆ B eˆ, όπου Έστω ηλεκτρόνιο σε μαγνητικό πεδίο cos sin x y z B, B. Θεωρούμε ότι η σταθερή συνιστώσα του μαγνητικού πεδίου, Be, ˆz είναι ισχυρότερη από τη χρονοεξαρτώμενη
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων
Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων Ε Κάππος 4 εκεµβρίου 7 Περιεχόµενα Ασκήσεις στο µετασχηµατισµό Laplace Ασκήσεις στα Συστήµατα Εξισώσεων 5 3 Ασκήσεις Fourier
Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου.
Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου. Ανδρέας Ζούπας 22 Ιανουαρίου 203 Οι λύσεις απλώς προτείνονται και σαφώς οποιαδήποτε σωστή λύση είναι αποδεκτή! Θέµα-
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=
G L (x) =Ax + B, G R (x) =A x + B οπότε από τις συνοριακές συνθήκες έχουμε
1 ÈÖ Ð Ñ Για να είναι εφαρμόσιμη η μέθοδος της συνάρτησης Green, θαπρέπειηομογενής εξίσωση Ly =+ Ο.Σ.Σ. να έχει ως μοναδική λύση τη μηδενική. α) Η ομογενής εξίσωση y =έχει λύση y = A + B, από τις δεδομένες
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συστήματα πρώτης και δεύτερης τάξης Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Author : Πιθανώς έχει κάποιο λάθος Supervisor : Πιθανώς έχει καποιο λάθος.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Τμήμα Φυσικής 1ο Σετ Ασκήσεων Γενικών Μαθηματικών ΙΙ Author : Βρετινάρης Γεώργιος Πιθανώς έχει κάποιο λάθος Supervisor : Χ.Τσάγκας 19 Φεβρουαρίου 217 ΑΕΜ: 14638 Πιθανώς
Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα
Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας Απριλίου 7 Αναγνώριση Παραμετρικών μοντέλών
Κεφάλαιο 8 Το αόριστο ολοκλήρωµα
Κεφάλαιο 8 Το αόριστο ολοκλήρωµα 8 Θεµελίωση έννοιας αορίστου ολοκληρώµατος Στο 7 0 Κεφάλαιο ορίσαµε την έννοια της αντιπαραγώγου µιας συνάρτησης f σ ένα κλειστό και φραγµένο διάστηµα Γενικότερα Ορισµός
Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)
Bsic Formuls. n d =. d b = 3. b d =. sin d = 5. cos d = 6. tn d = n n ln b ln b b cos sin ln cos 7. udv= uv vdu. sin( = cos( π 9. sin ( = cos ( 0. sin( = sin(cos(. cos( =cos (. tn( = cos( sin( 3. sin(b
ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΘΗΝΑ 996 Πρόλογος Οι σηµειώσεις αυτές γράφτηκαν για τους φοιτητές του Εθνικού Μετσόβιου Πολυτεχνείου και καλύπτουν πλήρως το µάθηµα των
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (3) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (3) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
dx cos x = ln 1 + sin x 1 sin x.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
1 m z. 1 mz. 1 mz M 1, 2 M 1
Σύνοψη Κεφαλαίου 6: Υπερβολική Γεωμετρία Υπερβολική γεωμετρία: το μοντέλο του δίσκου 1. Στο μοντέλο του Poincaré της υπερβολικής γεωμετρίας, υπερβολικά σημεία είναι τα σημεία του μοναδιαίου δίσκου, D =
z k z + n N f(z n ) + K z n = z n 1 2N
Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά 6..5 Λύσεις Σειράς Ασκήσεων Άσκηση (α) Έστω z το όριο της ακολουθίας z n, δηλ. για κάθε ɛ > υπάρχει N(ɛ) ώστε z n z < ɛ για n > N. Για n > N(ɛ), είναι z n
Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση. Έτσι οι εξισώσεις
ΠΑΡΑΡΤΗΜΑ Β: ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ µ ÂÓÈÎ ÓÓÔÈÂ Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση Έτσι οι εξισώσεις d = + t d = 5 (Β) (Β3) d e t = cos (Β) d d = 5 + (Β4) είναι όλες διαφορικές
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Κεφάλαιο 8 Διαφορικές Εξισώσεις
Διαφορικές Εξισώσεις Κεφάλαιο 8 Διαφορικές Εξισώσεις 8. Ορισμοί Έστω ένα κύκλωμα το οποίο αποτελείται από μία πηγή ηλεκτρεργετικής δύναμης Ε (Volt), η οποία μπορεί να είναι σταθερή ή να εξαρτάται από το
Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ
Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Ενότητα 8: Συναρτησιακά καμπύλων οι οποίες υπόκεινται σε δεσμούς. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συναρτησιακά καμπύλων οι οποίες υπόκεινται σε δεσμούς Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με
LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης
Ενότητα 5: Ακρότατα συναρτησιακών μιας συνάρτησης. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ακρότατα συναρτησιακών μιας συνάρτησης Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ο μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Ι
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Ι. ΠΑΡΑΓΩΓΟΙ Κανόνες παραγώγισης - διαφόρισης ) (c) = dc = ) () = ) (cf) = cf 4) (f g) = f g d(f g) = df dg 5) (fg) = f g + fg d(fg) = gdf + fdg 6) d(f / g) = 7) [f(g())] = f (g)g
Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.
ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin
(1.1) y (t) = f ( t, y(t) ), a t b, y(a) = y 0.
1. Προβλήματα αρχικών τιμών Στο μεγαλύτερο μέρος αυτού του βιβλίου θα ασχοληθούμε με μεθόδους αριθμητικής επίλυσης προβλημάτων αρχικών τιμών για Συνήθεις Διαφορικές Εξισώσεις (Σ.Δ.Ε.). Στο πρώτο κεφάλαιο
ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5
Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος
ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου
Λύσεις στο Επαναληπτικό Διαγώνισμα 2
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Για τυχόν παρατηρήσεις, απορίες ή λάθη που θα βρείτε, στείλτε μου
Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14
1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 9 Συνεχή δυναμικά συστήματα Μέρος 1 ο Λουκάς Ζαχείλας Ορισμός Διαφορικής
cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =
ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos
5.2 (α) Να γραφούν οι εξισώσεις βρόχων για το κύκλωμα του σχήματος Π5.2α. (β) Να γραφούν οι εξισώσεις κόμβων για το κύκλωμα του σχήματος Π5.
ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ 5. (α) Να βρεθεί η τιμή της σύνθετης αντίστασης Ζ(s) των τριών κυκλωμάτων στο σχήμα Π5. (β) Να βρεθούν οι πόλοι και τα μηδενικά της Ζ(s). (γ) Να βρεθεί
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα
Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης Δ. Δημογιαννόπουλος,
Inflation and Reheating in Spontaneously Generated Gravity
Univesità di Bologna Inflation and Reheating in Spontaneously Geneated Gavity (A. Ceioni, F. Finelli, A. Tonconi, G. Ventui) Phys.Rev.D81:123505,2010 Motivations Inflation (FTV Phys.Lett.B681:383-386,2009)
1. ίνονται τα διανύσµατα: x=(a+µ,1), y=(0,b), a,b>0. Για ποιες τιµές του µ τα διανύσµατα είναι: (α) γραµµικά εξαρτηµένα, (β) γραµµικά ανεξάρτητα.
. ίνονται τα διανύσµατα: x=(a+µ,), y=(0,b), a,b>0. Για ποιες τιµές του µ τα διανύσµατα είναι: (α) γραµµικά εξαρτηµένα, (β) γραµµικά ανεξάρτητα.. ίνονται τα διανύσµατα (x,0), (0,y), (z,0). Είναι γραµµικά
1 + Φ r /c 2 = 1 (1) (2) c 2 k y 1 + (V/c) 1 + tan 2 α = sin α (3) tan α = k y k x
ΛΥΣΕΙΣ ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ 6 Θ. Τομαράς 1. Πρωτόνια στις κοσμικές ακτίνες φτάνουν ακόμα και ενέργειες της τάξης των 10 20 ev. Να συγκρίνετε την ενέργεια αυτή με την ενέργεια που έχει μια πέτρα που πετάτε με
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
Ασκήσεις Διανυσματικής Ανάλυσης
Ασκήσεις Διανυσματικής Ανάλυσης ) Το ύψος h σε χιλιόμετρα ενός βουνού δίνεται από την σχέση h 4 == 4. α) Ένας πεζοπόρος βρίσκεται στο σημείο (,,) και κινείται προς την διεύθυνση της μεγίστης κατάβασης.
Διαφορικές εξισώσεις 302.
Διαφορικές εξισώσεις 32. Μαθηματικό Αθήνας Συλλογή ασκήσεων 1 Λύτες: Βουλγαρίδου Εύα Ορμάνογλου Στράβων Παπαμικρούλη Ελένη Παπανίκου Μυρτώ Καθηγητές: Αθανασιάδου - Μπαρμπάτης Επιμέλεια L A TEX: Βώβος Μάριος
Πρακτικές μέθοδοι αποδιαμόρφωσης FM. Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας
Αποδιαμόρφωση FM Πρακτικές μέθοδοι αποδιαμόρφωσης FM Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας Ανίχνευση μηδενισμών Η έξοδος είναι ανάλογη του ρυθμού των μηδενισμών,
= df. f (n) (x) = dn f dx n
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0
ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)
. 1 (INTERPOLATION) A a 1x1 [ ] Sin[ A] [ Sin[ a]], Cos[ A] [ Cos[ a]], Tan[ A] [ Tan[ a]], Cot[ A] [ Cot[ a]]. a x + yi x, y R Sin[ a] Cosh[ y] Sin[ x] + Cos[ x] Sinh[ y] i Cos[ a] Cos[ x] Cosh[ y] Sin[
Z = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-8 PAPER II VERSION B [MATHEMATICS]. Ans: ( i) It is (cs5 isin5 ) ( i). Ans: i z. Ans: i i i The epressin ( i) ( ). Ans: cs i sin cs i sin
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου
Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές) Δ. Δημογιαννόπουλος,
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
x(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 215-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες - Ηµεροµηνία
Εισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με
Ερωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης. * Να συµπληρώσετε τον πίνακα ΙΙ, έτσι ώστε σε κάθε γραφική παράσταση συνάρτησης f της στήλης Α του πίνακα Ι να αντιστοιχεί η γραφική παράσταση της παράγουσάς της από τη στήλη Β.
Τίτλος Μαθήματος: Διαφορική Γεωμετρία
71 Τίτλος Μαθήματος: Διαφορική Γεωμετρία Ενότητα: Λσμένα Παραδείγματα Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 71 72 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Μάθημα: Θεωρία Δικτύων
Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 7-8, 5ο Εξάμηνο Μάθημα: Θεωρία Δικτύων Ανάλυση Ευσταθείας Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.