A NEW SUZUKI TYPE COMMON COUPLED FIXED POINT RESULT FOR FOUR MAPS IN S b -METRIC SPACES

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A NEW SUZUKI TYPE COMMON COUPLED FIXED POINT RESULT FOR FOUR MAPS IN S b -METRIC SPACES"

Transcript

1 JOURNAL OF INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) ISSN (o) wwwimviblorg /JOURNALS / JOURNAL Vol 8(208) 03-9 DOI: 0725/JIMVI8003R Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN (o) ISSN X (p) A NEW SUZUKI TYPE COMMON COUPLED FIXED POINT RESULT FOR FOUR MAPS IN S b -METRIC SPACES K P R Rao E Taraka Ramudu and G N V Kishore Abstract In this paper we prove a Suzuki type unique common coupled fixed point theorem for two pairs of w-compatible mappings in S b -metric spaces We also furnish an example to support our main result Introduction In the year 2008 Suzuki [] generalized the Banach contraction principle [2] Theorem ([]) Let (X d) be a complete metric space and let T be a mapping on X Define a non-increasing function θ : [0 ) ( 2 ] by θ(r) = ( r)r 2 ( + r) Assume that there exists r [0 ) such that if 0 r ( 5 ) 2 if ( 5 ) 2 r if 2 2 r < 2 2 θ(r)d(x T x) d(x y) d(t x T y) rd(x y) for all x y X Then there exists a unique fixed point z of T Moreover for all x X lim n T n x = z 200 Mathematics Subject Classification 54H25 47H0 54E50 Key words and phrases Suzuki type S b -metric space w-compatible pairs S b -completeness coupled fixed points 03

2 04 KPRRAO ETARAKA RAMUDU AND GNVKISHORE Bhaskar and Lakshmikantham [4] introduced the notion of coupled fixed point and proved some coupled fixed point results Recently Sedghi et al [8] defined S b -metric spaces using the concept of S- metric spaces [9] The aim of this paper is to prove Suzuki type unique common coupled fixed point theorem for four mappings satisfying generalized contractive condition in S b -metric spaces Throughout this paper R R + and N denote the set of all real numbers non-negative real numbers and positive integers respectively First we recall some definitions lemmas and examples Definition ([9]) Let X be a non-empty set A S-metric on X is a function S : X 3 R + that satisfies the following conditions for each x y z a X (S) : 0 < S(x y z) for all x y z X with x y z (S2) : S(x y z) = 0 x = y = z (S3) : S(x y z) S(x x a) + S(y y a) + S(z z a) for all x y z a X Then the pair (X S) is called a S-metric space Definition 2 ([8]) Let X be a non-empty set and b be given real number Suppose that a mapping S b : X 3 R + be a function satisfying the following properties : (S b ) 0 < S b (x y z) for all x y z X with x y z (S b 2) S b (x y z) = 0 x = y = z (S b 3) S b (x y z) b(s b (x x a) + S b (y y a) + S b (z z a)) for all x y z a X Then the function S b is called a S b -metric on X and the pair (X S b ) is called a S b -metric space Remark ([8]) It should be noted that the class of S b -metric spaces is effectively larger than that of S-metric spaces Indeed each S-metric space is a S b -metric space with b = Following example shows that a S b -metric on X need not be a S-metric on X Example ([8]) Let (X S) be a S-metric space and S (x y z) = S(x y z) p where p > is a real number Note that S is a S b -metric with b = 2 2(p ) Also (X S ) is not necessarily a S-metric space Definition 3 ([8]) Let (X S b ) be a S b -metric space Then for x X and r > 0 we define the open ball B Sb (x r) and closed ball B Sb [x r] with center x and radius r as follows respectively: B Sb (x r) B Sb [x r] = y X : S b (y y x) < r = y X : S b (y y x) r Lemma ([8]) In a S b -metric space we have S b (x x y) b S b (y y x)

3 A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 05 and S b (y y x) b S b (x x y) Lemma 2 ([8]) In a S b -metric space we have S b (x x z) 2b S b (x x y) + b 2 S b (y y z) Definition 4 ([8]) If (X S b ) be a S b -metric space A sequence x n in X is said to be: () S b -Cauchy sequence if for each ϵ > 0 there exists n 0 N such that S b (x n x n x m ) < ϵ for each m n n 0 (2) S b -convergent to a point x X if for each ϵ > 0 there exists a positive integer n 0 such that S b (x n x n x) < ϵ or S b (x x x n ) < ϵ for all n n 0 and we denote by lim n x n = x Definition 5 ([8]) A S b -metric space (X S b ) is called complete if every S b -Cauchy sequence is S b -convergent in X Lemma 3 ([8]) If (X S b ) be a S b -metric space with b and suppose that x n is a S b -convergent to x then we have (i) 2b S b(y x x) lim infs b(y y x n ) lim sups b(y y x n ) 2b S b (y y x) n n and (ii) b 2 S b (x x y) for all y X lim infs b(x n x n y) n lim sups b(x n x n y) b 2 S b (x x y) n In particular if x = y then we have lim n S b(x n x n y) = 0 Definition 6 ([4]) Let X be a non-empty set An element (x y) X X is called a coupled fixed point of a mapping F : X X X if x = F (x y) and y = F (y x) Definition 7 ([5]) Let X be a non-empty set An element (x y) X X is called (i) a coupled coincident point of mappings F : X X X and f : X X if fx = F (x y) and fy = F (y x) (ii) a common coupled fixed point of mappings F : X X X and f : X X if x = fx = F (x y) and y = fy = F (y x) Now we give our main result 2 Main Result Let Φ denote the class of all functions ϕ : R + R + such that ϕ is nondecreasing continuous ϕ(t) < t 4b for all t > 0 and ϕ(0) = 0 4 Theorem 2 Let (X S b ) be a S b -metric space Suppose that A B : X X X and P Q : X X be satisfying (2) A(X X) Q(X) B(X X) P (X)

4 06 KPRRAO ETARAKA RAMUDU AND GNVKISHORE (22) A P and B Q are w-compatible pairs (23) One of P (X) or Q(X) is S b -complete subspace of X S b (A(x y) A(x y) P x) S b (B(u v) B(u v) Qu) (24) 3 implies that S b (A(y x) A(y x) P y) S b (B(v u) B(v u) Qv) 2b 5 S b (A(x y) A(x y) B(u v)) Sb (P x P x Qu) S b (P y P y Qv) S b (P x P x Qu) S b (P y P y Qv) S b (A(x y) A(x y) P x) S b (A(y x) A(y x) P y) S b (B(u v) B(u v) Qu) S b (B(v u) B(v u) Qv) S b (A(xy)A(xy)Qu) S b (B(uv)B(uv)P x) +S b (P xp xqu) S b (A(yx)A(yx)Qv) S b (B(vu)B(vu)P y) +S b (P yp yqv) for all x y u v X ϕ Φ Then A B P and Q have a unique common coupled fixed point in X X Proof Let x 0 y 0 X From (2) we can construct the sequences x n y n z n and w n such that A(x 2n y 2n ) = Qx 2n+ = z 2n A(y 2n x 2n ) = Qy 2n+ = w 2n B(x 2n+ y 2n+ ) = P x 2n+2 = z 2n+ B(y 2n+ x 2n+ ) = P y 2n+2 = w 2n+ n = 0 2 Case (i) Suppose z 2m = z 2m+ and w 2m = w 2m+ for some m Assume that z 2m+ z 2m+2 or w 2m+ w 2m+2 Since 3 S b (A(x 2m+2 y 2m+2 ) A(x 2m+2 y 2m+2 ) P x 2m+2 ) ]S b (B(x 2m+ y 2m+ ) B(x 2m+ y 2m+ ) Qx 2m+ ) S b (A(y 2m+2 x 2m+2 ) A(y 2m+2 x 2m+2 ) P y 2m+2 ) S b (B(y 2m+ x 2m+ ) B(y 2m+ x 2m+ ) Qy 2m+ ) S b (P x 2m+2 P x 2m+2 Qx 2m+ ) S b (P y 2m+2 P y 2m+2 Qy 2m+ ) From (24) we have

5 A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 07 S b (z 2m+2 z 2m+2 z 2m+ ) 2b 5 S b (A(x 2m+2 y 2m+2 ) A(x 2m+2 y 2m+2 ) B(x 2m+ y 2m+ )) S b (z 2m+ z 2m+ z 2m ) S b (w 2m+ w 2m+ w 2m ) S b (z 2m+2 z 2m+2 z 2m+ ) S b (w 2m+2 w 2m+2 w 2m+ ) S b (z 2m+ z 2m+ z 2m ) S b (w 2m+ w 2m+ w 2m ) S b (z 2m+2 z 2m+2 z 2m+ ) S b (z 2m+ z 2m+ z 2m ) +S b (z 2m+ z 2m+ z 2m ) S b (w 2m+2 w 2m+2 w 2m+ ) S b (w 2m+ w 2m+ w 2m ) +S b (w 2m+ w 2m+ w 2m ) = ϕ ( S b (z 2m+2 z 2m+2 z 2m+ ) S b (w 2m+2 w 2m+2 w 2m+ ) ) Similarly we can prove S b (w 2m+2 w 2m+2 w 2m+ ) ( Sb (z 2m+2 z 2m+2 z 2m+ ) S b (w 2m+2 w 2m+2 w 2m+ ) ) Thus Sb (z 2m+2 z 2m+2 z 2m+ ) S b (w 2m+2 w 2m+2 w 2m+ ) ( Sb (z 2m+2 z 2m+2 z 2m+ ) S b (w 2m+2 w 2m+2 w 2m+ ) ) It follows that z 2m+2 = z 2m+ and w 2m+2 = w 2m+ Continuing in this process we can conclude that z 2m+k = z 2m and w 2m+k = w 2m for all k 0 It follows that z n and w n are Cauchy sequences Case (ii) Assume that z 2n z 2n+ and w 2n w 2n+ for all n Put S n = S b (z n+ z n+ z n ) S b (w n+ w n+ w n ) Since 3 S b (A(x 2n+2 y 2n+2 ) A(x 2n+2 y 2n+2 ) P x 2n+2 ) S b (B(x 2n+ y 2n+ ) B(x 2n+ y 2n+ ) Qx 2n+ ) S b (A(y 2n+2 x 2n+2 ) A(y 2n+2 x 2n+2 ) P y 2n+2 ) S b (B(y 2n+ x 2n+ ) B(y 2n+ x 2n+ ) Qy 2n+ ) S b (P x 2n+2 P x 2n+2 Qx 2n+ ) S b (P y 2n+2 P y 2n+2 Qy 2n+ ) From (24) we have S b (z 2n+2 z 2n+2 z 2n+ )

6 08 KPRRAO ETARAKA RAMUDU AND GNVKISHORE 2b 5 S b (A(x 2n+2 y 2n+2 ) A(x 2n+2 y 2n+2 ) B(x 2n+ y 2n+ )) S b (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) S b (z 2n+2 z 2n+2 z 2n+ ) S b (w 2n+2 w 2n+2 w 2n+ ) S b (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) S b (z 2n+2 z 2n+2 z 2n ) S b (z 2n+ z 2n+ z 2n+ ) +S b (z 2n+ z 2n+ z 2n ) S b (w 2n+2 w 2n+2 w 2n ) S b (w 2n+ w 2n+ w 2n+ ) +S b (w 2n+ w 2n+ w 2n ) ( ) Sb (z 2n+ z 2n+ z 2n ) S b (z 2n+2 z 2n+2 z 2n+ ) = ϕ S b (w 2n+ w 2n+ w 2n ) S b (w 2n+2 w 2n+2 w 2n+ ) = ϕ ( ) S 2n+ S 2n Similarly we can prove that S b (w 2n+2 w 2n+2 w 2n+ ) ( S 2n+ S 2n ) Thus S 2n+ (S 2n S 2n+ ) If S 2n+ is imum then we get contradiction so that S 2n is imum Thus (2) S 2n+ (S 2n ) < S 2n Similarly we can conclude that S 2n < S 2n It is clear that S n is a non-increasing sequence of non-negative real numbers and must converge to a real number say r 0 Suppose r > 0 Letting n in (2) we have r (r) < r It is contradiction Hence r = 0 Thus (22) lim n S(z n+ z n+ z n ) = 0 and (23) lim n S(w n+ w n+ w n ) = 0 Now we prove that z 2n and w 2n are Cauchy sequences in (X S b ) On contrary we suppose that z 2n or w 2n is not Cauchy Then there exist ϵ > 0 and monotonically increasing sequence of natural numbers 2m k and 2n k such that n k > m k (24) S b (z 2mk z 2mk z 2nk ) S b (w 2mk w 2mk w 2nk ) ϵ and (25) S b (z 2mk z 2mk z 2nk 2 ) S b (w 2mk w 2mk w 2nk 2 ) < ϵ

7 A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 09 From (24) and (25) we have (26) ϵ S b (z 2mk z 2mk z 2nk ) S b (w 2mk w 2mk w 2nk ) 2b S b (z 2mk z 2mk z 2mk +2) S b (w 2mk w 2mk w 2mk +2) +b S b (z 2nk z 2nk z 2mk +2) S b (w 2nk w 2nk w 2mk +2) 2b (2b S b (z 2mk z 2mk z 2mk +) S b (w 2mk w 2mk w 2mk +)) +2b (b S b (z 2mk +2 z 2mk +2 z 2mk +) S b (w 2mk +2 w 2mk +2 w 2mk +)) +b (2b S b (z 2nk z 2nk z 2nk +) S b (w 2nk w 2nk w 2nk +)) +b (b S b (z 2mk +2 z 2mk +2 z 2nk +) S b (w 2mk +2 w 2mk +2 w 2nk +)) 4b 3 S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +2b 2 S b (z 2mk +2 z 2mk +2 z 2mk +) S b (w 2mk +2 w 2mk +2 w 2mk +) +2b 3 S b (z 2nk + z 2nk z 2nk ) S b (w 2nk + w 2nk w 2nk ) +b 2 S b (z 2mk +2 z 2mk +2 z 2nk +) S b (w 2mk +2 w 2mk +2 w 2nk +) Now first we claim that (27) 3 S b (A(x 2mk +2 y 2mk +2) A(x 2mk +2 y 2mk +2) P x 2mk +2) S b (B(x 2nk + y 2nk +) B(x 2nk + y 2nk +) Qx 2nk +) S b (A(y 2mk +2 x 2mk +2) A(y 2mk +2 x 2mk +2) P y 2mk +2) S b (B(y 2nk + x 2nk +) B(y 2nk + x 2nk +) Qy 2nk +) Sb (P x 2mk +2 P x 2mk +2 Qx 2nk +) S b (P y 2mk +2 P y 2mk +2 Qy 2nk +) On contrary suppose that 3 S b (A(x 2mk +2 y 2mk +2) A(x 2mk +2 y 2mk +2) P x 2mk +2) S b (B(x 2nk + y 2nk +) B(x 2nk + y 2nk +) Qx 2nk +) S b (A(y 2mk +2 x 2mk +2) A(y 2mk +2 x 2mk +2) P y 2mk +2) S b (B(y 2nk + x 2nk +) B(y 2nk + x 2nk +) Qy 2nk +) > Sb (P x 2mk +2 P x 2mk +2 Qx 2nk +) S b (P y 2mk +2 P y 2mk +2 Qy 2nk +)

8 0 KPRRAO ETARAKA RAMUDU AND GNVKISHORE Now from (24) we have ϵ S b (z 2mk z 2mk z 2nk ) S b (w 2mk w 2mk w 2nk ) 2b S b (z 2mk z 2mk z 2mk +) S b (w 2mk w 2mk w 2mk +) +b S b (z 2nk z 2nk z 2mk +) S b (w 2nk w 2nk w 2mk +) 2b 2 S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +b 2 S b (z 2mk + z 2mk + z 2nk ) S b (w 2mk + w 2mk + w 2nk ) < 2b 2 S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) S b (z 2mk +2 z 2mk +2 z 2mk +) +b 2 3 S b (w 2mk +2 w 2mk +2 w 2mk +) S b (z 2nk + z 2nk + z 2nk ) S b (w 2nk + w 2nk + w 2nk ) Letting k we have ϵ 0 It is a contradiction Hence (27) holds Now from (24) we have 2b 5 S b (z 2mk +2 z 2mk +2 z 2mk +) S b (z 2mk + z 2mk + z 2nk ) S b (w 2mk + w 2mk + w 2nk ) S b (z 2mk +2 z 2mk +2 z 2mk +) S b (w 2mk +2 w 2mk +2 w 2mk +) S b (z 2nk + z 2nk + z 2nk ) S b (w 2nk + w 2nk + w 2nk ) Similarly S b (z 2mk +2z 2mk +2z 2nk ) S b (z 2nk +z 2nk +z 2mk +) +S b (z 2mk +z 2mk +z 2nk ) S b (w 2mk +2w 2mk +2w 2nk ) S b (w 2nk +w 2nk +w 2mk +) +S b (w 2mk +w 2mk +w 2nk ) 2b 5 S b (w 2mk +2 w 2mk +2 w 2mk +) S b (z 2mk + z 2mk + z 2nk ) S b (w 2mk + w 2mk + w 2nk ) S b (z 2mk +2 z 2mk +2 z 2mk +) S b (w 2mk +2 w 2mk +2 w 2mk +) S b (z 2nk + z 2nk + z 2nk ) S b (w 2nk + w 2nk + w 2nk ) Thus S b (z 2mk +2z 2mk +2z 2nk ) S b (z 2nk +z 2nk +z 2mk +) +S b (z 2mk +z 2mk +z 2nk ) S b (w 2mk +2w 2mk +2w 2nk ) S b (w 2nk +w 2nk +w 2mk +) +S b (w 2mk +w 2mk +w 2nk ) (28) 2b 5 S b (z 2mk +2 z 2mk +2 z 2mk +) S b (w 2mk +2 w 2mk +2 w 2mk +) S b (z 2mk + z 2mk + z 2nk ) S b (w 2mk + w 2mk + w 2nk ) S b (z 2mk +2 z 2mk +2 z 2mk +) S b (w 2mk +2 w 2mk +2 w 2mk +) S b (z 2nk + z 2nk + z 2nk ) S b (w 2nk + w 2nk + w 2nk ) S b (z 2mk +2z 2mk +2z 2nk ) S b (z 2nk +z 2nk +z 2mk +) +S b (z 2mk +z 2mk +z 2nk ) S b (w 2mk +2w 2mk +2w 2nk ) S b (w 2nk +w 2nk +w 2mk +) +S b (w 2mk +w 2mk +w 2nk )

9 A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM But S b (z 2mk + z 2mk + z 2nk ) S b (w 2mk + w 2mk + w 2nk ) 2b S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +b S b (z 2nk z 2nk z 2mk ) S b (w 2nk w 2nk w 2mk ) 2b S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +b 2 S b (z 2mk z 2mk z 2nk ) S b (w 2mk w 2mk w 2nk ) 2b S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +b 2 ( 2b S b (z 2mk z 2mk z 2nk 2 ) S b (w 2mk w 2mk w 2nk 2 ) ) +b 2 ( b S b (z 2nk z 2nk z 2nk 2 ) S b (w 2nk w 2nk w 2nk 2 ) ) < 2b S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +2b 3 ϵ + b 3 (2b S b (z 2nk z 2nk z 2nk ) S b (w 2nk w 2nk w 2nk )) +b 3 ( b S b (z 2nk 2 z 2nk 2 z 2nk ) S b (w 2nk 2 w 2nk 2 w 2nk ) ) 2b S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +2b 3 ϵ + 2b 4 S b (z 2nk z 2nk z 2nk ) S b (w 2nk w 2nk w 2nk ) +b 5 S b (z 2nk z 2nk z 2nk 2) S b (w 2nk w 2nk w 2nk 2) Letting k we have (29) lim k S b(z 2mk + z 2mk + z 2nk ) S b (w 2mk + w 2mk + w 2nk ) 2b 3 ϵ Also lim k S b (z 2mk +2 z 2mk +2 z 2nk ) S b (z 2nk + z 2nk + z 2mk +) + S b (z 2mk + z 2mk + z 2nk ) [ [2bSb (z 2mk +2 z 2mk +2 z 2mk +) + bs b (z 2nk z 2nk z 2mk +)] ] lim k [2bS b (z 2nk + z 2nk + z 2nk ) + bs b (z 2mk + z 2mk + z 2nk )] + S b (z 2mk + z 2mk + z 2nk ) b 3 S b (z 2mk + z 2mk + z 2nk ) S b (z 2mk + z 2mk + z 2nk ) lim k + S b (z 2mk + z 2mk + z 2nk ) lim k b3 S b (z 2mk + z 2mk + z 2nk ) 2b 6 ϵ from(29) Similarly S b (z 2mk +2 z 2mk +2 z 2nk ) S b (w 2nk + w 2nk + w 2mk +) lim 2b 6 ϵ k + S b (w 2mk + w 2mk + w 2nk )

10 2 KPRRAO ETARAKA RAMUDU AND GNVKISHORE Letting k in (28) we have (20) lim k S b(z 2mk +2 z 2mk +2 z 2nk +) S b (w 2mk +2 w 2mk +2 w 2nk +) 2b 5 ϕ ( 2b 3 ϵ b 6 ϵ 2b 6 ϵ ) = 2b 5 ϕ(2b6 ϵ) Now letting n in (26) from (22)(23) and (20) we have ϵ b 2 2b 5 ϕ(2b6 ϵ) < ϵ It is a contradiction Hence z 2n and w 2n are S b -Cauchy sequences in (X S b ) In addition S b (z 2n+ z 2n+ z 2m+ ) S b (w 2n+ w 2n+ w 2m+ ) 2b S b (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) +b S b (z 2m+ z 2m+ z 2n ) S b (w 2m+ w 2m+ w 2n ) 2b S b (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) +2b 2 S b (z 2m+ z 2m+ z 2m ) S b (w 2m+ w 2m+ w 2m ) +b 2 S b (z 2n z 2n z 2m ) S b (w 2n w 2n w 2m ) Since z 2n and w 2n are Cauchy and using (22) (23) we have z 2n+ and w 2n+ are also S b -Cauchy sequences in (X S b ) Thus z n and w n are S b - Cauchy sequences in (X S) Suppose assume that P (X) is a S b - complete subspace of (X S b ) Then the sequences z n and w n converge to α and β in P (X) Thus there exist a and b in P (X) such that (2) lim n z n = α = P a and lim w n = β = P b n Before going to prove common coupled fixed point for the mappings A B P and Q first we claim that for each n at least one of the following assertions holds Sb (z 2n+ z 2n+ z 2n ) S 3 S b (w 2n+ w 2n+ w 2n ) b (α α z 2n ) S b (β β w 2n ) Sb (z 2n z 2n z 2n ) 3 S b (w 2n w 2n w 2n ) On contrary suppose that Sb (z 2n+ z 2n+ z 2n ) 3 S b (w 2n+ w 2n+ w 2n ) Sb (z 2n z 2n z 2n ) 3 S b (w 2n w 2n w 2n ) or S b (α α z 2n 2 ) S b (β β w 2n 2 ) > S b (α α z 2n ) S b (β β w 2n ) and > S b (α α z 2n ) S b (β β w 2n )

11 A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 3 Now consider Sb (z 2n z 2n z 2n ) S b (w 2n w 2n w 2n ) 2bSb (z 2n z 2n α) + b 2 S b (α α z 2n ) 2bS b (w 2n w 2n β) + b 2 S b (β β z 2n ) Sb 2b 2 (α α z 2n ) Sb + b 2 (α α z 2n ) S b (β β w 2n ) S b (β β z 2n ) Sb < 4b (z 2n+ z 2n+ z 2n ) Sb + S b (w 2n+ w 2n+ w 2n ) (z 2n z 2n z 2n ) S b (w 2n w 2n w 2n ) Sb 4b (z 2n z 2n z 2n ) Sb + S b (w 2n w 2n w 2n ) (z 2n z 2n z 2n ) S b (w 2n w 2n w 2n ) Sb = 3 (z 2n z 2n z 2n ) S b (w 2n w 2n w 2n ) Sb (z 2n z 2n z 2n ) < S b (w 2n w 2n w 2n ) It is a contradiction Hence our assertion holds Sub case(a) 3 Sb (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) Sb (α α z 2n ) S b (β β w 2n ) holds Since 3 S b (A(a b) A(a b) α) S b (z 2n+ z 2n+ z 2n ) S b (A(b a) A(b a) β) S b (w 2n+ w 2n+ w 2n ) Sb (P a P a z 2n ) S b (P b P b w 2n ) That is 3 Sb (A(a b) A(a b) α) S b (z 2n+ z 2n+ z 2n ) S b (A(b a) A(b a) β) S b (w 2n+ w 2n+ w 2n ) Sb (α α z 2n ) S b (β β w 2n ) From (24) and Lemma () we have

12 4 KPRRAO ETARAKA RAMUDU AND GNVKISHORE S 2b b (A(a b) A(a b) α) lim inf S b(a(a b) A(a b) B(x 2n+ y 2n+ )) n lim inf 2 n b5 S b (A(a b) A(a b) B(x 2n+ y 2n+ )) S b (α α z 2n ) S b (β β w 2n ) S b (A(a b) A(a b) α) S b (A(b a) A(b a) β) S lim inf ϕ b (z 2n+ z 2n+ z 2n) S b (w 2n+ w 2n+ w 2n) n [ Sb (A(a b) A(a b) z 2n)S b (z 2n+ z 2n+ α) ] +S b (ααz 2n ) [ Sb (A(b a) A(b a) w 2n )S b (w 2n+ w 2n+ β) ] +S b (ββw 2n ) = ϕ ( 0 0 S b (A(a b) A(a b) α) S b (A(b a) A(b a) β) ) = ϕ ( S b (A(a b) A(a b) α) S b (A(b a) A(b a) β) ) Similarly ( 2b S Sb (A(a b) A(a b) α) b(a(b a) A(b a) β) S b (A(b a) A(b a) β) ) Thus 2b Sb (A(a b) A(a b) α) S b (A(b a) A(b a) β) ( Sb (A(a b) A(a b) α) S b (A(b a) A(b a) β) ) By the definition of ϕ it follows that A(a b) = α = P a and A(b a) = β = P b Since (A P ) is w-compatible pair we have A(α β) = P α and A(β α) = P β From the definition of S b -metric it is clear that S b (A(α β) A(α β) P α) S b (A(β α) A(β α) P β) S 3 b (B(x 2n+ y 2n+ ) B(x 2n+ y 2n+ ) Qx 2n+ ) S b (B(y 2n+ x 2n+ ) B(y 2n+ x 2n+ ) Qy 2n+ ) = 0 S b (P α P α Qx 2n+ ) S b (P β P β Qy 2n+ )

13 A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 5 From (24) and Lemma () we have S 2b b (A(α β) A(α β) α) lim sup S b(a(α β) A(α β) B(x 2n+ y 2n+ )) n lim sup 2 n b5 S b (A(α β) A(α β) B(x 2n+ y 2n+)) S b (A(α β) A(α β) z 2n) S b (A(β α) A(β α) w 2n) lim sup ϕ 0 0 S b (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) n S b (A(αβ)A(αβ)z 2n ) S b (z 2n+ z 2n+ A(αβ)) +S b (A(αβ)A(αβ)z 2n ) S b (A(βα)A(βα)w 2n ) S b (w 2n+ w 2n+ A(βα)) +S b (A(βα)A(βα)w 2n ) S lim sup ϕ b (A(α β) A(α β) z 2n ) S b (A(β α) A(β α) w 2n ) n S b (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) S b (z 2n+ z 2n+ A(α β)) S b (w 2n+ w 2n+ A(β α)) ( ) 2bSb (A(α β) A(α β) α) 2bS b (A(β α) A(β α) β) 0 0 b 2 S b (α α A(α β)) b 2 S b (β β A(β α)) ( 2b 2 S b (A(α β) A(α β) α) S b (A(β α) A(β α) β) ) Similarly ( 2b S b(a(β α) A(β α) β) 2b 2 S( A(α β) A(α β) α) S b (A(β α) A(β α) β) ) Thus 2b Sb (A(α β) A(α β) α) ( S b (A(β α) A(β α) β) ) 2b 2 Sb (A(α β) A(α β) α) S b (A(β α) A(β α) β) By the definition of ϕ it follows that A(α β) = α = P α and A(β α) = β = P β Therefore (α β) is a common coupled fixed point of A and P Since A(X X) Q(X) there exist x and y in X such that A(α β) = α = Qx and A(β α) = β = Qy Since we have that 3 From (24) we have Sb (A(α β) A(α β) P α) S b (A(β α) A(β α) P β) S b (B(x y) B(x y) Qx) S b (B(y x) B(y x) Qy) Sb (P α P α Qx) = 0 S b (P β P β Qy) 2 b 5 S b (A(α β) A(α β) B(x y))

14 6 KPRRAO ETARAKA RAMUDU AND GNVKISHORE S b (P α P α Qx) S b (P β P β Qy) S b (A(α β) A(α β) P α) S b (A(β α) A(β α) P β) S b (B(x y) B(x y) Qx) S(B(y x) B(y x) Qy) S b (A(αβ)A(αβ)Qx) S b (B(xy)B(xy)P α) +S b (P αp αqx) S b (A(βα)A(βα)Qy)S b (B(yx)B(yx)P β) +S b (P βp βqy) = ϕ ( S b (B(x y) B(x y) α) S b (B(y x) B(y x) β) 0 0 ) ( b S b (α α B(x y)) S b (β β B(y x)) ) Similarly Thus 2 b 5 S b (β β B(y x)) ( b S b (α α B(x y)) S b (β β B(y x)) ) 2 b 5 Sb (α α B(x y)) S b (β β B(y x)) ( Sb (α α B(x y)) b S b (β β B(y x)) ) It follows that B(x y) = α = Qx and B(y x) = β = Qy Since (B Q) is w-compatible pair we have B(α β) = Qα and B(β α ) = Qβ Since we have that Sb (A(α β) A(α β) P α) S b (A(β α) A(β α) P β) 3 From (24) we have S b (B(α β) B(α β) Qα) S b (B(β α) B(β α) Qβ) Sb (P α P α Qα) = 0 S b (P β P β Qβ) 2 b 5 S b (A(α β) A(α β) B(α β)) S b (P α P α Qα) S b (P β P β Qβ) S b (A(α β) A(α β) P α) S b (A(β α) A(β α) P β) S b (B(α β) B(α β) Qα) S b (B(β α) B(β α) Qβ) Similarly Thus S b (A(αβ)A(αβ)Qα)S b (B(αβ)B(αβ)P α) +S b (P αp αqα) S b (A(βα)A(βα)Qβ)S b (B(βα)B(βα)P β) +S b (P βp βqβ) ( ) S = ϕ b (α α B(α β)) S b (β β B(β α)) S b (B(α β) B(α β) α) S b (B(β α) B(β α) β) ( b S b (α α B(α β)) S b (β β B(β α)) ) 2 b 5 S b (β β B(β α)) ( b S b (α α B(α β)) S b (β β B(β α)) ) Sb (α α B(α β)) S b (β β B(β α)) ( Sb (α α B(α β)) b S b (β β B(β α)) ) It follows that B(α β) = α = Qα and B(β α) = β = Qβ Thus (α β) is a common coupled fixed point of A B P and Q

15 A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 7 To prove uniqueness let us take (α β ) as another common coupled fixed point of A B P and Q Since it is clear that S b (A(α β) A(α β) P α) S b (A(β α) A(β α) P β) 3 S b (B(α β ) B(α β ) Qα = 0 ) S b (B(β α ) B(β α ) Qβ ) From (24) we have Sb (P α P α Qα ) S b (P β P β Qβ ) 2 b 5 S b (α α α ) = 2 b 5 S b (A(α β) A(α β) B(α β )) S b (α α α ) S(β β β ) S b (α α α) S b (β β β) S b (α α α ) S b (β β β ) Similarly Thus S b (ααα )S b (α α α) +S b (ααα ) S b(βββ )S b (β β β) +S b (βββ ) (b S b (α α α ) S b (β β β )) 2 b 5 S(β β β ) (bs(α α α ) bs b (β β β )) 2 b 5 S b (α α α ) S b (β β β ) ( b S b (α α α ) S b (β β β ) ) It follows that α = α and β = β Hence (α β) is unique common coupled fixed point of A B P and Q Sub case(b) Sb (z 2n z 2n z 2n ) 3 S b (w 2n w 2n w 2n ) Sb (α α z 2n ) S b (β β w 2n ) holds By proceeding as in Sub case(a) we can prove that (α β) is unique common coupled fixed point of A B P and Q Similarly the theorem holds when Q(X) is a S b -complete subspace of (X S b ) Now we give an example to illustrate the Theorem 2 Example 2 Let X = [0 ] and S : X X X R + by S b (x y z) = ( y + z 2x + y z ) 2 then (X S b ) is a S b -metric space with b = 4 P Q : X X by A(x y) = x2 + y B = x2 + y 2 Define A B : X X X and 4 9 P (x) = x2 4

16 8 KPRRAO ETARAKA RAMUDU AND GNVKISHORE and Q(x) = x2 6 Let ϕ : R+ R + be defined by ϕ(t) = t 4 6 Consider 2b 5 S b (A(x y) A(x y) B(u v)) = 2 ( 4 6) ( A(x y) B(u v) ) 2 = 2(4 6 ) = 2(4 6 ) x2 +y 2 4 u2 +v x2 u y2 v (4 6 4x ) 2 u y 2 v ( 2(46 ) 2 (4 7 ) 2 = 2(4 6 ) x 2 4x 2 u u y 2 v 2 6 y2 4 v2 6 ) 2 2 = 2(4 7 ) S(P x P x Qu) S(P y P y Qv) S(P x P x Qu) S(P y P y Qv) S(A(x y) A(x y) P x)s(a(y x) A(y x) P y) S(B(u v) B(u v) Qu) S(B(v u) B(v u) Qv) S(A(xy)A(xy)Qu) S(B(uv)B(uv)P x) +S(P xp xqu) S(A(yx)A(yx)Qv) S(B(vu)B(vu)P y) +S(P yp yqv) Thus the condition (24) is satisfiedone can easily verify the remaining conditions of Theorem 2 In this example (0 0) is the unique common coupled fixed point of A B P and Q References [] M Abbas and M Ali khan and S Randenović Common coupled fixed point theorems in cone metric spaces for w-compatible mappings Appl Math Comput 27()(200) [2] S Banach Theorie des Operations lineaires Manograic Mathematic Zne Warsaw Poland 932 [3] S Czerwik Contraction mapping in b-metric spaces Communications in Mathematics Formerly Acta Mathematica et Informatica Universitatis Ostraviensis ()(993) 5 - [4] T Gnana Bhaskar and V Lakshmikantham Fixed point theorems in partially ordered metric spaces and applications Nonlinear Analysis Theory Methods and Applications 65(7)(2006)

17 A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 9 [5] V Lakshmikantham and Lj Ćirić Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces Nonlinear Analysis Theory Methods and Applications 70(2)(2009) [6] Z Mustafa and B Sims A new approach to generalized metric spaces J Nonlinear Convex Anal 7(2)(2006) [7] S Sedghi I Altun N Shobe and M Salahshour Some properties of S-metric space and fixed point results Kyungpook Math J 54()(204) 3-22 [8] S Sedghi Gholidahneh T Došenović J Esfahani and S Radenović Common fixed point of four maps in S b -metric spaces J Linear Top Algebra 5(2)(206) [9] S Sedghi N Shobe and A Aliouche A generalization of fixed point theorem in S-metric spaces Mat Vesnik 64(3)(202) [0] S Sedghi N Shobe and T Došenović Fixed point results in S-metric spaces Nonlinear Functional Analysis and Applications 20()(205) [] T Suzuki A generalized Banach contraction principle which characterizes metric completeness Proc Amer Math Soc 36(2008) Receibed by editors ; Revised version 25207; Available online Department of Mathematics Acharya Nagarjuna University Nagarjuna Nagar Guntur Andhra Pradesh India address: kprrao2004@yahoocom Amrita Sai Institute of Science and Technology Paritala-5280 Andhra Pradesh India address: tarakaramudu32@gmailcom Department of Mathematics K L University Vaddeswaram Guntur Andhra Pradesh India address: gnvkishore@kluniversityin kishoreapr2@gmailcom

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ON RANDOM COINCIDENCE POINT AND RANDOM COUPLED FIXED POINT THEOREMS

ON RANDOM COINCIDENCE POINT AND RANDOM COUPLED FIXED POINT THEOREMS Palestine Journal of Mathematics Vol. 4(2) (2015), 348 359 Palestine Polytechnic University-PPU 2015 ON RANDOM COINCIDENCE POINT AND RANDOM COUPLED FIXED POINT THEOREMS Animesh Gupta Erdal Karapınar Communicated

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Fixed point theorems of φ convex ψ concave mixed monotone operators and applications

Fixed point theorems of φ convex ψ concave mixed monotone operators and applications J. Math. Anal. Appl. 339 (2008) 970 98 www.elsevier.com/locate/jmaa Fixed point theorems of φ convex ψ concave mixed monotone operators and applications Zhang Meiyu a,b a School of Mathematical Sciences,

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Operation Approaches on α-γ-open Sets in Topological Spaces

Operation Approaches on α-γ-open Sets in Topological Spaces Int. Journal of Math. Analysis, Vol. 7, 2013, no. 10, 491-498 Operation Approaches on α-γ-open Sets in Topological Spaces N. Kalaivani Department of Mathematics VelTech HighTec Dr.Rangarajan Dr.Sakunthala

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Knaster-Reichbach Theorem for 2 κ

Knaster-Reichbach Theorem for 2 κ Knaster-Reichbach Theorem for 2 κ Micha l Korch February 9, 2018 In the recent years the theory of the generalized Cantor and Baire spaces was extensively developed (see, e.g. [1], [2], [6], [4] and many

Διαβάστε περισσότερα

GAUGES OF BAIRE CLASS ONE FUNCTIONS

GAUGES OF BAIRE CLASS ONE FUNCTIONS GAUGES OF BAIRE CLASS ONE FUNCTIONS ZULIJANTO ATOK, WEE-KEE TANG, AND DONGSHENG ZHAO Abstract. Let K be a compact metric space and f : K R be a bounded Baire class one function. We proved that for any

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Intuitionistic Supra Gradation of Openness

Intuitionistic Supra Gradation of Openness Applied Mathematics & Information Sciences 2(3) (2008), 291-307 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. Intuitionistic Supra Gradation of Openness A. M. Zahran 1, S. E.

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Common Random Fixed Point Theorems under Contraction of rational Type in Multiplicative Metric Space

Common Random Fixed Point Theorems under Contraction of rational Type in Multiplicative Metric Space Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13 Number 7 2017) pp. 3703-3726 Research India Publications http://www.ripublication.com Common Random Fixed Point Theorems under Contraction

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

On a Subclass of k-uniformly Convex Functions with Negative Coefficients

On a Subclass of k-uniformly Convex Functions with Negative Coefficients International Mathematical Forum, 1, 2006, no. 34, 1677-1689 On a Subclass of k-uniformly Convex Functions with Negative Coefficients T. N. SHANMUGAM Department of Mathematics Anna University, Chennai-600

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR

STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR Khayyam J. Math. 3 217, no. 2, 16 171 DOI: 1.2234/kjm.217.5396 STRONG DIFFERENTIA SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MUTIVAENT ANAYTIC FUNCTIONS DEFINED BY INEAR OPERATOR ABBAS KAREEM WANAS

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and

Διαβάστε περισσότερα

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 28(28), No. 146, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Fuzzifying Tritopological Spaces

Fuzzifying Tritopological Spaces International Mathematical Forum, Vol., 08, no. 9, 7-6 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/imf.08.88 On α-continuity and α-openness in Fuzzifying Tritopological Spaces Barah M. Sulaiman

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions

The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions Pure Mathematical Sciences, Vol. 1, 01, no. 4, 187-196 The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions Goh Jiun Shyan School of Science and Technology Universiti Malaysia Sabah Jalan

Διαβάστε περισσότερα

ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II)

ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II) Commun. Korean Math. Soc. 25 (2010), No. 3, pp. 457 475 DOI 10.4134/CKMS.2010.25.3.457 ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II) Ahmed Abd El-Kader Ramadan, Salah El-Deen Abbas, and Ahmed Aref

Διαβάστε περισσότερα

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points Global Journal of Pure Applied Mathematics. ISSN 0973-768 Volume, Number 3 06, pp. 849 865 Research India Publications http://www.ripublication.com/gjpam.htm On New Subclasses of Analytic Functions with

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα