MEΡΟ VI ΔΚΒΟΛΖ ΠΟΛΤΜΔΡΧΝ (POLYMER EXTRUSION)
|
|
- Ἀπόλλωνιος Δάβης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 MEΡΟ VI ΔΚΒΟΛΖ ΠΟΛΤΜΔΡΧΝ (POLYMER EXTRUSION) Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
2 ΣΗ ΔΗΝΑΗ Ζ ΔΚΒΟΛΖ? ΜΗΑ ΑΠΌ ΣΗ ΚΤΡΗΔ ΓΗΔΡΓΑΗΔ ΣΖΝ ΒΗΟΜΖΥΑΝΗΑ ΠΟΛΤΜΔΡΧΝ ΤΝΔΥΖ ΓΗΔΡΓΑΗΑ ΜΔ ΜΔΓΑΛΖ ΔΤΔΛΗΞΗΑ ΟΟΝ ΑΦΟΡΑ ΣΟ ΣΔΛΗΚΟ ΠΡΟΗΟΝ ΤΥΝΑ ΔΊΝΑΗ ΣΟ ΠΡΧΣΟ ΣΑΓΗΟ Δ ΜΗΑ ΔΗΡΑ ΓΗΔΡΓΑΗΧΝ ΜΟΡΦΟΠΟΗΖΖ Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
3 Δ ΠΟΗΑ ΠΟΛΤΜΔΡΖ ΔΦΑΡΜΟΕΔΣΑΗ Primary Uses are Thermoplastics: LDPE, LLDPE, HDPE, ABS, PC, PS, Nylon, PVC, PP Melt Index and Density should be matched to application Some uses for Elastomers and Thermosets Important to watch age of material and processing conditions Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
4 ΔΗΓΖ ΔΚΒΟΛΖ ΠΟΛΤΜΔΡΧΝ Compounding Pellets for future use Blown Film Bags, film. Cast Film Sheet Plastic Food Packaging Foam Trays, packaging via thermoforming Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
5 ΔΗΓΖ ΔΚΒΟΛΖ ΠΟΛΤΜΔΡΧΝ Compounding Pellets for future use Blown Film Bags, film. Cast Film Plastic Food Packaging Sheet Foam Trays, packaging via thermoforming 5/15/2017
6 ΔΗΓΖ ΔΚΒΟΛΖ ΠΟΛΤΜΔΡΧΝ Pipe and Tubing PVC Pipe; Garden Hoses Extrusion Coating Paper Milk Cartons with Plastic Coating Wire and Cable Coating Underground Cables Monofilament Fishing Line, Ropes Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
7 ΤΝ-ΔΚΒΟΛΖ Allows Opportunity for Several Layers with Different Properties All Extruders for Each Material Goes into Common Die Die Design Determines Division of Layers Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
8 The history of extrusion goes back to Archimedes and before BUT modern developments based on understanding of the physical phenomena are less than 50 years old. 5/15/2017
9 Ο ΒΑΗΚΟ ΜΟΝΟΚΟΥΛΗΟ ΔΚΒΟΛΔΑ 9 5/15/2017
10 Advantages of Single Screw: Low Cost Straightforward Design Reliability Disadvantages of Single Screw: Mixing is not very good (for some applications) 5/15/2017
11 ΘΔΡΜΑΝΖ ΚΑΗ ΦΤΞΖ Heating Bring to startup temperature Maintain desired temperatures Cooling Water or Air Cooled To shutdown an extruder quickly To cool down when the polymer overheats To keep from bridging in the feed throat To keep from melting in the grooved feed Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
12 ΔΝΓΟ-ΚΟΥΛΗΑ ΘΔΡΜΑΝΖ ΚΑΗ ΦΤΞΖ Cartridge Heaters to heat from both sides Fluid Heating and Cooling to control melt temperature to prevent melting in the feed zone to increase pressure generation in feed Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
13 ΔΠΗΠΛΔΟΝ ΔΞΟΠΛΗΜΟ ΤΣΖΜΑΣΑ ΣΡΟΦΟΓΟΗΑ Gravimetric versus RPM-based Type of hopper ΠΗΝΑΚΑ ΔΛΔΓΥΟΤ ΠΑΡΑΚΟΛΟΤΘΖΖ ΛΔΗΣΟΤΡΓΗΑ ΑΝΣΛΗΔ (GEAR PUMPS) ΤΣΖΜΑΣΑ ΜΔΣΑΓΟΖ ΚΗΝΖΖ Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
14 Extruder Heads and Adapters Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
15 ΔΠΗΠΔΓΔ ΚΔΦΑΛΔ ΔΚΒΟΛΖ (FLAT EXTRUSION DIES) 5/15/2017
16 Tubular Dies Schematic of a spider leg tuning die Schematic of a spiral die Schematic of a cross-head tubing die used in film blowing Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
17 ΠΗΡΑΛ ΚΔΦΑΛΔ ΔΚΒΟΛΖ (SPIRAL EXTRUSION DIES) 5/15/2017
18 ΠΑΡΑΜΔΣΡΟΗ ΠΟΤ ΔΛΔΓΥΟΝΣΑΗ ΚΑΣΑ ΣΖΝ ΛΔΗΣΟΤΡΓΗΑ Entered By Operator Set-Point temperatures along barrel and die Rotational speed of screw Output from Process Melt pressure before & after screenpack Temperature of the polymer melt at die Actual temperatures along barrel and die Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
19 ΓΔΧΜΔΣΡΗΚΑ ΥΑΡΑΚΣΖΡΗΣΗΚΑ ΚΟΥΛΗΑ 5/15/2017
20 The standard screw L ~20-30D Feed section ~ 4-8D Metering section ~6-10D q =17.66 o (E=1D) W =1D H feed ~ D H f /H m ~2-4 Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
21 ΛΔΗΣΟΤΡΓΗΚΑ ΥΑΡΑΚΣΖΡΗΣΗΚΑ ΣΟΤ ΚΟΥΛΗΑ L/D Ratio Flighted Length Outer Diameter of Screw Compressio nratio Feed Depth Metering Depth Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
22 Diameter Effect L/D Effect Output, pph Typical Extruder Output Versus Diameter Diameter, inches Flighted Length L/D Ratio Outer Diameter of Screw Increasing L/D: More shear heat can be uniformly generated without degradation Better mixing opportunities Greater Residence Times Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
23 ΓΗΔΡΓΑΗΔ ΚΑΣΑ ΜΖΚΟ ΣΟΤ ΚΟΥΛΗΑ Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
24 Ζ ΕΧΝΖ ΜΔΣΑΦΟΡΑ ΣΔΡΔΧΝ (ΕΧΝΖ ΣΡΟΦΟΓΟΗΑ Solids Conveying Zone) PURPOSE: Feed Section Supply plastic at a uniform rate and pressure to the other sections of the screw Compress the solids into solid bed (by difference between barrel and screw friction) Allows air to be pressured back to hopper Be able to withstand high torque loadings Problems in feeding will manifest themselves as air entrapment in melt, melting inconsistencies and irregular extrudate rate Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
25 Η ΖΩΝΗ ΜΕΤΑΦΟΡΑΣ ΣΤΕΡΕΩΝ (ΖΩΝΗ ΤΡΟΦΟΔΟΣΙΑΣ Solids Conveying Zone) How the solid pellets convey???? Barrels: rough surface (sometimes intentionally grooved) Screws: smooth (polished) surface Rheology-Extrusion - Univ. Thessaly /15/2017
26 ΑΝΑΛΤΗ ΕΧΝΖ ΣΡΟΦΟΓΟΗΑ Solid region approximated by a rigid plug in contact with all sides of channel Channel depth is constant Neglect flight clearance Coefficient of friction (COF) function of temperature but not of pressure No gravity, no density differentials in plug F r =W*dz*P*f s Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
27 ΑΝΑΛΤΗ ΕΧΝΖ ΣΡΟΦΟΓΟΗΑ Darnell & Mol (1956): 1 1 s q arcsin 2 1 fs H P fs 2H k ln 1 f z P f W b o b M f k fsk s HWpv z b L sin sinq sin q 1 afs W 2H z Pz Po exp fb f s a W H tan( q ) Max (M) when f s is small and f b is large Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
28 Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
29 Ms[kg/hr] Mass Flow Rate of the solid bed as a function of the ratio f s /f b : fs/fb Ο ρυθμός μεταφοράς των στερεών σε σχέση με το λόγο fs/fb. Max (M) when f s is small and f b is large Rheology-Extrusion - Univ. Thessaly /15/2017
30 Solids Conveying: COF Dependency of COF COF Depends On: Temperature Pressure Velocity (Screw Speed) COF Measurement SPR-18 Term Model Place plastic in between metal for barrel and metal for screw and measure COF (via torque). Barrel COF Effect on Conveying Solids Conveying Rate, pph at 100 RPM Soilds Conveying Rate versus Coefficient of Friction on the Barrel for Soarnol EVOH Coefficient of Friction Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
31 600, ,000 Ms [kg/hr] 400, , , ,000 0, ,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008 H [m] Ο ρυθμός μεταφοράς των στερεών σε σχέση με το βάθος του καναλιού. Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
32 Feed Section - Screw Length Length of feed section can be negligible to 1/2 the length of screw Industry Standard = 5 Diameters Feed Section - Channel Depth Solids Conveying Rate versus Channel Depth for Various Back Pressures INCREASING LENGTH: Increase output of the screw Decrease available mixing time downstream Solids Conveying Rate, in3/s Channel Depth, inches P1/P0 = 1 P1/P0 = 100 P1/P0 = 200 P1/P0 = 500 Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
33 Solids Conveying - Feed properties: Bulk Density BULK DENSITY Bulk Density and Compressibility Density of the plastic including the air voids between the particles Typically lb/ft 3 < 10 lb/ft 3, then extrusion on conventional extruder is no longer possible Screw Design For Bulk Density Bulk Density Design Rules Bulk Density > 1/2 Solid Density Feed Channel = D 1/3 Solid < Bulk Density< 1/2 Solid Density Deeper feed Channel Required Bulk Density< 1/3 Solid Density Crammer Feeder Needed Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
34 Solids Conveying - Feed properties: Compressibility Bulk Density and Compressibility Bulk Density and Compressibility COMPRESSIBILITY Difference in percent between bulk density of loose particles and bulk density of packed particles > 20%, polymer is considered non-freeflowing Measure by Hand Clump Test Free flowing: No clump in hand squeeze test Angle of Repose < 45 Non-free flowing: Compressibility > 20% Easily broken clump in hand squeeze test Angle of Repose > 45 Bridge in Hopper: Compressibility > 40% Hard clump in hand squeeze test Difficult to feed a compressible powder Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
35 Feed Section Design Feed Section - Channel Depth Feed Section - Helix Angle SUMMARY OF COVNEYING SPEED VERSUS CHANNEL DEPTH: Parabolic Shape to curve - therefore, optimum depth can be chosen Pressure is a key variable - Increased pressure generation comes from a shallower depth Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
36 Feed Section Design Feed Section - # of Flights Solids C onveying Rate E ffe ct o f F ee d C h an n el D ep th o n S o lid s C o n ve yin g R a te D o u b le F lig h t C h a n n e l D e p th, in ch e s S in g le F lig h t *Increasing # of Flights, decreases Solids Conveying Torsion Factor Feed Section produces the most pressure, and greatest possibility of breaking screw TORSION Measurement: Where: H max 0.5D Hmax = maximum feed depth, inches D = Diameter, inches P motor = Power rating of the motor, horsepower N = screw speed, rpm zul = allowable shear stress of metal, psi P N motor 4140 Tensile 237,500 psi Yield 182,000 psi zul 1 3 Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
37 Ζ ΕΧΝΖ ΣΖΞΔΧ (Melting Zone) Solids bed in an unwrapped screw channel Screw channel cross section Predicted (Tadmor Model) and experimental solids bed profile Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
38 5/15/2017
39 Barrier Screw Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
40 Basic Extruder Analysis 1D Isothermal Newtonian flow between parallel plates One plate moving (screw surface) Other plate stationary (barrel inner surface) DP caused by constriction near the die Conclusion: The flowrate is the sum of the drag flow and of the pressure-driven flow Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
41 Now, let s (conceptually) unwind the channel, and turn it into.a CHANNEL between two flat plates (assume the screw is stationary and THE BARREL ROTATES): The barrel moves with V b =πdn where N rotational speed of screw (e.g. RPM) and z the downchannel direction. The down channel velocity component is: V bz =V b cosθ=πdncosθ and: L=z cosθ Recall the FLAT PLATE EQUATIONS for drag flow with an opposing pressure flow: Q VHW 2 3 H dp 12 dz 41 5/15/2017
42 Use the helical geometry of the channel: N = revs per second (rpm/60) of screw Q 1 2 D 2 2 HN sinq cosq 3 DH 12 sin 2 DP q L 42 5/15/2017
43 If we take into account the leakage flow rate from the small clearance (δ) between the barrel and the screw: Q 1 2 D 2 2 Q L D 12e 3 DH HN sinq cosq 12 DP tanq L sin 2 DP q L in our analysis we neglect this term ~ D 12e DP tanq L NOTE: 1. If there is no pressure build-up (e.g. no constriction of flow at the end of the extruder), the output would be maximum, i.e. drag flow only: 1 2 D 2 Q max 2 HN sinq cosq μέγιςτη παροχή 2. If the end is closed, Q=0 and we may equate drag and pressure flow which gives the MAXIMUM POSSIBLE PRESSURE: μέγιςτη DH 2 DP 6DLN πτώςη D HN sinq cosq sin q P max 2 πίεςησ 2 12 L tanq Since μ is large for polymer melts, extremely large (AND VERY DANGEROUS!!!) pressures can develop. 5/15/2017
44 For the extruder: Q max D HN sinq cosq 2 P max 2 6DLN tanq Careful..!! L is the length of the METERING ZONE ONLY! L For the DIE (κεφαλή) the pressure drop vs flow rate can be obtained by the usual equations: DP mh ( 2n1 ) L F n Q W n 2H y x DP 2mR ( 3n1 ) 1 Q LC 3 n n r z 5/15/2017
45 2D Isothermal Analysis of Screw Extruders Parallel plate representation u l =u x *cos(q)+u z *sin(q) V=πDN (ι)=άμoλαο ηνπ θνριία, ζρεκαηίδεη γωλία (ζ) κε ηνλ άμoλα (ρ) (z)=helical axis Γηα ζεηηθή ξνή, u ι >0 Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
46 Melt Conveying simplified flow model - U z (y) (z) u z (H)=V z Flow in the y-z plane useful for flowrate predictions Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
47 Melt Conveying simplified flow model on x-y plane (x) (y) V x =Vsin(q) Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
48 Melt conveying simple flow theory u l =u x *cos(q)+u z *sin(q) The U l column shows the velocity perpendicular to the q-plane (shaded) in the direction of the screw axis u x u z u l Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
49 Melt conveying: fluid motion No net flow (circulation only) Pure drag flow Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
50 Melt conveying power calculations????? Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
51 Melt Conveying: geometrical corrections Effect of finite width of flow channel Shape factors Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
52 Melt Conveying: Effect of clearance () F pn =F p (1+f L ) And of course (H) is replaced by H- in the F D formula Pressure gradient in the presence of leackage flow Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
53 Parallel plate vs. annular flow vs. V=πDN (ι)=άμoλαο ηνπ θνριία, ζρεκαηίδεη γωλία (ζ) κε ηνλ άμoλα (ρ) (z)=helical axis Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
54 Error introduced due to flat-plate assumption Α.Γ. Παπαζαλαζίνπ, Αλνημε 2011
55 Melt conveying: non-newtonian fluids Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
56 ρεδηαζκόο θαη ιεηηνπξγία εθβνιέα θνριία The concept of combining die and screw characteristic curves to obtain operating points Screw and die characteristics for a grooved feed 45 mm diameter extruder with LDPE Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
57 Dimensionless screw characteristic curves for conventional and grooved feed extruders Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
58 ΑΛΛΔ ΓΗΟΡΘΧΔΗ Effect of channel nonuniformity in z- direction The operating curve becomes steeper Non-isothermal operation Α.Γ. Παπαζαλαζίνπ, Αλνημε 2017
PLASTICS EXTRUSION (ΕΚΒΟΛΗ ΠΛΑΣΤΙΚΩΝ)
PLASTICS EXTRUSION (ΕΚΒΟΛΗ ΠΛΑΣΤΙΚΩΝ) 1 ΤΙ ΕΙΝΑΙ Η ΕΚΒΟΛΗ? ΜΙΑ ΑΠΌ ΤΙΣ ΚΥΡΙΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΗΝ ΒΙΟΜΗΧΑΝΙΑ ΠΟΛΥΜΕΡΩΝ ΣΥΝΕΧΗΣ ΔΙΕΡΓΑΣΙΑ ΜΕ ΜΕΓΑΛΗ ΕΥΕΛΙΞΙΑ ΟΣΟΝ ΑΦΟΡΑ ΤΟ ΤΕΛΙΚΟ ΠΡΟΙΟΝ ΣΥΧΝΑ ΕIΝΑΙ ΤΟ ΠΡΩΤΟ
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD
ZLW Series Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD 1 Application Apply as the transportation of liquids in the fields of air condition, heating, sanitary water, water treatment cooling,
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet
RECIPRCATING CMPRESSR CALCULATIN SHEET ISTHERMAL CMPRESSIN Gas properties, flowrate and conditions 1 Gas name Air Item or symbol Quantity Unit Item or symbol Quantity Unit Formula 2 Suction pressure, ps
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
NMBTC.COM /
Common Common Vibration Test:... Conforms to JIS C 60068-2-6, Amplitude: 1.5mm, Frequency 10 to 55 Hz, 1 hour in each of the X, Y and Z directions. Shock Test:...Conforms to JIS C 60068-2-27, Acceleration
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
MECHANICAL PROPERTIES OF MATERIALS
MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1
SERIES GM9: We have the GM9434H187-R1 Gearmotor Data Item Parameter Symbol Units 5.9:1 11.5:1 19.7:1 38.3:1 65.5:1 127.8:1 218.4:1 425.9:1 728.1:1 1419.8:1 2426.9:1 4732.5:1 1 Max. Load Standard Gears
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:
UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
38BXCS STANDARD RACK MODEL. DCS Input/Output Relay Card Series MODEL & SUFFIX CODE SELECTION 38BXCS INSTALLATION ORDERING INFORMATION RELATED PRODUCTS
DCS Input/Output Relay Card Series STANDARD RACK MODEL 38BXCS MODEL & SUFFIX CODE SELECTION 38BXCS MODEL CONNECTOR Y1 :Yokogawa KS2 cable use Y2 :Yokogawa KS9 cable use Y6 :Yokogawa FA-M3/F3XD32-3N use
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.
upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation
Precision Metal Film Fixed Resistor Axial Leaded
Features EIA standard colour-coding Non-Flame type available Low noise and voltage coefficient Low temperature coefficient range Wide precision range in small package Too low or too high ohmic value can
SMD Transient Voltage Suppressors
SMD Transient Suppressors Feature Full range from 0 to 22 series. form 4 to 60V RMS ; 5.5 to 85Vdc High surge current ability Bidirectional clamping, high energy Fast response time
RECIPROCATING COMPRESSOR CALCULATION SHEET
Gas properties, flowrate and conditions 1 Gas name Air RECIPRCATING CMPRESSR CALCULATIN SHEET WITH INTERCLER ( Sheet : 1. f 4.) Item or symbol Quantity Unit Item or symbol Quantity Unit 2 Suction pressure,
THICK FILM LEAD FREE CHIP RESISTORS
Features Suitable for lead free soldering. Compatible with flow and reflow soldering Applications Consumer Electronics Automotive industry Computer Measurement instrument Electronic watch and camera Configuration
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Multilayer Ceramic Chip Capacitors
FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient
Specification. code ±1.0 ±1.0 ±1.0 ±1.0 ±0.5 approx (g)
High CV-value Long Life > 10 years at 50 C Low ESR and ESL High stability, 10 years shelf life Optimized designs available on request RoHS Compliant application Basic design Smoothing, energy storage,
Correction Table for an Alcoholometer Calibrated at 20 o C
An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
katoh@kuraka.co.jp okaken@kuraka.co.jp mineot@fukuoka-u.ac.jp 4 35 3 Normalized stress σ/g 25 2 15 1 5 Breaking test Theory 1 2 Shear tests Failure tests Compressive tests 1 2 3 4 5 6 Fig.1. Relation between
Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage
Features Rated Voltage: 100 VAC, 4000VDC Chip Size:,,,,, 2220, 2225 Electrical Dielectric Code EIA IEC COG 1BCG Applications Modems LAN / WAN Interface Industrial Controls Power Supply Back-Lighting Inverter
Shenzhen Lys Technology Co., Ltd
Carbide drawing dies Properties of grade Grade Density TRS Average Grain size Hardness (HRA) (g/cm3) (MPa) (ųm) YL01 15.25 93.5 3300 0.8 YL10.2 14.5 92.0 4000 0.8 YG6 14.95 90 2400 1.6 YG6X 14.95 91.5
Metal Oxide Varistors (MOV) Data Sheet
Φ SERIES Metal Oxide Varistors (MOV) Data Sheet Features Wide operating voltage (V ma ) range from 8V to 0V Fast responding to transient over-voltage Large absorbing transient energy capability Low clamping
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Group 30. Contents.
Group 30 Contents Pump type Page Pump type Page Pump type Page 30A(C)...X002H 4 30A(C)...X013H 5 30A(C)...X068H 6 30A(C)...X068HU 7 30A(C)...X136H 8 30A(C)...X136Y 9 30A(C)...X146H 10 30A(C)...X160H 11
NPI Unshielded Power Inductors
FEATURES NON-SHIELDED MAGNETIC CIRCUIT DESIGN SMALL SIZE WITH CURRENT RATINGS TO 16.5 AMPS SURFACE MOUNTABLE CONSTRUCTION TAKES UP LESS PCB REAL ESTATE AND SAVES MORE POWER TAPED AND REELED FOR AUTOMATIC
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
Linearized Lifting Surface Theory Thin-Wing Theory
13.021 Marine Hdrodnamics Lecture 23 Copright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hdrodnamics Lecture 23 Linearized Lifting Surface Theor Thin-Wing Theor
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%
Wire Wound SMD Power Inductors WPN Series Operating temperature range : -40 ~+125 (Including self-heating) FEATURES Fe base metal material core provides large saturation current Metallization on ferrite
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Aluminum Electrolytic Capacitors (Large Can Type)
Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα
ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Multilayer Ceramic Chip Capacitors
FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* PART NUMBER SYSTEM
MARKET INTRODUCTION System integration
MARKET INTRODUCTION System integration Air to Water Split System Inverter Driven Nomιnal Capacities : 5-6,5-9 - 11,5 kwth Max LWT= 60 C & Min OAT = -15 C COP>= 4.1 Air to Water Monoblock Inverter Driven
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΔΕΙΚΤΩΝ ΠΟΙΟΤΗΤΑΣ ΕΔΑΦΟΥΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΔΕΙΚΤΩΝ ΠΟΙΟΤΗΤΑΣ ΕΔΑΦΟΥΣ [Μαρία Μαρκουλλή] Λεμεσός 2015 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ
Thin Film Chip Resistors
FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating
SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)
Marking Outline: Low DCR, high rated current. Magnetic shielded structure Lead free product, RoHS compliant. RoHS Carrier tape packing, suitable for SMT process. SMT Widely used in buck converter, laptop,
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Swirl diffusers, Variable swirl diffusers Swirl diffusers
, Variable swirl diffusers Swirl diffuser OD-9 Square or round front mask Square or radial deflector arrangement Plastic deflectors Possible volume control damper in spigot Foam sealing on the flange St
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.
Low Impedance, For Switching Power Supplies Low impedance and high reliability withstanding 5000 hours load life at +05 C (3000 / 2000 hours for smaller case sizes as specified below). Capacitance ranges
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance
.635mm Pitch Board to Board Docking Connector Lead-Free Compliance MINIDOCK SERIES MINIDOCK SERIES Features Specifications Application.635mm Pitch Connector protected by Diecasted Zinc Alloy Metal Shell
Ceramic PTC Thermistor Overload Protection
FEATURES compliant CPTD type are bare disc type CPTL type are leaded Low, medium and high voltage ratings Low resistance; Small size No need to reset supply after overload No noise generated Stable over
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents