Ελληνική μνημειακή ζωγραφική. Δ. Πλάντζος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ελληνική μνημειακή ζωγραφική. Δ. Πλάντζος"

Transcript

1 Ελληνική μνημειακή ζωγραφική Δ. Πλάντζος

2 Διάρθρωση μαθημάτων 1. Εισαγωγικά 2. Πηγές και μεθοδολογία 3. Υλικά και τεχνικές 4. Η μνημειακή ζωγραφική στην Ελλάδα της Εποχής του Χαλκού 5. Πρώιμη ελληνική ζωγραφική (7ος-6ος αι. π.χ.) 6. Ο Πολύγνωτος και η ζωγραφική του 5ου αι. π.χ. 7. Τετραχρωμία και σκιαγραφία: Απολλόδωρος, Ζεύξις, Παρράσιος 8. Μακεδονικοί Τάφοι Ι 9. Μακεδονικοί Τάφοι ΙΙ 10. Ψηφιδωτά 11. Μνημεία της Ελληνιστικής περιόδου 12. Ελληνορωμαϊκή ζωγραφική Ι 13. Ελληνορωμαϊκή ζωγραφική ΙΙ

3 Διάρθρωση μαθημάτων 1. Εισαγωγικά 2. Πηγές και μεθοδολογία 3. Υλικά και τεχνικές 4. Η μνημειακή ζωγραφική στην Ελλάδα της Εποχής του Χαλκού 5. Πρώιμη ελληνική ζωγραφική (7ος-6ος αι. π.χ.) 6. Ο Πολύγνωτος και η ζωγραφική του 5ου αι. π.χ. 7. Τετραχρωμία και σκιαγραφία: Απολλόδωρος, Ζεύξις, Παρράσιος 8. Μακεδονικοί Τάφοι Ι 9. Μακεδονικοί Τάφοι ΙΙ 10. Ψηφιδωτά 11. Μνημεία της Ελληνιστικής περιόδου 12. Ελληνορωμαϊκή ζωγραφική Ι 13. Ελληνορωμαϊκή ζωγραφική ΙΙ

4 σκιαγραφία: Τελικά η ίδια η τέχνη από μόνη της κατάκτησε την αυτονομία της ανακαλύπτοντας το φως και τις σκιές και την αντίθεση των χρωμάτων μεταξύ τους που εντείνεται με την εναλλαγή τους. Αργότερα προστέθηκε η λάμψη (splendor) που είναι άλλο πράγμα από το φως. Το διάστημα ανάμεσα στο φως και τη σκιά ονομάζεται «τόνος» το σμίξιμο των χρωμάτων και το πέρασμα από το ένα στο άλλο λέγεται «αρμογή». Πλίνιος, ΦΙ 35.29

5 σκιαγραφία:

6 σκιαγραφία: Κεραμική Ενιαίο, μελανό χρώμα Διάλυμα πηλού Πριν την όπτηση Βάση για εγχάραξη, επίθετο χρώμα Ζωγραφική Χρωστική Τονικές διαβαθμίσεις Αποχρώσεις, χροιές Πλαστικότητα Αίσθηση του βάθους 3 η διάσταση

7

8 σκιαγραφία: το χρώμα δεν εφαρμόζεται στη ζωγραφική επιφάνεια με ενιαίο τρόπο, αλλά διαβαθμίζεται έτσι ώστε να παρέχει στον ζωγράφο έναν δυνητικά απεριόριστο αριθμό αποχρώσεων και χροιών τα περιγράμματα είναι πια υποβαθμισμένα προς όφελος της διαβαθμισμένης μετάβασης από τη μία απόχρωση στην άλλη οι επί μέρους μορφές αποδίδονται πλαστικά έτσι ώστε να προβάλλονται τρισδιάστατα η μία επάνω στην άλλη «chiaroscuro» (;): ρεαλισμός, ψευδαίσθηση τρίτης διάστασης, βάθος πεδίου

9 Giovanni Battista Caracciolo (el Batistelo),

10 Απολλόδωρος ο σκιαγράφος ( π.χ.) «ο πρώτος άνθρωπος που ανακάλυψε την τέχνη της ανάμιξης χρωμάτων (φθορὰ) και την σκίαση» (Πλούταρχος, Πότερον Άθηναῖοι κατὰ πόλεμον ἢ κατὰ σοφίαν ἐνδοξότεροι 346Α) «πρώτος αυτός επιχείρησε να αποδώσει την εξωτερική όψη των πραγμάτων», «πρώτος εδόξασε δίκαια τον χρωστήρα». Πριν από αυτόν δεν υπήρξε ποτέ έργο καλλιτέχνη «που μπορούσε να μας τραβήξει το μάτι» (Πλίνιος, ΦΙ 35.60).

11

12

13

14

15 π.χ.

16

17

18 σκιαγραφία: το χρώμα δεν εφαρμόζεται στη ζωγραφική επιφάνεια με ενιαίο τρόπο, αλλά διαβαθμίζεται έτσι ώστε να παρέχει στον ζωγράφο έναν δυνητικά απεριόριστο αριθμό αποχρώσεων και χροιών τα περιγράμματα είναι πια υποβαθμισμένα προς όφελος της διαβαθμισμένης μετάβασης από τη μία απόχρωση στην άλλη οι επί μέρους μορφές αποδίδονται πλαστικά έτσι ώστε να προβάλλονται τρισδιάστατα η μία επάνω στην άλλη «chiaroscuro» (;): ρεαλισμός, ψευδαίσθηση τρίτης διάστασης, βάθος πεδίου

19 Ζεύξις (περ π.χ.) Διάδοχος του Απολλόδωρου (ΦΙ 35.61) Σκιαγραφία, πιστότητα, ακρίβεια (diligentia) Διαβόητος για τον τρυφηλό του βίο

20 Ζεύξις (περ π.χ.) Διάδοχος του Απολλόδωρου (ΦΙ 35.61) Σκιαγραφία, πιστότητα, ακρίβεια (diligentia) Διαβόητος για τον τρυφηλό του βίο Παρράσιος (περ π.χ.) Αντιζηλία με Ζεύξι (ΦΙ ) Γραμμικό σχέδιο, περιγράμματα Καθαρά χρώματα

21

22

23 Αττικός ερυθρόμορφος σκύφος. Πηνελόπη και Τηλέμαχος. Περ. 440 π.χ. Chiusi, Εθνικό Μουσείο C1831.

24

25 Trompe-l oeil

26 Η Παναγία με το Θείο Βρέφος. Περ Λονδίνο, Εθνική Πινακοθήκη.

27 Antonello da Messina, Ο Χριστός Ευλογών. Περ Λονδίνο, Εθνική Πινακοθήκη 673.

28 Αγνώστου, Προσωπογραφία Γυναίκας της Οικογένειας Χόφερ. Περ Λονδίνο, Εθνική Πινακοθήκη 722.

29 σκηνογραφία Επινοήθηκε από / για τον Σοφοκλή (Αριστοτέλους, Ποιητική 1449a18) Βιτρούβιος (7 Πρ. 11): από τον ζωγράφο Αγάθαρχο, για τραγωδία του Αισχύλου Πλούταρχος (Αλκιβιάδης 16): διακόσμησε με τοιχογραφίες ή πίνακες την οικία του Αλκιβιάδη / (Περικλής 13): σύγχρονος του Ζεύξιδος Απολλόδωρος: σκιαγράφος ή σκηνογράφος; (Ησύχιος, Σ, s.v. 967 και 968 [Latte])

30 scaenographia oporteat ad aciem oculorum radiorumque extentionem certo loco centro constituto lineas ratione naturali respondere, uti de certa re certae imagines aedificiorum in scaenarum picturis redderent speciem et, quae in directis planisque frontibus sint figurata, alia abscedentia, alia prominentia esse videantur. Vitruvius 7 praef. 11

31 scaenographia αφού ορισθεί ένα σταθερό σημείο ως κέντρο, οι ευθείες [ενν. που καταλήγουν σε αυτό] θα πρέπει να ανταποκρίνονται σε φυσική αναλογία με το σημείο των οφθαλμών και την προέκταση των ακτινών, ώστε από ένα σταθερό σημείο οι απεικονίσεις των κτιρίων στο σκηνικό να αναπαράγουν μια εικόνα με μερικές [ευθείες] να φαίνεται ότι προεκτείνονται και άλλες ότι υποχωρούν όταν ζωγραφίζονται στα κάθετα επίπεδα και μέτωπα [του σκηνικού οικοδομήματος]. Vitruvius 7 praef. 11

32 scaenographia scaenographia est frontis et laterum abscedentium adumbratio ad circinique centrum omnium linearum responsus. Vitruvius 1.2.2

33 scaenographia η σκηνογραφία είναι η σκιασμένη απόδοση των προσόψεων και των πλευρών τους που υποχωρούν, με όλες τις γραμμές να ανταποκρίνονται στο σημείο [κέντρο] του διαβήτη (circinus / κίρκινος). Vitruvius 1.2.2

34 σκηνογραφία Η απόδοση του τρισδιάστατου χώρου, κυρίως του δομημένου περιβάλλοντος, με ζωγραφική χρήση των γεωμετρικών αναλογιών και του σκιοφωτισμού.

35 «προοπτική» Όταν κοιτάμε από το ένα άκρο μιας κιονοστοιχίας στο άλλο, προς όλο το μήκος της, παρόλο που η κατασκευή της είναι τελείως συμμετρική και αποτελείται ολόκληρη από κίονες ίσου ύψους, μοιάζει να ελαττώνεται σιγά-σιγά στο σχήμα ενός κώνου που στενεύει και φέρνει την οροφή προς το δάπεδο και την αριστερή πλευρά προς τη δεξιά μέχρι να τις ενώσει στην αθέατη κορυφή του κώνου. Λουκρήτιος, De Rerum Natura

36 «προοπτική» το μάτι του θεατή πρέπει να ξεγελιέται ακολουθώντας τους καλομελετημένους κύκλους της εικόνας Φιλόστρατος, Εικόνες 1.4

37 Sandro Botticelli, O Άγιος Αυγουστίνος στο Σπουδαστήριό του. Περ Φλωρεντία, Πινακοθήκη Uffizi.

38 Piero della Francesca(;), Ιδανική Πόλη. Περ Urbino, Εθνική Πινακοθήκη Marche 1990 D37.

39

40 Κατωιταλιωτικός ερυθρόμορφος ελικωτός κρατήρας. Αχιλλεύς και Θερσίτης, ενδεχομένως από δραματική παράσταση. Περ. 340 π.χ. Βοστώνη, Μουσείο Καλών Τεχνών

41 Θραύσμα απουλικού κρατήρα από τον Τάραντα. Σκηνή τραγωδίας. περ π.χ. Würzburg, Μουσείο Martin von Wagner.

42

43 E. Panofsky, η διαφορά μεταξύ γραμμικής και καμπύλης προοπτικής: στην γραμμική προοπτική (α), τα είδωλα HS και JS εμφανίζονται αντιστρόφως ανάλογα των αποστάσεων (AB και AD) στην καμπύλη προοπτική (β) τα είδωλα (β και α+β) δεν εμφανίζονται αντιστρόφως ανάλογα των αποστάσεων (2b και b). Όπως δείχνει το σχέδιο (γ), σύμφωνα με το «αξίωμα των γωνιών», τα είδωλα α, β, και γ εμφανίζονται ίσα μεταξύ τους ενώ τα πραγματικά μεγέθη a, b, και c είναι άνισα μεταξύ τους.

44

45

Ελληνική μνημειακή ζωγραφική. Δ. Πλάντζος

Ελληνική μνημειακή ζωγραφική. Δ. Πλάντζος Ελληνική μνημειακή ζωγραφική Δ. Πλάντζος Διάρθρωση μαθημάτων 1. Εισαγωγικά 2. Πηγές και μεθοδολογία 3. Υλικά και τεχνικές 4. Πρώιμες εκφάνσεις: 7 ος -6 ος αι. π.χ. 5. 5 ος αι. π.χ.: τετραχρωμία και σκιαγραφία

Διαβάστε περισσότερα

Ελληνική μνημειακή ζωγραφική. Δ. Πλάντζος

Ελληνική μνημειακή ζωγραφική. Δ. Πλάντζος Ελληνική μνημειακή ζωγραφική Δ. Πλάντζος Διάρθρωση μαθημάτων 1. Εισαγωγικά 2. Πηγές και μεθοδολογία 3. Υλικά και τεχνικές 4. Πρώιμες εκφάνσεις: 7 ος -6 ος αι. π.χ. 5. 5 ος αι. π.χ.: τετραχρωμία και σκιαγραφία

Διαβάστε περισσότερα

Ελληνική μνημειακή ζωγραφική. Δ. Πλάντζος

Ελληνική μνημειακή ζωγραφική. Δ. Πλάντζος Ελληνική μνημειακή ζωγραφική Δ. Πλάντζος Διάρθρωση μαθημάτων 1. Εισαγωγικά 2. Πηγές και μεθοδολογία 3. Υλικά και τεχνικές 4. Η μνημειακή ζωγραφική στην Ελλάδα της Εποχής του Χαλκού 5. Πρώιμη ελληνική ζωγραφική

Διαβάστε περισσότερα

Ελληνική μνημειακή ζωγραφική. Δ. Πλάντζος

Ελληνική μνημειακή ζωγραφική. Δ. Πλάντζος Ελληνική μνημειακή ζωγραφική Δ. Πλάντζος Διάρθρωση μαθημάτων 1. Εισαγωγικά 2. Πηγές και μεθοδολογία 3. Υλικά και τεχνικές 4. Η μνημειακή ζωγραφική στην Ελλάδα της Εποχής του Χαλκού 5. Πρώιμη ελληνική ζωγραφική

Διαβάστε περισσότερα

Ελληνική μνημειακή ζωγραφική. Δ. Πλάντζος

Ελληνική μνημειακή ζωγραφική. Δ. Πλάντζος Ελληνική μνημειακή ζωγραφική Δ. Πλάντζος Διάρθρωση μαθημάτων 1. Εισαγωγικά 2. Πηγές και μεθοδολογία 3. Υλικά και τεχνικές 4. Πρώιμες εκφάνσεις: 7 ος -6 ος αι. π.χ. 5. 5 ος αι. π.χ.: τετραχρωμία και σκιαγραφία

Διαβάστε περισσότερα

[IA12] ΚΛΑΣΙΚΗ ΑΡΧΑΙΟΛΟΓΙΑ Β

[IA12] ΚΛΑΣΙΚΗ ΑΡΧΑΙΟΛΟΓΙΑ Β [IA12] ΚΛΑΣΙΚΗ ΑΡΧΑΙΟΛΟΓΙΑ Β Αρχαιολογία των κλασικών και ελληνιστικών χρόνων (480 π.χ. - 30 π.χ.). Δημήτρης Πλάντζος Δ. Πλάντζος, Ελληνική τέχνη και αρχαιολογία 1200-30 π.χ. Εκδόσεις Καπόν: Αθήνα, 2016

Διαβάστε περισσότερα

Η Τέχνη της Αναγέννησης-Μανιερισμός

Η Τέχνη της Αναγέννησης-Μανιερισμός Η Τέχνη της Αναγέννησης-Μανιερισμός Τμήμα Πλαστικών Τεχνών και Επιστημών της Τέχνης Σχολή Καλών Τεχνών Πανεπιστήμιο Ιωαννίνων Διδάσκουσα: Δρ Βικτώρια Φερεντίνου 3. Η Τέχνη της Πρώιμης Αναγέννησης στην

Διαβάστε περισσότερα

Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων ( π.χ.). Δημήτρης Πλάντζος

Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων ( π.χ.). Δημήτρης Πλάντζος [IA11] ΚΛΑΣΙΚΗ ΑΡΧΑΙΟΛΟΓΙΑ Α Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων (1100-480 π.χ.). Δημήτρης Πλάντζος Πρώιμοι και Γεωμετρικοί χρόνοι (1100-700 π.χ.) Οι περίοδοι της αρχαίας ελληνικής τέχνης:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ. Ηρεμία, στατικότατα, σταθερότητα

ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ. Ηρεμία, στατικότατα, σταθερότητα ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ (μάθημα κατεύθυνσης) Τι είναι η δομή και η σύνθεση ενός εικαστικού έργου. Είναι η οργάνωση όλων των στοιχείων ενός έργου σε ένα ενιαίο σύνολο με στόχο να εκφράσουν κάποια

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες.

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. Μαθηματικά A Γυμνασίου Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. 1. Τι λέμε σημείο; Η άκρη του μολυβιού μας, οι κορυφές ενός σχήματος, η μύτη μιας βελόνας, μας δίνουν την έννοια του σημείου. 2. Τι λέμε

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης)

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΣΧΕΔΙΟ (Ελεύθερο και Προοπτικό) και που ενδέχεται

Διαβάστε περισσότερα

ΜΕΤΡΩΝΤΑΣ ΤΟΝ ΠΛΑΝΗΤΗ ΓΗ

ΜΕΤΡΩΝΤΑΣ ΤΟΝ ΠΛΑΝΗΤΗ ΓΗ του Υποπυραγού Αλέξανδρου Μαλούνη* Μέρος 2 ο - Χαρτογραφικοί μετασχηματισμοί Εισαγωγή Είδαμε λοιπόν ως τώρα, ότι η γη θα μπορούσε να χαρακτηρισθεί και σφαιρική και αυτό μπορεί να γίνει εμφανές όταν την

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

ΚΕΦΑΛΑΙΟ 5 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Σχεδίαση με τη χρήση Η/Υ ΚΕΦΑΛΑΙΟ 5 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Σκιές αντικειμένων (cast shadows): Ορισμός: πρόκειται

Διαβάστε περισσότερα

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Κ Ε Φ Α Λ Α Ι Ο Α Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Σκοπός Σκοπός του κεφαλαίου αυτού είναι να γνωρίσουν οι μαθητές τα υλικά που χρειάζονται για το ελεύθερο σχέδιο και τον τρόπο που θα τα

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων ( π.χ.). Δημήτρης Πλάντζος

Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων ( π.χ.). Δημήτρης Πλάντζος [IA11] ΚΛΑΣΙΚΗ ΑΡΧΑΙΟΛΟΓΙΑ Α Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων (1100-480 π.χ.). Δημήτρης Πλάντζος Πρώιμοι και Γεωμετρικοί χρόνοι (1100-700 π.χ.) Οι περίοδοι της αρχαίας ελληνικής τέχνης:

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων ( π.χ.). Δημήτρης Πλάντζος

Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων ( π.χ.). Δημήτρης Πλάντζος [IA11] ΚΛΑΣΙΚΗ ΑΡΧΑΙΟΛΟΓΙΑ Α Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων (1100-480 π.χ.). Δημήτρης Πλάντζος Πρώιμοι και Γεωμετρικοί χρόνοι (1100-700 π.χ.) (συνέχεια) Οι περίοδοι της αρχαίας ελληνικής

Διαβάστε περισσότερα

Δύο ημιευθείες OX, OY με κοινό άκρο O, χωρίζουν το επίπεδο σε δύο μέρη και ορίζουν μία κυρτή γωνία ή απλά γωνία και μία μη κυρτή γωνία.

Δύο ημιευθείες OX, OY με κοινό άκρο O, χωρίζουν το επίπεδο σε δύο μέρη και ορίζουν μία κυρτή γωνία ή απλά γωνία και μία μη κυρτή γωνία. ΜΑΘΗΜΑ 2 Δύο ημιευθείες OX, OY με κοινό άκρο O, χωρίζουν το επίπεδο σε δύο μέρη και ορίζουν μία κυρτή γωνία ή απλά γωνία και μία μη κυρτή γωνία. Κυρτή γωνία ή απλά γωνία λέγεται το σχήμα που συμβολίζουμε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

Το φως στη βυζαντινή ζωγραφική

Το φως στη βυζαντινή ζωγραφική 23 Νοεμβρίου 2016 Το φως στη βυζαντινή ζωγραφική Πολιτισμός / Ζωγραφική & Εικαστικές Τέχνες Μαρία Ι.Καζαμία-Τσέρνου, Αναπλ. Καθηγήτρια Βυζαντινής Αρχαιολογίας, Τμήμα Θεολογίας ΑΠΘ «Καί ε πεν Θεός γενηθήτω

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Ανάκλαση Κάτοπτρα Διάθλαση Ολική ανάκλαση Φαινόμενη ανύψωση αντικειμένου Μετατόπιση ακτίνας Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ - Ανάκλαση Επιστροφή σε «γεωμετρική οπτική» Ανάκλαση φωτός ονομάζεται

Διαβάστε περισσότερα

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ Η προοπτική εικόνα, είναι, όπως είναι γνωστό, η προβολή ενός χωρικού αντικειμένου, σε ένα επίπεδο, με κέντρο προβολής, το μάτι του παρατηρητή. Η εικόνα αυτή, θεωρούμε ότι αντιστοιχεί

Διαβάστε περισσότερα

Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων ( π.χ.). Δημήτρης Πλάντζος

Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων ( π.χ.). Δημήτρης Πλάντζος [IA11] ΚΛΑΣΙΚΗ ΑΡΧΑΙΟΛΟΓΙΑ Α Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων (1100-480 π.χ.). Δημήτρης Πλάντζος Πρώιμοι και Γεωμετρικοί χρόνοι (1100-700 π.χ.) (συνέχεια) Οι περίοδοι της αρχαίας ελληνικής

Διαβάστε περισσότερα

Οφθαλμαπάτες (Optical illusions)

Οφθαλμαπάτες (Optical illusions) Οφθαλμαπάτες (Optical illusions) Το φαινόμενο της οφθαλμαπάτης συνίσταται στο ότι εσφαλμένα αντιλαμβανόμαστε κάτι διαφορετικό, απ αυτό που βλέπουν τα μάτια μας, ή δυσκολευόμαστε να έχουμε μια σαφή σντίληψη

Διαβάστε περισσότερα

Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική

Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική Εφαρμοσμένη Οπτική Γεωμετρική Οπτική Κύρια σημεία του μαθήματος Η προσέγγιση της γεωμετρικής οπτικής Νόμοι της ανάκλασης και της διάθλασης Αρχή του Huygens Αρχή του Fermat Αρχή της αντιστρεψιμότητας (principle

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να

Διαβάστε περισσότερα

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας,

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας, ΠΡΟΟΠΤΙΚΗ Εισαγωγή Αυτό που στην εφαρμοσμένη γεωμετρία ονομάζουμε συχνά γραμμική προοπτική είναι ένα σύστημα αναπαράστασης του τρισδιάστατου χώρου σε επιφάνεια δύο διαστάσεων. Η μέθοδος αυτή απεικόνισης

Διαβάστε περισσότερα

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες . Ιδιότητες φακών 2 Απριλίου 203 Λεπτοί φακοί. Βασικές έννοιες Φακός είναι ένα οπτικό σύστημα με δύο διαθλαστικές επιφάνειες. Ο απλούστερος φακός έχει δύο σφαιρικές επιφάνειες αρκετά κοντά η μία με την

Διαβάστε περισσότερα

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΣΥΝΘΕΣΗ: Οργάνωση ενός συνόλου από επιμέρους στοιχεία σε μια ενιαία διάταξη Αρχική ιδέα σύνθεσης Μορφή της σύνθεσης Δομή της σύνθεσης ΟΠΤΙΚΗ ΔΟΜΗ ΤΗΣ ΣΥΝΘΕΣΗΣ Βασικό λεξιλόγιο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΕΛΕΥΘΕΡΟ ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ Β ΛΥΚΕΙΟΥ Γνωριμία, συζήτηση Περιγραφή του μαθήματος, στόχοι Παρουσίαση σχεδίων διαφόρων μορφών φωτογραφίες -3 Διαγνωστικό

Διαβάστε περισσότερα

ΑΡΜΟΝΙΚΕΣ ΧΑΡΑΞΕΙΣ ΣΤΟ ΕΡΓΟ ΤΟΥ ΣΠ. ΠΑΠΑΛΟΥΚΑ

ΑΡΜΟΝΙΚΕΣ ΧΑΡΑΞΕΙΣ ΣΤΟ ΕΡΓΟ ΤΟΥ ΣΠ. ΠΑΠΑΛΟΥΚΑ ΑΡΜΟΝΙΚΕΣ ΧΑΡΑΞΕΙΣ ΣΤΟ ΕΡΓΟ ΤΟΥ ΣΠ. ΠΑΠΑΛΟΥΚΑ α) Ειρήνη Χρυσοβαλάντη Ρουμπάνη β) Μαρία Πανακάκη «Το τοπίο είναι αντικείμενα σε διάφορες αποστάσεις, που χαρακτηρίζονται με χρώματα, σε διάφορες πλάκες, οριζόντιες,

Διαβάστε περισσότερα

ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΙΝΤΣΙ ΤΕΧΝΙΚΕΣ

ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΙΝΤΣΙ ΤΕΧΝΙΚΕΣ ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΙΝΤΣΙ Ο Λεονάρντο Ντα Βίντσι γεννήθηκε στην πόλη Αντσιάνο κοντά στο Βίντσι της Ιταλίας στις 15 Απριλίου του 1450 και απεβίωσε στις 2 Μαΐου του 1519 στη Γαλλία μετά την εγκατάστασή του από

Διαβάστε περισσότερα

Οδηγίες σχεδίασης στο περιβάλλον Blender

Οδηγίες σχεδίασης στο περιβάλλον Blender Οδηγίες σχεδίασης στο περιβάλλον Blender Στον πραγματικό κόσμο, αντιλαμβανόμαστε τα αντικείμενα σε τρεις κατευθύνσεις ή διαστάσεις. Τυπικά λέμε ότι διαθέτουν ύψος, πλάτος και βάθος. Όταν θέλουμε να αναπαραστήσουμε

Διαβάστε περισσότερα

Ευρυδίκη Κεφαλίδου ΣΑ 26 ΘΕΑΤΡΙΚΑ ΜΟΤΙΒΑ ΣΤΗΝ ΑΓΓΕΙΟΓΡΑΦΙΑ. Προδραματικά και παραδραματικά δρώμενα

Ευρυδίκη Κεφαλίδου ΣΑ 26 ΘΕΑΤΡΙΚΑ ΜΟΤΙΒΑ ΣΤΗΝ ΑΓΓΕΙΟΓΡΑΦΙΑ. Προδραματικά και παραδραματικά δρώμενα Ευρυδίκη Κεφαλίδου ΣΑ 26 ΘΕΑΤΡΙΚΑ ΜΟΤΙΒΑ ΣΤΗΝ ΑΓΓΕΙΟΓΡΑΦΙΑ Α Προδραματικά και παραδραματικά δρώμενα Μια πρώιμη «θεατρική» απεικόνιση ιππέων σε αμφορέα του Zωγράφου του Βερολίνου 1686 (περ. 540-530 π.χ.)

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΜΠΥΛΕΣ

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΜΠΥΛΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΜΠΥΛΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει: 1. Να σχεδιάζει γεωμετρικές καμπύλες (ελλειψοειδή, ωοειδή, παραβολή, υπερβολή, έλικα, σπείρα) εφαρμόζοντας τους

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα).

ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα). ΑΣΚΗΣΕΙΣ ΣΤΟΝ ΚΥΚΛΟ 1. Να κατασκευάσετε έναν κύκλο και να πάρετε μια χορδή του ΑΒ. Από το κέντρο Κ του κύκλου να φέρετε κάθετη στη χορδή ΑΒ η οποία τέμνει τη χορδή στο σημείο Μ. Να διαπιστώσετε με μέτρηση

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

ΑΡΧΑΊΑ χρώματα. Μικρά μυστικά τέχνης

ΑΡΧΑΊΑ χρώματα. Μικρά μυστικά τέχνης ΑΡΧΑΊΑ χρώματα Μικρά μυστικά τέχνης ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΑΡΧΑΙΟΤΗΤΩΝ ΚΑΙ ΠΟΛΙΤΙΣΤΙΚΗΣ ΚΛΗΡΟΝΟΜΙΑΣ ΔΙΕΥΘΥΝΣΗ ΜΟΥΣΕΙΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία

Διαβάστε περισσότερα

Κεφάλαιο 7 Γεωμετρικές Κατασκευές

Κεφάλαιο 7 Γεωμετρικές Κατασκευές Κεφάλαιο 7 Γεωμετρικές Κατασκευές Συντομεύσεις Ακρωνύμια... 2 Σύνοψη... 3 Προαπαιτούμενη γνώση... 3 7.1. Κατασκευή ευθύγραμμων τμημάτων... 3 7.2. Κατασκευή γωνιών... 8 7.3. Κατασκευή πολυγώνων... 11 7.4.

Διαβάστε περισσότερα

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x 1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

2.3 ΜΕΣΟΚΑΘΕΤΟΣ ΕΥΘΥΓΡΑΜΜΟΥ ΤΜΗΜΑΤΟΣ

2.3 ΜΕΣΟΚΑΘΕΤΟΣ ΕΥΘΥΓΡΑΜΜΟΥ ΤΜΗΜΑΤΟΣ 1 3 ΜΕΣΚΘΕΤΣ ΕΥΘΥΡΜΜΥ ΤΜΗΜΤΣ ΘΕΩΡΙ Μεσοκάθετος ευθυγράµµου τµήµατος Λέγεται η ευθεία που διέρχεται από το µέσο του ευθυγράµµου τµήµατος και είναι κάθετη σ αυτό. Ιδιότητα : Κάθε σηµείο της µεσοκαθέτου ενός

Διαβάστε περισσότερα

Α. ΣΤΟΙΧΕΙΑ ΤΗΣ ΓΡΑΦΙΣΤΙΚΗΣ ΕΚΦΡΑΣΗΣ 6. ΧΩΡΟΣ

Α. ΣΤΟΙΧΕΙΑ ΤΗΣ ΓΡΑΦΙΣΤΙΚΗΣ ΕΚΦΡΑΣΗΣ 6. ΧΩΡΟΣ Α. ΣΤΟΙΧΕΙΑ ΤΗΣ ΓΡΑΦΙΣΤΙΚΗΣ ΕΚΦΡΑΣΗΣ 6. ΧΩΡΟΣ Ο καλλιτέχνης μπορεί να συμπεριλάβει ή να αγνοήσει τη διάσταση του χώρου στην απεικόνιση που εκτελεί. Όταν περιγράφει το βάθος του οπτικού πεδίου με διάφορους

Διαβάστε περισσότερα

β. Πιο κάτω από τη βάση τοποθετούμε το εστιακό σημείο του παρατηρητή, σε κάτοψη.

β. Πιο κάτω από τη βάση τοποθετούμε το εστιακό σημείο του παρατηρητή, σε κάτοψη. Προβολές σε άλλα επίπεδα - Προοπτικές απεικονίσεις Μπορεί να γίνει προβολή ως προς σημείο το οποίο μπορεί να είναι το ανθρώπινο μάτι, ή ακριβέστερα το εστιακό σημείο του ανθρώπινου ματιού: Η απεικόνιση

Διαβάστε περισσότερα

ΑΠΟ ΤΗΝ ΤΕΧΝΗ ΤΗΣ ΑΡΧΑΙΟΤΗΤΑΣ ΣΤΗ ΜΕΣΑΙΩΝΙΚΗ ΤΕΧΝΗ. Δρ Δημήτρης Γ. Μυλωνάς

ΑΠΟ ΤΗΝ ΤΕΧΝΗ ΤΗΣ ΑΡΧΑΙΟΤΗΤΑΣ ΣΤΗ ΜΕΣΑΙΩΝΙΚΗ ΤΕΧΝΗ. Δρ Δημήτρης Γ. Μυλωνάς Π ΜΩΚ Δρ Δημήτρης Γ. Μυλωνάς Π ΜΩΚ ΛΖΥ Δρ Δ.Γ. Μυλωνάς 2 Π ΜΩΚ Δαίδαλος νατολή ιγαίο νατολίζουσα τέχνη Κρήτη Δρ Δ.Γ. Μυλωνάς 3 Π ΜΩΚ τα μέσα του 9ου αι. π.. επέκταση πέρα από τα όρια του ιγαίου, αποκατάσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ ΓΕΩΜΕΤΡΙΑ Α ΚΕΦΑΛΑΙΟ 3 3.1-3.6 Τρίγωνα Πλευρές ΑΒ ή ΒΑ ή γ ΑΓ ή ΓΑ ή β ΒΓ ή ΓΒ ή α Γωνίες ˆ ή ˆ ή ˆ ˆ ή ˆ ή ˆ ˆ ή ˆ ή ˆ μ α δ α υ α Διάμεσος ΑΜ ή μ α Διχοτόμος ΑΔ ή δ α Ύψος

Διαβάστε περισσότερα

«Το χρώμα είναι το πλήκτρο. Το μάτι είναι το σφυρί. Η ψυχή είναι το πιάνο με τις πολλές χορδές»

«Το χρώμα είναι το πλήκτρο. Το μάτι είναι το σφυρί. Η ψυχή είναι το πιάνο με τις πολλές χορδές» ΑΝΑΛΥΣΗ ΤΟΥ ΧΡΩΜΑΤΟΣ «Το χρώμα είναι το πλήκτρο. Το μάτι είναι το σφυρί. Η ψυχή είναι το πιάνο με τις πολλές χορδές» W. kandinsky Το χρώμα είναι αναπόσπαστα δεμένο με ότι βλέπουμε γύρω μας. Από τον γύρω

Διαβάστε περισσότερα

Περίθλαση από ακµή και από εµπόδιο.

Περίθλαση από ακµή και από εµπόδιο. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

ΣΦΑΙΡΑ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ Η ΤΟΜΗ - ΣΚΙΕΣ ΕΦΑΡΜΟΓΕΣ

ΣΦΑΙΡΑ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ Η ΤΟΜΗ - ΣΚΙΕΣ ΕΦΑΡΜΟΓΕΣ ΣΦΑΙΡΑ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ Η ΤΟΜΗ - ΣΚΙΕΣ ΕΦΑΡΜΟΓΕΣ 1. ΠΡΟΒΟΛΕΣ ΣΦΑΙΡΑΣ (Ο, ρ) Σχήµα 1 Η σφαίρα σε κάθε ορθή προβολή προβάλλεται κατά µέγιστο κύκλο που έχει κέντρο την προβολή του κέντρου της σφαίρας και

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

1. ΠΑΡΑΣΤΑΣΗ ΚΩΝΟΥ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ ΕΣ ΤΟΜΕΣ - ΑΝΑΠΤΥΓΜΑ- ΣΚΙΕΣ - ΕΦΑΡΜΟΓΕΣ

1. ΠΑΡΑΣΤΑΣΗ ΚΩΝΟΥ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ ΕΣ ΤΟΜΕΣ - ΑΝΑΠΤΥΓΜΑ- ΣΚΙΕΣ - ΕΦΑΡΜΟΓΕΣ ΚΩΝΟΣ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ ΕΣ ΤΟΜΕΣ - ΑΝΑΠΤΥΓΜΑ- ΣΚΙΕΣ - ΕΦΑΡΜΟΓΕΣ 1. ΠΑΡΑΣΤΑΣΗ ΚΩΝΟΥ Σχήµα 1 Η κωνική επιφάνεια ή κώνος, προκύπτει από τις διαδοχικές θέσεις µιας ευθείας (γενέτειρες) η οποία διέρχεται από

Διαβάστε περισσότερα

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT Βασιλίσιν Μιχάλης, Δέφτο Χριστίνα, Ιλινιούκ Ίον, Κάσα Μαρία, Κουζμίδου Ελένη, Λαμπαδάς Αλέξης, Μάνε Χρισόστομος, Μάρκο Χριστίνα, Μπάμπη Χριστίνα, Σακατελιάν Λίλιτ, Σαχμπαζίδου

Διαβάστε περισσότερα

Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα

Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα ενώνουν. Τα τρία σημεία αυτά λέγονται κορυφές του τριγώνου.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

Masaccio, ο πρόωρα χαμένος ιδρυτής της Αναγέννησης

Masaccio, ο πρόωρα χαμένος ιδρυτής της Αναγέννησης Masaccio, ο πρόωρα χαμένος ιδρυτής της Αναγέννησης Εικόνα 1: Η πληρωμή του φόρου, παρεκκλήσιο Brancacci, Φλωρεντία Εικόνα 2: Η εκδίωξη από τον παράδεισο, παρεκκλήσιο Brancacci. Πριν και μετά την αποκατάσταση

Διαβάστε περισσότερα

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( Κανονικά πολύγωνα ) Δραστηριότητα 1 : Θεωρούμε ένα κύκλο κέντρου Ο και ακτίνας ρ ( τυχαίο μήκος ) και πάνω σε σ αυτόν παίρνουμε 5 διαδοχικά ίσα τόξα τα: AB, B Γ, ΓΔ, ΔΕ, ΕΑ. Στην συνέχεια

Διαβάστε περισσότερα

Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων ( π.χ.). Δημήτρης Πλάντζος

Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων ( π.χ.). Δημήτρης Πλάντζος [IA11] ΚΛΑΣΙΚΗ ΑΡΧΑΙΟΛΟΓΙΑ Α Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων (1100-480 π.χ.). Δημήτρης Πλάντζος [IA11] ΚΛΑΣΙΚΗ ΑΡΧΑΙΟΛΟΓΙΑ Α Διάρθρωση μαθημάτων: Εισαγωγικά (2/10 Πλάντζος) Μεθοδολογία

Διαβάστε περισσότερα

Α.Πρωτοχριστιανική [μέχρι τις αρχές του 4ου αι.] Β.Βυζαντινή [ ] και Γ. Μεταβυζαντινή ή Νεοβυζαντινή [από το 1453 μέχρι τους νεώτερους χρόνους]

Α.Πρωτοχριστιανική [μέχρι τις αρχές του 4ου αι.] Β.Βυζαντινή [ ] και Γ. Μεταβυζαντινή ή Νεοβυζαντινή [από το 1453 μέχρι τους νεώτερους χρόνους] ΕΙΚΟΝΟΓΡΑΦΙΑ ΠΕΡΙΟΔΟΙ ΤΗΣ ΧΡΙΣΤΙΑΝΙΚΗΣ ΖΩΓΡΑΦΙΚΗΣ Η Χριστιανική Ζωγραφική διαιρείται συνήθως σε τρεις μεγάλες περιόδους Α.Πρωτοχριστιανική [μέχρι τις αρχές του 4ου αι.] Β.Βυζαντινή [330-1453] και Γ. Μεταβυζαντινή

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Τεχνικό Σχέδιο Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Διάλεξη 2η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΣΧΕΔΙΑΣΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ

Διαβάστε περισσότερα

AΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 21 ΙΟΥΝΙΟΥ 2016 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕΔΙΟ

AΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 21 ΙΟΥΝΙΟΥ 2016 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕΔΙΟ AΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 21 ΙΟΥΝΙΟΥ 2016 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕΔΙΟ ΘΕΜΑ: Σύνθεση με πέντε (5) αντικείμενα ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ: Η σύνθεση περιλαμβάνει

Διαβάστε περισσότερα

Η µουσική και ο χορός στην αρχαία Ελλάδα

Η µουσική και ο χορός στην αρχαία Ελλάδα ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΑΡΧΑΙΟΤΗΤΩΝ ΚΑΙ ΠΟΛΙΤΙΣΤΙΚΗΣ ΚΛΗΡΟΝΟΜΙΑΣ ΔΙΕΥΘΥΝΣΗ ΜΟΥΣΕΙΩΝ TMHMA ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Η µουσική και ο χορός στην

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Γ' Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΕΛΕΥΘΕΡΟ-ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ( Εικαστική και Αρχιτεκτονική

Διαβάστε περισσότερα

ΤΑ ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΨΗΦΙΔΩΤΑ ΚΑΙ Η ΕΞΑΠΛΩΣΗ ΤΟΥΣ ΣΤΟ ΧΩΡΟ ΚΑΙ ΣΤΟ ΧΡΟΝΟ.

ΤΑ ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΨΗΦΙΔΩΤΑ ΚΑΙ Η ΕΞΑΠΛΩΣΗ ΤΟΥΣ ΣΤΟ ΧΩΡΟ ΚΑΙ ΣΤΟ ΧΡΟΝΟ. ΤΑ ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΨΗΦΙΔΩΤΑ ΚΑΙ Η ΕΞΑΠΛΩΣΗ ΤΟΥΣ ΣΤΟ ΧΩΡΟ ΚΑΙ ΣΤΟ ΧΡΟΝΟ. ΠΟΜΠΗΪΑ : ΠΕΡΙΣΤΕΡΙΑ ΔΡΟΣΙΖΟΝΤΑΙ ΣΕ ΧΡΥΣΗ ΛΕΚΑΝΗ Ψηφιδωτό του 2ου στυλ Το μωσαϊκό αυτό προέρχεται από την ομώνυμη οικία και έχει

Διαβάστε περισσότερα

AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ

AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ ΕΞΕΤΑΣΗ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕ ΙΟ 17 Σεπτεμβρίου 2014 ΘΕΜΑ: Σύνθεση με τρία

Διαβάστε περισσότερα

Εισαγωγή στο Χρώμα. Εισαγωγή στο χρώμα και την ανάπτυξη της συνθετικής λειτουργίας των

Εισαγωγή στο Χρώμα. Εισαγωγή στο χρώμα και την ανάπτυξη της συνθετικής λειτουργίας των Στέλιος Μιχαήλ Ε.Ε.Κ.Κ. 8 Δεκεμβρίου 2010 Εισαγωγή στο Χρώμα Εισαγωγή στο χρώμα και την ανάπτυξη της συνθετικής λειτουργίας των χρωμάτων. Το φως ως στοιχείο που ειδικεύει και τροποποιεί το χρώμα. Θα μιλήσουμε

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.

Διαβάστε περισσότερα

Γεωμετρικές Σκιές. Θ. Θεοχάρης Ι. Κακαδιάρης - Γ. Πασσαλής

Γεωμετρικές Σκιές. Θ. Θεοχάρης Ι. Κακαδιάρης - Γ. Πασσαλής Γεωμετρικές Σκιές Θ. Θεοχάρης Ι. Κακαδιάρης - Γ. Πασσαλής Περιεχόμενα Σ1 Χαρακτηριστικά Σκιών στα Γραφικά Σ2 Απλές Σκιές Σ3 Σύγχρονοι Αλγόριθμοι Σκιών 2 Εισαγωγή (1) Οι σκιές είναι σημαντικές στην κατανόηση

Διαβάστε περισσότερα

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ 7.1 ΑΣΚΗΣΗ 7 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ ΘΕΩΡΙΑ Όταν φωτεινή παράλληλη δέσμη διαδιδόμενη από οπτικό μέσο α με δείκτη διάθλασης n 1 προσπίπτει σε άλλο οπτικό μέσο β με δείκτη διάθλασης n 2 και

Διαβάστε περισσότερα

Σημείο Επίπεδο ο χώρος η ευθεία η έννοια του σημείου μεταξύ δύο άλλων σημείων και η έννοια της ισότητας δύο σχημάτων.

Σημείο Επίπεδο ο χώρος η ευθεία η έννοια του σημείου μεταξύ δύο άλλων σημείων και η έννοια της ισότητας δύο σχημάτων. ΜΑΘΗΜΑ 1 αόριστες έννοιες Έννοιες που είναι τόσο απλές και οικείες από την εμπειρία μας, ώστε δεν μπορούμε να βρούμε πιο απλές με τη βοήθεια των οποίων να τις περιγράψουμε Σημείο Επίπεδο ο χώρος η ευθεία

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων ( π.χ.). Δημήτρης Πλάντζος

Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων ( π.χ.). Δημήτρης Πλάντζος [IA11] ΚΛΑΣΙΚΗ ΑΡΧΑΙΟΛΟΓΙΑ Α Αρχαιολογία των γεωμετρικών και αρχαϊκών χρόνων (1100-480 π.χ.). Δημήτρης Πλάντζος Φροντιστηριακές ασκήσεις στην ΑΡΧΑΙΟΛΟΓΙΚΗ ΠΕΡΙΓΡΑΦΗ: δηλώσεις συμμετοχής, οργανωτικά

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ MAΪOY - ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ: Θέματα Τέχνης Ημερομηνία: 02/06/2017

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ MAΪOY - ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ: Θέματα Τέχνης Ημερομηνία: 02/06/2017 ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2016-17 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ MAΪOY - ΙΟΥΝΙΟΥ 2017 Όνομα:. Βαθμός:.. ΜΑΘΗΜΑ: Θέματα Τέχνης Ημερομηνία: 02/06/2017 ΤΑΞΗ: Β Διάρκεια: 2 ώρες και 30 λεπτά Το εξεταστικό

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Εικαστικά ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Β ΓΥΜΝΑΣΙΟΥ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Εικαστικά ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Β ΓΥΜΝΑΣΙΟΥ tetradio B gym 5:Layout 1 10/1/08 2:06 PM Page 1 ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Ιωάννης Αντωνόπουλος Μαρία Δουκάκη Εικαστικά ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Β ΓΥΜΝΑΣΙΟΥ ΟΡΓΑΝΙΣΜΟΣ

Διαβάστε περισσότερα

Εργαστήρια: Απουλικό, Λευκανικό (Λουκανικό), Καμπανικό, της Ποσειδωνίας (Paestum) και Σικελικό

Εργαστήρια: Απουλικό, Λευκανικό (Λουκανικό), Καμπανικό, της Ποσειδωνίας (Paestum) και Σικελικό ΑΓΓΕΙΑ ΚΑΤΩ ΙΤΑΛΙΑΣ ΚΑΙ ΣΙΚΕΛΙΑΣ Εργαστήρια: Απουλικό, Λευκανικό (Λουκανικό), Καμπανικό, της Ποσειδωνίας (Paestum) και Σικελικό ΑΓΓΕΙΑ ΕΛΛΗΝΙΣΤΙΚΗΣ ΕΠΟΧΗΣ Μελαμβαφή Δυτικής Κλιτύος «Γνάθια» Ομηρικοί και

Διαβάστε περισσότερα

Ulrich Rückriem. Σκιές της πέτρας ΕΚΠΑΙ ΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΓΙΑ ΜΑΘΗΤΕΣ ΗΜΟΤΙΚΟΥ

Ulrich Rückriem. Σκιές της πέτρας ΕΚΠΑΙ ΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΓΙΑ ΜΑΘΗΤΕΣ ΗΜΟΤΙΚΟΥ Ulrich Rückriem Σκιές της πέτρας ΕΚΠΑΙ ΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΓΙΑ ΜΑΘΗΤΕΣ ΗΜΟΤΙΚΟΥ Το Εθνικό Μουσείο Σύγχρονης Τέχνης επιχορηγείται από το Υπουργείο Πολιτισµού Eκπαιδευτικό Πρόγραµµα για Μαθητές ηµοτικού Οργάνωση

Διαβάστε περισσότερα

Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.

Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση. Ενότητα 4 Τριγωνομετρία Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ

ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η ικανότητα χρήσης καθρέφτη και πηγής laser. Η κατανόηση

Διαβάστε περισσότερα

Οδηγός χρήσης λογισμικού οργάνωσης γραφείου: PowerPoint 2007 Επιμέλεια κειμένων: Ελένη Καραγεώργου-Βράντζα

Οδηγός χρήσης λογισμικού οργάνωσης γραφείου: PowerPoint 2007 Επιμέλεια κειμένων: Ελένη Καραγεώργου-Βράντζα - 317-2. Στην περιοχή Εργαλεία SmartArt, στην καρτέλα Μορφή, της ομάδας Στυλ WordArt, κάντε κλικ στο βέλος που βρίσκεται δίπλα από την επιλογή Γέμισμα κειμένου, και στη συνέχεια κάντε ένα από τα εξής:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

ΚΕΦΑΛΑΙΟ 3 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Σχεδίαση με τη χρήση Η/Υ ΚΕΦΑΛΑΙΟ 3 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Διαδικασία κατασκευής ορθογωνίου με χρήση προοπτικής

Διαβάστε περισσότερα

Καραβάτζιο, Η κλήση του Ματθαίου. Εκκλησία Αγίου Λουδοβίκου των Γάλλων, Ρώµη

Καραβάτζιο, Η κλήση του Ματθαίου. Εκκλησία Αγίου Λουδοβίκου των Γάλλων, Ρώµη Καραβάτζιο, Η κλήση του Ματθαίου Εκκλησία Αγίου Λουδοβίκου των Γάλλων, Ρώµη Διδακτικό υλικό Μάθηµα: Θρησκευτικά Πρότυπο Πειραµατικό Σχολείο Πανεπιστηµίου Αθηνών Τάξη: Β Γυµνασίου Καθηγητής: Γ. Παπαδάκης

Διαβάστε περισσότερα

ΚΕΡΑΜΙΚΑ ΑΡΧΑΙΑ ΚΑΙ ΣΥΓΧΡΟΝΗ ΤΕΧΝΗ

ΚΕΡΑΜΙΚΑ ΑΡΧΑΙΑ ΚΑΙ ΣΥΓΧΡΟΝΗ ΤΕΧΝΗ ΚΕΡΑΜΙΚΑ ΑΡΧΑΙΑ ΚΑΙ ΣΥΓΧΡΟΝΗ ΤΕΧΝΗ ΚΕΡΑΜΙΚΗ ΣΤΗΝ ΑΡΧΑΙΟΤΗΤΑ Η κεραμική, μια πανάρχαια τέχνη, χρησιμοποιεί ως πρώτη ύλη το αργιλόχωμα. Όταν αναμείξουμε το αργιλόχωμα με νερό θα προκύψει μία πλαστική μάζα

Διαβάστε περισσότερα

Γραμμές. 4.1 Γενικά. 4.2 Είδη και πάχη γραμμών

Γραμμές. 4.1 Γενικά. 4.2 Είδη και πάχη γραμμών 4 Γραμμές 4.1 Γενικά Στα σχέδια, προκειμένου να απεικονίσουμε με σαφή και κατανοητό τρόπο το σχεδιαστικό μας αντικείμενο, χρησιμοποιούμε ποικίλες γραμμές, που καθεμιά έχει διαφορετική σημασία και διαφορετικές

Διαβάστε περισσότερα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα

AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΥΤΕΡΑ 17 ΙΟΥΝΙΟΥ 2013 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕ ΙΟ

AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΥΤΕΡΑ 17 ΙΟΥΝΙΟΥ 2013 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕ ΙΟ AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΥΤΕΡΑ 17 ΙΟΥΝΙΟΥ 2013 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕ ΙΟ ΘΕΜΑ: Σύνθεση με τέσσερα αντικείμενα. ΓΕΝΙΚΕΣ Ο ΗΓΙΕΣ: Το προς σχεδίαση

Διαβάστε περισσότερα

AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Ο ΗΓΙΕΣ

AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Ο ΗΓΙΕΣ AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΥΤΕΡΑ 17 ΙΟΥΝΙΟΥ 2013 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕ ΙΟ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ ΥΟ (2) ΖΗΤΟΥΝΤΑΙ: 1. Απεικόνιση του θέματος στον καθορισμένο

Διαβάστε περισσότερα

3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ

3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ 1 3.1 ΣΤΟΙΧΕΙ ΤΡΙΩΝΟΥ ΕΙΗ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου Τα κύρια στοιχεία ενός τριγώνου είναι οι πλευρές, οι γωνίες και οι κορυφές. Ονοµασία : Πλευρές είναι οι,, Κορυφές είναι τα σηµεία,, ωνίες

Διαβάστε περισσότερα