Non-Hermitian Type Uncertainty Relation and its Application
|
|
- Ιλαρίων Μαυρίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 9.. The 37th Syposiu on Inoration Theory and its Applications SITA) Unazuki, Toyaa, Japan, Dec. 9, Non-Heritian Type Uncertainty Relation and its Application Kenjiro Yanai Abstract In quantu echanics it is well known that Heisenber/Schrödiner uncertainty relations hold or two non-coutative observables and density operator. These are soe kinds o trace inequalities. Recently Dou and Du [5, 6] obtained several uncertainty relations or two noncoutative non-heritian observables and density operator. In this paper we show that their results can be iven as corollaries o our non-heritian type uncertainty relations or eneralized etric adjusted skew inorations or eneralized etric adjusted correlation easures. Keywords Trace inequality, etric adjusted skew inoration, etric adjusted correlation easure Introduction M n C) n n coplex atrices, M n,sa C) n n sel-adjoint atrices, M n,+ C) M n C) strictly positive eleents, M n,+, C) strictly positive density atrices, M n,+, C) { M n C) T r[], >. aithul states > M n C) Hilbert-Schidt A, B T r[a B] Winer-Yanase skew inoration) [] I H) [ [ ]) ] T r i /, H T r[h ] T r[ / H / H]. M n,+, C) H M n,sa C) coutator [X, Y ] XY Y X Dyson Winer-Yanase-Dyson skew inoration I,α H) T r[i[α, H])i[ α, H])] T r[h ] T r[ α H α H], α [, ] I,α H) E.H.Lieb [7] Winer-Yanase, , Graduate School o Science and Enineerin, Yaauchi University, -6-, Tokiwadai, Ube , Japan, E-ail:yanai@yaauchi-u.ac.jp skew inoration uncertainty relation [9]. Winer-Yanase-Dyson skew inoration uncertainty relation [5, 3] [3, ], uncertainty relation [5] two paraeter uncertainty relation [7] Dou-Du Uncertainty Relations Dou-Du [5, 6] Heisenber/Schrödiner uncertainty relations. A, B M n C), M n,+, C) ) [A, B] [A, B] + [A, B ]), [A, B] AB BA. ) {A, B {A, B + {A, B ), {A, B AB + BA. 3) V ar A) T r[a A ], A A T r[a]i. ) V ar A) V ar A) + V ar A )).. A, B M n C), M n,+, C) uncertainty relations ) V ar A) V ar B) T r[[a, B]]. ) V ar A) V ar B) T r[{a, B ]. 3) V ar A) V ar B) T r[[a, B] ] + T r[{a, B ]. ) U A) U B) T r[[a, B] ], U A) V ar A)) V ar A) I A)), I A) T r[i[/, A ])i[ /, A])]. 67
2 3 :, + ) R n N A B A, B M n,+ C) A) B) operator onotone) operator onotone unction x) xx ) syetric ) norarized 3. F op :, + ), + ). ),. tt ) t), 3. operator onotone. 3. F op RLD x) x x +, W Y x) ) x +, BKM x) x lo x, SLDx) x +, x ) W Y D x) α α) x α )x α, α, ). ) Reark 3. F op onotone etricsquantu Fisher inorations ) A, B, T ra L, R ) B)), L A) A, R A) A. A, B M n,+, C) tanent vectors [], [] ).. []), Fop r k > x ) x) k x) x ) x) x) k F op.) x). A, B M n C), M n,+, C) Corr s,) A, B) k i[, A], i[, B],, x x + x) x +, x >. F op ) li x x) reular non-reular F r op { F op ), F n op { F op ) F op F r op F n op. 3. Fop r x) [ x + ) x ) ) ], x >. x) 3. [8], [], [6]) F r op F n op Generalized Quasi-Metric Adjusted Skew Inoration and Generalized Quasi- Metric Adjusted correlation Measure ean) operator onotone unction) A, B M n,sa C) I,) U,) A) I,) A) Corr s,) A, A), C A, B) T r[a L, R )B], C A) C A, A), C A) + C A))CA) C A)), A), Corr s,) A, B) eneralized quasietric adjusted skew inoration, eneralized quasietric adjusted correlation easure. A, B M n C), M n,+, C) A A T r[a]i, B B T r[b]i.. I,). J,) 3. U,) A) A) I,) A ) CA ) C A ), A) CA ) + C A ), A) J,) A). I,,). Corr s,) A, B) Corr s,) A, B ).. F r op I,) A) I,) B) Corr s,) A, B), A, B) A / A / BA / )A /. A, B M n C), M n,+, C). 675
3 .. X, Y M n C) Corr s,) X, Y ) k i[, X], i[, Y ],. Corr s,) X, Y ) kt ri[, X]) L, R ) i[, Y ]) kt ril R )X) L, R ) il R )Y ) T rx L, R )Y ) T rx L, R )Y ), Corr s,) X, Y ) M n C) Schwarz inequality. Fop r, l > x) + x) lx).) U,) A) U,) B) kl T r[a, B]),.3) A, B M n C), M n,+, C)....).) x, y) x, y) klx y).. :.),.) x y) x, y) x, y) k x, y)..) x, y) + x, y) l x, y),.5) A, B M n C), M n,+, C) A A T r[a]i, B B T r[b]i I,) A) { λ j, λ k ) λ j, λ k ) a jk, J,) A) { λ j, λ k ) + λ j, λ k ) a jk,. :.3) T r[a, B]) T r[a, B]). λ j λ k )a jk b kj, kl T r[a, B]) kl λj λ k a jk b kj λ j λ k a jk b kj. λ j, λ k ) λ j, λ k ) ) / ajk b kj ) λ j, λ k ) λ j u, λ k ) a jk ) λ j, λ k ) + λ j, λ k ) b kj I,) A)J,) B). I,) B)J,) A) cd T r[a, B])..),.5) x, y) x, y) { { x, y) x, y) x, y) + x, y) )x y) x, y) l x, y) klx y)., I,). U,) A) A), J,) A),. { ϕ, ϕ,, ϕ n, {λ, λ,, λ n a jk ϕ j A ϕ k, b jk ϕ j B ϕ k,.3) 5 Dou-Du x), x), k, l x) x +, x ) x) α α) x α )x α, < α < ), ) k ), l. x ) x) x) k x) xα + x α ). 676
4 . x) + x) lx) x α )x α ) {x α )x α) ) α α)x ) α / I,) A) I,) A ) T r[a A ] + T r[a A ] T r[ / A / A ]. 5. Dou-Du )) A, B M n C) M n,+, C) U A) U B) T r[[a, B]] I T r[[a, B]] T r[[a, B]] T r[[a, B]] T r[[a, B]] + T r[[a, B ]] [ T r [A, B] + ] [A, B ] T r[[a, B] ]. 5. Dou-Du ),)) A, B M n C) M n,+, C) ) V A) V B) U A) U B) T r[[a, B]]. ) V A) V B) T r[{a, B ]. ) A, B M n C) x) x+, M n C) A, B T r[a L, R )B ]. Schwarz s inequality A, B A, B A, A B, B. ] [A T r L + R B T r[a B ] + T r[a B ] T r[b A ] + T r[a B ] T r[{a, B ]. A, A T r [ ] A L + R A T r[a A ] + T r[a A ] T r[a A ] + T r[a A ] V ar A) T r[{a, B ] V ar A) V ar B). A A T r[{a, B ] V ar A ) V ar B). V ar A) V ar A ) 6 Reark Dou-Du 3) V ar A) V ar B) 6.) T r[[a, B] ] + T r[{a, B ]. 5. V ar A) V ar B) 6.) U A) U B) T r[[a, B]]. ) ) ) 3 i, A, B. i 6.) < 6.). 3 ) ) ) i, A, B. i 6.) > 6.). Acknowledeent The author was partially supported by JSPS KAK- ENHI Grant Nuber 69. [] K.Audenaert, L.Cai and F.Hansen, Inequalities or quantu skew inoration, Lett.Math.Phys., vol.858), pp [] J.C.Bourin, Soe inequalities or nors on atrices and operators, Linear Alebra and its Applications, vol.9999), pp
5 [3] L.Cai and S.Luo, On convexity o eneralized Winer-Yanase-Dyson inoration, Lett.Math.Phys., vol.838), pp [] P.Chen and S.Luo, Direct approach to quantu extensions o Fisher inoration, Front.Math.China, vol.7), pp [5] Y.N.Dou and H.K.Du, Generalizations o the Heisenber and Schrödiner uncertainty relations, J.Math.Phys., vol.53), pp [6] Y.N.Dou and H.K.Du, Note on the Winer-Yanase- Dyson skew inoration, Int.J.Theor.Phys., vol.53), pp [7] S.Furuichi and K.Yanai, Schrödiner uncertainty relation, Winer-Yanase-Dyson skew inoratio and Metric adjusted correlation easure, J.Math.Anal.Appl., vol.388), pp7-56. [8] P.Gibilisco, D.Iparato and T.Isola, Uncertainty principle and quantu Fisher inoration, II, J.Math.Phys., vol.87), pp [9] P.Gibilisco, D.Iparato and T.Isola, A Robertsontype uncertainty principle and quantu Fisher inoration, Linear Alebra and its Applications, vol.88), pp [] Gibilisco, P., Hansen, F., Isola, T.: On a correspondence between reular and non-reular operator onotone unctions, Linear Alebra and its Applications, vol.39), pp.5-3. [] P.Gibilisco, F.Hiai and D.Petz, Quantu covariance, quantu Fisher inoration, and the uncertainty relations, IEEE Trans.Inoration Theory, vol.559), pp [] P.Gibilisco and T.Isola, On a reineent o Heisenber uncertainty relation by eans o quantu Fisher inoration, J.Math.Anal.Appl., vol.375), pp [3] F.Hansen, Metric adjusted skew inoration, Proc.Nat.Acad.Sci., vol.58), pp [] W.Heisenber, Über den anschaulichen Inhat der quantuechanischen Kineatik und Mechanik, Zeitschrit ür Physik, vol.397), pp [5] H.Kosaki, Matrix trace inequality related to uncertainty principle, Internatonal Journal o Matheatics, vol.65), pp [6] Kubo, F., Ando, T.: Means o positive linear operators, Math.Ann., vol.698), pp.5-. [7] E.H.Lieb, Convex trace unctions and the Winer-Yanase-Dyson conjecture, Adv.Math., vol.973), pp [8] S.Luo, Heisenber uncertainty relation or ixed states, Phys.Rev.A, vol.75), p.. [9] S.Luo and Q.Zhan, On skew inoration, IEEE Trans.Inoration Theory, vol.5), pp , and Correction to On skew inoration, IEEE Trans.Inoration Theory, vol.55), p.3. [] Petz, D.: Monotone etrics on atrix spaces, Linear Alebra and its Applications, vol.996), pp [] E.Schrödiner, About Heisenber uncertainty relation, Proc.Prussian Acad.Sci., Phys.Math., vol.xix93), p.93, Section. [] E.P.Winer and M.M.Yanase, Inoration content o distribution, Proc.Nat.Acad.Sci. U,S,A., vol.9963), pp [3] K.Yanai, S.Furuichi and K.Kuriyaa, A eneralized skew inoration and uncertainty relation, IEEE Trans.Inoration Theory, vol.55), pp.-. [] K.Yanai, Uncertainty relation on Winer-Yanase-Dyson skew inoration, J.Math.Anal.Appl., vol.365), pp.-8. [5] K.Yanai, Uncertainty relation on eneralized Winer-Yanase-Dyson skew inoration, Linear Alebra and its Applications, vol.33), pp [6] K.Yanai, Metric adjusted skew inoration and uncertainty relation, J.Math.Anal.Appl., vol.38), pp [7] K.Yanai, S.Furuichi and K.Kuriyaa, Uncertainty relations or eneralized etric adjusted skew inoration and eneralized etric adjusted correlation easure, J.Uncertainty Anal.Appl., vol.3), pp-. [8] K.Yanai, Generalized eric adjusted skew inoration and uncertainty relation, Proc. ISBFS, vol.iv), pp
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Divergence for log concave functions
Divergence or log concave unctions Umut Caglar The Euler International Mathematical Institute June 22nd, 2013 Joint work with C. Schütt and E. Werner Outline 1 Introduction 2 Main Theorem 3 -divergence
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
Homomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014
38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR
Journal of Quality Measureent and Analysis Jurnal Penguuran Kualiti dan Analisis JQMA 8(2) 202, 37-44 CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR (Sifat Tertentu
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil
J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo
Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2.,**3 pp.,,3,.* * +, -. +, -. Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo Kunihiko Shimazaki *, Tsuyoshi Haraguchi, Takeo Ishibe +, -.
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
Discriminantal arrangement
Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.
2010 4 26 2 Pure and Applied Matheatics Apr. 2010 Vol.26 No.2 Randić 1, 2 (1., 352100; 2., 361005) G Randić 0 R α (G) = v V (G) d(v)α, d(v) G v,α. R α,, R α. ; Randić ; O157.5 A 1008-5513(2010)02-0339-06
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Riemannian metrics on positive definite matrices related to means (joint work with Dénes Petz)
Riemannian metrics on positive definite matrices related to means (joint work with Dénes Petz) Fumio Hiai (Tohoku University) 010, August (Leipzig) 1 Plan 0. Motivation and introduction 1. Geodesic shortest
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
c Key words: cultivation of blood, two-sets blood culture, detection rate of germ Vol. 18 No
2008 245 2 1) 1) 2) 3) 4) 1) 1) 1) 1) 1), 2) 1) 2) 3) / 4) 20 3 24 20 8 18 2001 2 2 2004 2 59.0 2002 1 2004 12 3 2 22.1 1 14.0 (CNS), Bacillus c 2 p 0.01 2 1 31.3 41.9 21.4 1 2 80 CNS 2 1 74.3 2 Key words:
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
ΕΤΑΙΡΙΚΗ ΚΟΙΝΩΝΙΚΗ ΕΥΘΥΝΗ ΣΤΗΝ ΝΑΥΤΙΛΙΑΚΗ ΒΙΟΜΗΧΑΜΙΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ Μεταπτυχιακή διατριβή ΕΤΑΙΡΙΚΗ ΚΟΙΝΩΝΙΚΗ ΕΥΘΥΝΗ ΣΤΗΝ ΝΑΥΤΙΛΙΑΚΗ ΒΙΟΜΗΧΑΜΙΑ Ανδρούλα Γιαπάνη Λεμεσός, Φεβρουάριος 2018 0 i ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΑΝΔΡΕΟΥ ΣΤΕΦΑΝΙΑ Λεμεσός 2012 i ii ΤΕΧΝΟΛΟΓΙΚΟ
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Development of a Tiltmeter with a XY Magnetic Detector (Part +)
No. 2 +0,/,**, Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 2, pp.+0,/,,**,. XY * * ** *** **** ***** Development of a Tiltmeter with a XY Magnetic Detector (Part
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)
IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)
, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H
57 6 2008 6 100023290Π2008Π57 (06) Π3486208 ACTA PHYSICA SINICA Vol. 57,No. 6,June,2008 ν 2008 Chin. Phys. Soc. 3 1) 2) 1) g 1) (, 130033) 2) (, 100049) (2007 9 11 ;2007 11 14 ),Littrow,,.,., Litrrow.
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y
Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ. Πτυχιακή Εργασία
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Πτυχιακή Εργασία ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΚΑΙ ΕΝΑΛΛΑΚΤΙΚΕΣ ΘΕΡΑΠΕΙΕΣ ΩΣ ΠΡΟΣ ΤΗ ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΠΟΝΟΥ ΣΕ ΑΣΘΕΝΕΙΣ ΜΕ ΚΑΡΚΙΝΟ. Ονοματεπώνυμο:
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
katoh@kuraka.co.jp okaken@kuraka.co.jp mineot@fukuoka-u.ac.jp 4 35 3 Normalized stress σ/g 25 2 15 1 5 Breaking test Theory 1 2 Shear tests Failure tests Compressive tests 1 2 3 4 5 6 Fig.1. Relation between
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΙΟΙΚΗΣΗ ΤΗΣ ΥΓΕΙΑΣ ΤΕΙ ΠΕΙΡΑΙΑ ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
ΚΕΙΜΕΝΟΚΕΝΤΡΙΚΗ ΘΕΩΡΙΑ: ΘΕΩΡΗΤΙΚΟ ΠΛΑΙΣΙΟ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΕΦΑΡΜΟΓΗ ΣΕ ΣΠΠΕ ΜΕ ΣΤΟΧΟ ΤΟΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟ ΓΡΑΜΜΑΤΙΣΜΟ ΤΩΝ ΜΑΘΗΤΩΝ
ΚΕΙΜΕΝΟΚΕΝΤΡΙΚΗ ΘΕΩΡΙΑ: ΘΕΩΡΗΤΙΚΟ ΠΛΑΙΣΙΟ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΕΦΑΡΜΟΓΗ ΣΕ ΣΠΠΕ ΜΕ ΣΤΟΧΟ ΤΟΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟ ΓΡΑΜΜΑΤΙΣΜΟ ΤΩΝ ΜΑΘΗΤΩΝ ΤΣΙΓΚΟΥ Α. 1, και ΝΟΥΤΣΟΥ Α. 1 1 9 ο Δημοτικό Σχολείο Μεγάρων e-mail: atsig@tee.gr,
Shenzhen Lys Technology Co., Ltd
Carbide drawing dies Properties of grade Grade Density TRS Average Grain size Hardness (HRA) (g/cm3) (MPa) (ųm) YL01 15.25 93.5 3300 0.8 YL10.2 14.5 92.0 4000 0.8 YG6 14.95 90 2400 1.6 YG6X 14.95 91.5
Η συμβολή του Δ. Κάππου στην Kβαντική Πιθανότητα
Η συμβολή του Δ. Κάππου στην Kβαντική Πιθανότητα Ιωάννης Ε. Αντωνίου Τμήμα Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκη 54124 iantonio@math.auth.gr Η συμβολή του Δ. Κάππου στην Kβαντική Πιθανότητα
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs
GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for
Σχέση στεφανιαίας νόσου και άγχους - κατάθλιψης
Τρίμηνη, ηλεκτρονική έκδοση του Τμήματος Νοσηλευτικής Α, Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας _ΑΝΑΣΚΟΠΗΣΗ_ Πολυκανδριώτη Μαρία 1, Φούκα Γεωργία 2 1. Καθηγήτρια Εφαρμογών Νοσηλευτικής Α, ΤΕΙ Αθήνας 2.
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker
Ειδική Ερευνητική Εργασία Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker ΚΑΡΑΔΗΜΑΣ ΗΛΙΑΣ Α.Μ. 323 Επιβλέπων: Σ. Φωτόπουλος Καθηγητής, Μεταπτυχιακό Πρόγραμμα «Ηλεκτρονική και Υπολογιστές», Τμήμα Φυσικής,
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί
A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks
P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å
Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ ½»Åà Äɽ µ½½ ¹Î½ Ä Â þÿ±¾¹»ì³ à  º±¹ Ä Â þÿ±à ĵ»µÃ¼±Ä¹ºÌÄ Ä±Â
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Επιβλέπων Καθηγητής: Δρ. Νίκος Μίτλεττον Η ΣΧΕΣΗ ΤΟΥ ΜΗΤΡΙΚΟΥ ΘΗΛΑΣΜΟΥ ΜΕ ΤΗΝ ΕΜΦΑΝΙΣΗ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 2 ΣΤΗΝ ΠΑΙΔΙΚΗ ΗΛΙΚΙΑ Ονοματεπώνυμο: Ιωσηφίνα
(1) A lecturer at the University College of Applied Sciences in Gaza. Gaza, Palestine, P.O. Box (1514).
1439 2017, 3,29, 1658 7677: 1439 2017,323 299, 3,29, 1 1438 09 06 ; 1438 02 23 : 33,,,,,,,,,,, : The attitudes of lecturers at the University College of Applied Sciences in Gaza (BA - Diploma) towards
Εκπαιδευτικές πολιτιστικές πρακτικές των γονέων και κοινωνική προέλευση
Εκπαιδευτικές πολιτιστικές πρακτικές των γονέων και κοινωνική προέλευση Θεόδωρος Β. Θάνος & Ευθύµιος Τόλιος ΠΕΡΙΛΗΨΗ Στην παρούσα εργασία εξετάζονται οι εκπαιδευτικές πρακτικές των γονέων οι οποίες αποσκοπούν
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Ζητήματα Τυποποίησης στην Ορολογία - ο ρόλος και οι δράσεις της Επιτροπής Ορολογίας ΤΕ21 του ΕΛΟΤ
1 Ζητήματα Τυποποίησης στην Ορολογία - ο ρόλος και οι δράσεις της Επιτροπής Ορολογίας ΤΕ21 του ΕΛΟΤ ΠΕΡΙΛΗΨΗ Μαριάννα Κατσογιάννου, Κατερίνα Τοράκη Στην παρούσα εισήγηση παρουσιάζεται η λειτουργία και
* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***
J. Jpn. Soc. Soil Phys. No. +*2, p. +3,2,**2 * ** *** *** Influence Area of Stem Flow on a Soil of Deciduous Forest Floor by Electric Resistivity Survey and the Evaluation of Groundwater Recharge through
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ Χριστοδούλου Αντρέας Λεμεσός 2014 2 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ ΕΠΙΜΕΛΕΙΑ: ΑΡΜΕΝΑΚΑΣ ΜΑΡΙΝΟΣ ΧΑΝΙΑ
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
Development of a basic motion analysis system using a sensor KINECT
KINECT 1,a) 2 3,b) KINECT KINECT ( ( Development of a basic motion analysis system using a sensor KINECT Abstract: We developed a basic motion analysis system using a sensor KINECT. Our system estimates
þÿ¹º±½ À Ã Â Ä Å ½ ûµÅĹº þÿàá ÃÉÀ¹º Í Ä Å µ½¹º Í þÿ à º ¼µ Å Æ Å
Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2014 þÿ ¹µÁµÍ½ Ã Ä Å µà±³³µ»¼±ä¹º þÿãäáµâ º±¹ Ä Â µà±³³µ»¼±ä¹º  þÿ¹º±½
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Όλνκα πνπδάζηξηαο: Γξεγνξία αββίδνπ Α.Δ.Μ:7859. Δπηβιέπνλ Καζεγεηήο: Παζραιίδεο Αζαλάζηνο ΑΝΩΣΑΣΟ ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΑΒΑΛΑ
ΑΝΩΣΑΣΟ ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΑΒΑΛΑ ΥΟΛΖ ΓΗΟΗΚΖΖ ΚΑΗ ΟΗΚΟΝΟΜΗΑ ΣΜΖΜΑ ΛΟΓΗΣΗΚΖ Εςπωπαϊϊκή Εταιιπείία,, ο θεσμόρ καιι η ανάπτςξη τηρ. Όλνκα πνπδάζηξηαο: Γξεγνξία αββίδνπ Α.Δ.Μ:7859 Δπηβιέπνλ Καζεγεηήο:
ΑΓΓΛΙΚΑ IV. Ενότητα 6: Analysis of Greece: Your Strategic Partner in Southeast Europe. Ιφιγένεια Μαχίλη Τμήμα Οικονομικών Επιστημών
Ενότητα 6: Analysis of Greece: Your Strategic Partner in Southeast Europe Ιφιγένεια Μαχίλη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Η ΕΡΕΥΝΑ ΤΗΣ ΓΛΩΣΣΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΑ ΚΕΙΜΕΝΑ ΤΗΣ ΜΕΣΑΙΩΝΙΚΗΣ ΕΛΛΗΝΙΚΗΣ: ΜΕΘΟΔΟΛΟΓΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ
Η ΕΡΕΥΝΑ ΤΗΣ ΓΛΩΣΣΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΑ ΚΕΙΜΕΝΑ ΤΗΣ ΜΕΣΑΙΩΝΙΚΗΣ ΕΛΛΗΝΙΚΗΣ: ΜΕΘΟΔΟΛΟΓΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΗΓΩΝ Θεόδωρος Μαρκόπουλος University of Uppsala thodorismark@yahoo.gr Abstract This paper discusses methodological
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n