Common Random Fixed Point Theorems under Contraction of rational Type in Multiplicative Metric Space

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Common Random Fixed Point Theorems under Contraction of rational Type in Multiplicative Metric Space"

Transcript

1 Global Journal of Pure and Applied Mathematics. ISSN Volume 13 Number ) pp Research India Publications Common Random Fixed Point Theorems under Contraction of rational Type in Multiplicative Metric Space 1 Nisha Sharma 2* Arti Mishra 3 Pooja Khurana 4 Vandana Kumari 5 Vishnu Narayan Mishra 1 23 Department of Mathematics Manav Rachna International University Faridabad Haryana India. 4 Department of Mathematics Govt. College Tigaon Haryana India. 5 Sardar Vallabhbhai National Institute of Technology Surat Gujarat India. * corresponding author: Abstract This is the paper inspired and yeasted by [1] we obtain common random fixed point theorems satisfying contractive mapping in the setup of multiplicative metric space and additionally we are going to prove compatible and weak compatible mappings again under rational contractive maps to prove the common random fixed point theorems in multiplicative metric space. Keywords. Random fixed point compatible mapping weak compatible mapping implicit function common fixed point multiplicative metric space. AMS Subject Classification: 46S40 47H10 54H25 I. INTRODUCTION The initiation and research in the direction of random approximation and random fixed point theorems was introduced by the Prague School of probabilistic in 1950s. since then a lot of efforts have been devoted to random fixed point theory and applications see5-14] [18]).Whereas In 1976 some sufficient conditions have been given by Bharucha Reid[14] for a stochastic analogue of Schauder s fixed point theorem which was defined in a separable metric space. One of the powerful tools in current mathematical applications that we have are fixed point theorems. Wide class of problems of mechanics physics etc. have been solved by the extended and

2 3704 Nisha Sharma et al generalized fixed point theorems. Many fixed point theorems have been proved in [references]. In 2008 it was found that the set of all positive real numbers is not complete with respect to usual metric by Bashirov et al. [4] which was overcome by the introduction of the concept of multiplicative metric space. Many authors Abbas [2] kang et al. [15] Sarvar and Badshah-e [17] have been proved many fixed point theorems also they tried to give more results on multiplicative metric space. Beg et al. [5 8 10] studied the interrelation of common random fixed points and random coincidence point of compatible random operator and proved the random fixed points for random operators. II. PRELIMINARIES Definition 1.1. [3] ) Let X be a nonempty set. A multiplicative metric is a mapping Ω: X x X R + satisfying the following conditions: 1.1) Ω xy) 1 xy X and Ω xy)=1 if and only if x=y; 1.2) Ω xy)= Ω yx) xy X; 1.3) Ω xy) Ω xz). Ω zy) xy X multiplicative triangle inequality). Then the mapping Ω together with X i.e. X Ω) is a multiplicative metric space. Definition 1.2. [15] ) Let Xd) be a multiplicative metric space and F:R x X X be a function where X is a non empty set. Then function g:r X is said to be a random common fixed point of the function F is Ftgt))=gt) for all t R. Definition 1.3. [15] ) Let X Ω) be a multiplicative metric space. Then a sequence x n } in X is said to be 1.4) a multiplicative convergent to x if for every multiplicative open ball B ε x)= y Ω x y ) ε ε > 1} there exists a natural number N such that n N then x n B ε x) i.e. Ω x n x) 1 as n. 1.5) a multiplicative Cauchy sequence if ε > 1 for all m n >N that is Ω x n x m ) 1 as n. 1.6) we call a multiplicative metric space complete if every multiplicative Cauchy sequence in it is multiplicative convergent to x X. 1.7) Let Xd) be a multiplicative metric space. Two mappings αγ: R x X X are said to be

3 Common Random Fixed Point Theorems under Contraction of rational Type 3705 a. Compatible for each t R if lim n Ωαt γt θ n t)))) γt αt θ n t)))=1 Whenever lim n α t γt θ n t))) lim n γ t αt θ n t))) exist in X and lim α t γt θ n t)))=lim γ t αt θ n t))) t R where θ n } is a n n sequence of mappings. b. Weakly compatible for each t R if γt θt)) = αt θt)) for some mapping θ implies γ t αt θt))) = α t γt θt))) for every t R. III. MAIN RESULTS Now we prove the following theorems for compatible and weakly compatible mappings satisfying implicit function in a multiplicative metric space. Theorem 2.1. Let us consider complete multiplicative metric space X Ω) and a function Φ: R x X X be a function satisfying the following conditions E1) ΩΦt x) Φt y)) For all x y X where t R and [01). Then Φ have a unique random fixed point. ΩyΦtx)). ΩΦtx)Φty)) [ΩyΦty))+ΩxΦty)) 1+Ωxy) [ Ωxy)ΩyΦtx))+ΩΦty)x)ΩyΦtx)) ΩyΦtx))+ΩΦtx)Φty)) [ Ωxy)+ΩΦtx)Φty)) ] ΩxΦtx))+ΩyΦty)) [ΩxΦty))+ΩxΦtx)) 1+ΩΦtx)Φty)) ] } 2 Proof. A sequence θ n }can be defined as θ n t) = Φt θ n 1 t)) where θ n is a arbitrary function defined as θ n : R X for t R and n=0123 If we define θ n+1 t) = θ n t) for some n and t R then θ n t) is a random fixed point Let θ n+1 t) θ n t) for each n and t R then for all t R substituting x = θ n 1 t) and y = θ n t) in E1) we have Ω θ n t) θ n+1 t))= Ω Φt θ n 1 t)) Φt θ n t)))

4 3706 Nisha Sharma et al Ω θ n t)φt θ n 1 t))) ΩΦt θ n 1 t))φt θ n t))). 2 [ Ω θ n t)φt θ n t)))+ω θ n 1 t)φt θ n t))) 1+Ω θ n 1 t) θ n t)) [ Ω θ n 1 t) θ n t)).ω θ n t)φt θ n 1 t)))+ωφt θ n t)) θ n 1 t)).ω θ n t)φt θ n 1 t))) Ω θ n t)φt θ n 1 t)))+ωφt θ n 1 t))φt θ n t))) [ Ω θ n 1 t) θ n t))+ωφt θ n 1 t))φt θ n t))) Ω θ n 1 t)φt θ n 1 t)))+ω θ n t)φt θ n t))) [ Ω θ n 1 t)φt θ n t)))+ω θ n 1 t)φt θ n 1 t))) ] 1+ΩΦt θ n 1 t))φt θ n t))) Ω θ n t) θ n t)) Ω θ n t) θ n+1 t)). [ Ω θ n t) θ n+1 t))+ω θ n 1 t) θ n+1 t)). ] 1+Ω θ n 1 t) θ n t)) [ Ω θ n 1 t) θ n t)).ω θ n t) θ n t))+ω θ n 1 t) θ n+1 t)).ω θ n t) θ n t)) Ω θ n t) θ n t))+ω θ n+1 t) θ n t)) [ Ω θ n 1 t) θ n t))+ω θ n t) θ n+1 t)) Ω θ n 1 t) θ n t))+ω θ n t) θ n+1 t)) [ Ω θ n 1 t) θ n+1 t))+ω θ n 1 t) θ n t)) ] 1+Ω θ n t) θ n+1 t)) 1 Ω θ n t) θ n+1 t)). [ Ω θ n t) θ n+1 t))+ω θ n 1 t) θ n t))ω θ n t) θ n+1 t)) ] 1+Ω θ n 1 t) θ n t)) [ Ω θ n 1 t) θ n t))+ω θ n 1 t) θ n t))ω θ n t) θ n+1 t)) 1+Ω θ n+1 t) θ n t)) [ Ω θ n 1 t) θ n t))+ω θ n t) θ n+1 t)) Ω θ n 1 t) θ n t))+ω θ n t) θ n+1 t)) [ Ω θ n 1 t) θ n t)).ω θ n t) θ n+1 t))+ω θ n 1 t) θ n t)) ] 1+Ω θ n t) θ n+1 t)) } Ω 2 θ n 1 t) θ 2 n t))} } 2 2 } hence we have Ω θ n t) θ n+1 t)) Ω θ n 1 t) θ n t)) Ω 2 θ n 2 t) θ n 1 t)) Ω 3 θ n 3 t) θ n 2 t)) Ω n θ 0 t) θ 1 t))

5 Common Random Fixed Point Theorems under Contraction of rational Type 3707 For n m N having m<n we have Ω θ m t) θ n t)) Ω θ m t) θ m+1 t)). Ω θ m+1 t) θ m+2 t)) Ω θ n 1 t) θ n t)) Ω m θ 0 t) θ 1 t)). Ω m+1 θ 0 t) θ 1 t)) Ω n 1 θ 0 t) θ 1 t)) Ω m 1 θ 0 t) θ 1 t)) Taking n approaches to infinity Ω θ m t) θ n t)) 1. This implies that θ m t)} is a multiplicative Cauchy sequence. Since the space is complete it implies that the convergent point say θt)) belongs to X. now it is to be claim that Φt θt)) = θt) substituting x= θt) and y= θ n t) in E1) ΩΦt θt) ) θ n+1 t)) ΩΦt θt) ) Φt θ n t))) Ω θ n t)φtθt) )) ΩΦtθt) )Φt θ n t))). 2 [ Ω θ n t)φt θ n t)))+ωθt) Φt θ n t))) 1+Ωθt) θ n t)) [ Ωθt) θ n t))ω θ n t)φtθt) ))+ΩΦt θ n t))θt) )Ω θ n t)φtθt) )) Ω θ n t)φtθt) ))+ΩΦtθt) )Φt θ n t))) [ Ωθt) θ n t))+ωφtθt) )Φt θ n t))) Ωθt) Φtθt) ))+Ω θ n t)φt θ n t))) [ Ωθt) Φt θ n t)))+ωθt) Φtθt) )) 1+ΩΦtθt) )Φt θ n t))) ] } Ω θ n t)φtθt) )) ΩΦtθt) ) θ n+1 t)). [ Ω θ n t) θ n+1 t))+ωθt) θ n+1 t)) 1+Ωθt) θ n t)) [ Ωθt) θ n t))ω θ n t)φtθt) ))+Ω θ n+1 t)θt) )Ω θ n t)φtθt) )) Ω θ n t)φtθt) ))+ΩΦtθt) ) θ n+1 t)) [ Ωθt) θ n t))+ωφtθt) ) θ n+1 t)) Ωθt) Φtθt) ))+Ω θ n t) θ n+1 t)) [ Ωθt) θ n+1 t))+ωθt) Φtθt) )) 1+ΩΦtθt) ) θ n+1 t)) ] } 2

6 3708 Nisha Sharma et al Taking n approaches to infinity we have ΩΦt θt) ) θt)) Hence we have [ [ Ωθt)Φtθt) )) ΩΦtθt) )θt)). Ωθt)θt))+Ωθt) θt)) 1+Ωθt) θt)) Ωθt) θt))ωθt)φtθt) ))+Ωθt)θt) )Ωθt)Φtθt) )) Ωθt)Φtθt) ))+ΩΦtθt) )θt)) Ωθt) θt))+ωφtθt) )θt)) [ Ωθt) Φtθt) ))+Ωθt)θt)) ] [ } 1.1 Ωθt) θt))+ωθt) Φtθt) )) 1+ΩΦtθt) )θt)) ] } 2 Implies ΩΦt θt) ) θt)) =1 Φt θt) ) = θt) Uniqueness Let t) be another common random fixed point of Φ. Then using the inequality E1) Ωθt) θt))=ω Φt θt)) Φt θt))) Ωθt)Φtθt))). ΩΦtθt))Φtθt))) [Ωθt)Φtθt)))+Ωθt)Φtθt))) 1+Ωθt)θt)) [ Ωθt)θt))Ωθt)Φtθt)))+ΩΦtθt))θt))Ωθt)Φtθt))) Ωθt)Φtθt)))+ΩΦtθt))Φtθt))) [ Ωθt)θt))+ΩΦtθt))Φtθt))) Ωθt)Φtθt)))+Ωθt)Φtθt))) 2 [ Ωθt)Φtθt)))+Ωθt)Φtθt))) ] 1+ΩΦtθt))Φtθt))) }

7 Common Random Fixed Point Theorems under Contraction of rational Type 3709 Ωθt)θt)). Ωθt)θt)) [Ωθt)θt))+Ωθt)θt)) 1+Ωθt)θt)) [ Ωθt)θt))Ωθt)θt))+Ωθt)θt))Ωθt)θt)) Ωθt)θt))+Ωθt)θt)) [ Ωθt)θt))+Ωθt)θt)) ] Ωθt)θt))+Ωθt)θt)) [Ωθt)θt))+Ωθt)θt)) 1+Ωθt)θt)) ] } 2 [since θt) and θt) are random fixed points of Φ ] 1.1. = [Ωθt) θt))]. } [Ωθt) θt))]. 1 Ωθt) θt)) Ω 2 2 θt) θt))} 2 Ωθt) θt)) Ω θt) θt)) which is a contradiction since [01). Hence we have θt) = θt). This completes the proof. Theorem 2.2. Let us consider complete multiplicative metric space X Ω) and functions Φ α γ and β: R x X X be four functions satisfying the following conditions: E2) αtx) β tx) and ΦtX) γtx) E3) Ω αt xt)) Φt yt)))

8 3710 Nisha Sharma et al Ωβtyt))Φtyt)))[Ωαtxt))γtxt))+Ωβtyt))γtxt))] ΩΦtyt))βtyt)))+ΩΦtyt))αtxt))) Ωαtxt))Φtyt)))[Ωβtyt))Φtyt))+Ωαtxt))γtxt))] ΩΦtyt))αtxt)))+Ωγtxt))βtyt))) Ωβtyt))γtxt)))[ΩΦtyt))βtyt)))+Ωγ txt))αtxt))] Ωβtyt)) γtxt)))+ωαtxt))φtyt))) Ω γtxt))βtyt)))[ωφtyt))βtyt)) +ΩΦtyt))αtxt))] Ωαtxt))γtxt))+Ωβtyt)) γtxt))) )} For all x y X where t R and [01). Then Φ α γ and β have a unique random fixed point is and only if one of the following conditions are satisfied: E4) either α or γ is continuous the pair α γ) is compatible and the pair β Φ) is weakly compatible. E5) either Φ or β is continuous the pair Φ β)is compatible and the pair α γ ) is weakly compatible. Proof: Let the function θ 0 : R X be an arbitrary function on X by E2) there exists a function θ 1 : R X such that for t R can be defined as t θ 0 t))= β t θ 1 t)) and for this function ϑ 1 : R X we can choose a function θ 2 : R X such that for t R can be defined as γ t θ 2 t))= Φ t θ 1 t)) and so on. By using the principle of mathematical induction we can define a sequence y n t)} t R of functions as follows: y 2n+1 t)= βt θ 2n+1 t))= αt θ 2n t)) y 2n t)= γt θ 2n t))= Φt θ 2n 1 t)) 2.1) Using E3) and 2.1) we have Ωy 2n+1 t) y 2n t)) = Ω αt θ 2n t)) Φt θ 2n 1 t)))

9 Common Random Fixed Point Theorems under Contraction of rational Type 3711 Ωβt θ 2n 1 t))φt θ 2n 1 t)))[ωαt θ 2n t))γt θ 2n t))+ωβt θ 2n 1 t))γt θ 2n t))] ΩΦt θ 2n 1 t))βt θ 2n 1 t)))+ωφt θ 2n 1 t))αt θ 2n t))) Ωαt θ 2n t))φt θ 2n 1 t)))[ωβt θ 2n 1 t))φt θ 2n 1 t))+ωαt θ 2n t))γt θ 2n t))] ΩΦt θ 2n 1 t))αt θ 2n t)))+ωγt θ 2n t))βt θ 2n 1 t))) Ωβt θ 2n 1 t))γt θ 2n t)))[ωφt θ 2n 1 t)βt θ 2n 1 t)))+ωγt θ 2n t))αt θ 2n t))] Ωβt θ 2n 1 t)) γt θ 2n t)))+ω αt θ 2n t))φt θ 2n 1 t))) Ω γt θ 2n t))βt θ 2n 1 t)))[ωφt θ 2n 1 t))βt θ 2n 1 t)) +ΩΦt θ 2n 1 t))αt θ 2n t))] Ωαt θ 2n t))γt θ 2n t))+ωβt θ 2n 1 t)) γt θ 2n t))) )} Ωy 2n 1 t)y 2n t))[ωy 2n+1 t)y 2n t)+ωy 2n 1 t)y 2n t))] Ωy 2n t)y 2n 1 t))+ωy 2n t)y 2n+1 t)) Ωy 2n+1 t)y 2n t))[ωy 2n 1 t)y 2n t))+ωy 2n+1 t)y 2n t))] Ωy 2n t)y 2n+1 t))+ωy 2n t)y 2n 1 t)) Ωy 2n 1 t)y 2n t))[ωy 2n t)y 2n 1 t))+ωy 2n t)y 2n+1 t))] Ωy 2n 1 t) y 2n t))+ω y 2n+1 t)y 2n t)) Ωy 2n 1 t)y 2n t))[ωy 2n t)y 2n 1 t)) +Ωy 2n t)y 2n+1 t))] Ωy 2n+1 t)y 2n t))+ωy 2n 1 t)y 2n t)) )} Ωy 2n 1 t) y 2n t)) Ωy 2n+1 t) y 2n t)) Ωy 2n 1 t) y 2n t)) Ωy 2n 1 t) y 2n t)))} if Ωy 2n+1 t) y 2n t)) Ω y 2n+1 t) y 2n t)) a contradiction since [01). Implies Ωy 2n+1 t) y 2n t)) Ω y 2n 1 t) y 2n t)) 2.2) Ωy 2n+2 t) y 2n+1 t)) = Ω Φt θ 2n+1 t)) αt θ 2n t))) = Ω αt θ 2n t)) Φt θ 2n+1 t))) Ωβt θ 2n+1 t))φt θ 2n+1 t)))[ωαt θ 2n t))γt θ 2n t))+ωβt θ 2n+1 t))γt θ 2n t))] ΩΦt θ 2n+1 t))βt θ 2n+1 t)))+ωφt θ 2n+1 t))αt θ 2n t))) Ωαt θ 2n t))φt θ 2n+1 t)))[ωβt θ 2n+1 t))φt θ 2n+1 t))+ωαt θ 2n t))γt θ 2n t))] ΩΦt θ 2n+1 t))αt θ 2n t)))+ωγt θ 2n t))βt θ 2n+1 t))) Ωβt θ 2n+1 t))γt θ 2n t)))[ωφt θ 2n+1 t))βt θ 2n+1 t)))+ωγt θ 2n t))αt θ 2n t))] Ωβt θ 2n+1 t)) γt θ 2n t)))+ω αt θ 2n t))φt θ 2n+1 t))) Ω γt θ 2n t))βt θ 2n+1 t)))[ωφt θ 2n+1 t))βt θ 2n+1 t)) +Ω Φt θ 2n+1 t))αt θ 2n t))] Ωαt θ 2n t))γt θ 2n t))+ωβt θ 2n+1 t)) γt θ 2n t))) )}

10 3712 Nisha Sharma et al Ωy 2n+1 t)y 2n+2 t))[ωy 2n+1 t)y 2n t))+ωy 2n+1 t)y 2n t))] Ωy 2n+2 t)y 2n+1 t))+ωy 2n+2 t)y 2n+1 t)) Ωy 2n+1 t)y 2n+2 t))[ωy 2n+1 t)y 2n+2 t))+ωy 2n+1 t)y 2n t))] Ωy 2n+2 t)y 2n+1 t))+ωy 2n t)y 2n+1 t)) Ωy 2n+1 t)y 2n t))[ωy 2n+2 t)y 2n+1 t)+ωy 2n t)y 2n+1 t))] Ωy 2n+1 t) y 2n t))+ω y 2n+1 t)y 2n+2 t)) Ωy 2n t)y 2n+1 t))[ωy 2n+2 t)y 2n+1 t)) +Ωy 2n+2 t)y 2n+1 t)] Ωy 2n+1 t)y 2n t))+ωy 2n+1 t)y 2n t)) )} Ωy 2n+1 t) y 2n t)) Ωy 2n+1 t) y 2n+2 t)) Ωy 2n+1 t) y 2n t)) Ωy 2n+2 t) y 2n+1 t)))} if Ωy 2n+2 t) y 2n+1 t)) Ω y 2n+2 t) y 2n+1 t)) a contradiction since [01). Implies Ωy 2n+2 t) y 2n+1 t)) Ω y 2n+1 t) y 2n t)) 2.3) Using 2.2) and 2.3) we have hence 2.4) Ωy n+1 t) y n t)) Ω y n t) y n 1 t)) for all n Ωy n+1 t) y n t)) Ω y n t) y n 1 t)) Ω 2 y n 1 t) y n 2 t))... Ω n y 1 t) y 0 t)) Let m n N with m >n. then we have Ω y m t) y n t)) Ω y m t) y m 1 t)). Ω y m 1 t) y m 2 t)) Ω y n+1 t) y n t)) Ω m 1 y 1 t) y 0 t)). Ω m 2 y 1 t) y 0 t)) Ω n y 1 t) y 0 t))

11 Common Random Fixed Point Theorems under Contraction of rational Type 3713 Ω n 1 y 1 t) y 0 t)) Taking n Ω y m t) y n t)) 0 hence yn t)} is a multiplicative Cauchy sequence. Since X is complete so ynt)} is a multiplicative convergent to a point yt) X as n approaches to infinity and also subsequences of ynt)} also are multiplicative convergent to a point yt) X and t R βt θ 2n+1 t)) yt) Φt θ 2n+1 t)) yt) 2.5) αt θ 2n t)) yt) γt θ 2n t)) yt) Now since the pair α γ is compatible then by 2.5) we obtain lim Ωα t γt θ 2n t))) γ t αt θ 2n t))) = ) n Suppose that γ is continuous it follows that γ t γt θ 2n t))) γt yt)) γ t αt θ 2n t))) γt yt)) 2.7) Then by definition of compatibility we have α t γt θ 2n t))) γ t yt)) t R. 2.8) Using condition E3) we have Ω α t γt θ 2n t))) Φt θ 2n+1 t))) Ωβt θ 2n+1 t))φt θ 2n+1 t)))[ωαtγt θ 2n t)))γtγt θ 2n t)))+ωβt θ 2n+1 t))γtγt θ 2n t)))] ΩΦt θ 2n+1 t))βt θ 2n+1 t)))+ωφt θ 2n+1 t))αtγt θ 2n t)))) Ωαtγt θ 2n t)))φt θ 2n+1 t)))[ωβt θ 2n+1 t))φt θ 2n+1 t))+ωαtγt θ 2n t)))γtγt θ 2n t)))] ΩΦt θ 2n+1 t))αtγt θ 2n t))))+ωγtγt θ 2n t)))βt θ 2n+1 t))) Ωβt θ 2n+1 t))γtγt θ 2n t))))[ωφt θ 2n+1 t))βt θ 2n+1 t)))+ωγ tγt θ 2n t)))αtγt θ 2n t)))] Ωβt θ 2n+1 t)) γtγt θ 2n t))))+ωαtγt θ 2n t)))φt θ 2n+1 t))) Ω γtγt θ 2n t)))βt θ 2n+1 t)))[ωφt θ 2n+1 t))βt θ 2n+1 t)) +ΩΦt θ 2n+1 t))αtγt θ 2n t)))] Ωαtγt θ 2n t)))γtγt θ 2n t)))+ωβt θ 2n+1 t)) γtγt θ 2n t)))) )}

12 3714 Nisha Sharma et al Letting n approaches to infinity we have Ω γt yt)) yt)) Ωyt)yt))[Ωγtyt))γtyt))+Ωyt)γtyt))] Ωyt)yt))+Ωyt)γtyt))) Ωγtyt))yt))[Ωyt)yt))+Ωγtyt))γtyt)))] Ωyt)γtyt)))+Ωγtyt)))yt)) Ωyt)γtyt))))[Ωyt)yt))+Ωγtyt))γtyt))] Ωyt) γtyt)))+ωγtyt))yt)) Ω γtyt))yt))[ωyt)yt)) +Ωyt)γtyt))] Ωγtyt))γtyt)))+Ωyt)γtyt))) )} Ω γt yt)) yt)) ) } Ω γt yt)) yt)) Ω γt yt)) yt)) a contradiction since [01). Which implies that γ tyt))=yt) 2.9) Now we prove that αt yt)) = yt). if possible αt yt)) yt) Using condition E3) Ω αt yt)) Φt θ 2n 1 t))) Ωβt θ 2n+1 t))φt θ 2n+1 t)))[ωαtyt))γtyt))+ωβt θ 2n+1 t))γtyt))] ΩΦt θ 2n+1 t))βt θ 2n+1 t)))+ωφt θ 2n+1 t))αtyt))) Ωαtyt))Φt θ 2n+1 t)))[ωβt θ 2n+1 t))φt θ 2n+1 t))+ωαtyt))γtyt))] ΩΦt θ 2n+1 t))αtyt)))+ωγtyt))βt θ 2n+1 t))) Ωβt θ 2n+1 t))γtyt)))[ωφt θ 2n+1 t))βt θ 2n+1 t)))+ωγ tyt))αtyt))] Ωβt θ 2n+1 t)) γtyt)))+ωαtyt))φt θ 2n+1 t))) Ω γtyt))βt θ 2n+1 t)))[ωφt θ 2n+1 t))βt θ 2n+1 t)) +ΩΦt θ 2n+1 t))αtyt))] Ωαtyt))γtyt))+Ωβt θ 2n+1 t)) γtyt))) )}

13 Common Random Fixed Point Theorems under Contraction of rational Type 3715 Taking n we have Ω αt yt)) yt)) Ωyt)yt))[Ωαtyt))yt)+Ωyt)yt)] Ωyt)yt))+Ωyt)αtyt))) Ωαtyt))yt))[Ωyt)yt))+Ωαtyt))yt)] Ωyt)αtyt)))+Ωyt)yt)) Ωyt)yt))[Ωyt)yt))+Ωyt)αtyt))] Ωyt) yt))+ωαtyt))yt)) Ω yt)yt))[ωyt)yt)) +Ωyt)αtyt))] Ωαtyt))yt))+Ωyt) yt)) )} [using 2.5)2.9)] Implies 1 Ω αt yt)) yt)) 1 1 )} Ω αt yt)) yt)) Ω αt yt)) yt)) a contradiction since [01). And thus we have αt yt)) = yt). Hence we have αt yt)) = γt yt)) = yt). 2.10) Now since yt) = αt yt)) αt X)) β tx) ht) X such that yt) = β tht)) for t R. Now we prove that Φt ht))=yt). if possible Φt ht)) yt) Using condition E3) we obtain Ω yt) Φt ht))) = Ω αt yt)) Φt ht)))

14 3716 Nisha Sharma et al Ωβtht))Φtht)))[Ωαtyt))γtyt))+Ωβtht))γtyt))] ΩΦtht))βtht)))+ΩΦtht))αtyt))) Ωαtyt))Φtht)))[Ωβtht))Φtht))+Ωαtyt))γtyt))] ΩΦtht))αtyt)))+Ωγtyt))βtht))) Ωβtht))γtyt)))[ΩΦtht))βtht)))+Ωγ tyt))αtyt))] Ωβtht)) γtyt)))+ωαtyt))φtht))) Ω γtyt))βtht)))[ωφtht))βtht)) +ΩΦtht))αtyt))] Ωαtyt))γtyt))+Ωβtht)) γtyt))) )} Hence we obtain Ωyt)Φtht)))[Ωyt)yt)+Ωyt)yt)] ΩΦtht))yt))+ΩΦtht))yt)) Ω yt) Φt ht))) h h Ωyt)Φtht)))[Ωyt)Φtht))+Ωyt)yt)] ΩΦtht))yt))+Ωyt)yt)) Ωyt)yt))[ΩΦtht))yt))+Ωyt)yt)] Ωyt) yt))+ωyt)φtht))) Ω yt)yt))[ωφtht))yt)) +Ωβtht))yt)] Ωyt)yt))+Ωyt) yt)) )} 1 Ω yt) Φt ht))) 1 Ω yt) Φt ht))) )} Ω yt) Φt ht))) Ω yt) Φt ht))) a contradiction since [01). And thus we have Φt ht)) = yt) for t R. hence we have Φt ht)) = βt ht)) = yt) for t R. 2.11) Since the pair Φ β) is weakly compatible we have Φ t βt ht))) = β t Φt ht))) that is Φt yt)) = βt yt)). 2.12)

15 Common Random Fixed Point Theorems under Contraction of rational Type 3717 From condition E3) and 2.10) we have Ω yt) Φt yt))) = Ω αt yt)) Φt yt))) Ωβtyt))Φtyt)))[Ωαtyt))γtyt))+Ωβtyt))γtyt))] ΩΦtyt))βtyt)))+ΩΦtyt))αtyt))) Ωαtyt))Φtyt)))[Ωβtyt))Φtyt))+Ωαtyt))γtyt))] ΩΦtyt))αtyt)))+Ωγtyt))βtyt))) Ωβtyt))γtyt)))[ΩΦtyt))βtyt)))+Ωγ tyt))αtyt))] Ωβtyt))γtyt)))+Ωαtyt))Φtyt))) Ω γtyt))βtyt)))[ωφtyt))βtyt)) +ΩΦtyt))αtyt))] Ωαtyt))γtyt))+Ωβtyt))γtyt))) )} Ωβtyt))Φtyt)))[Ωyt)yt))+ΩΦtyt))yt))] ΩΦtyt))Φtyt)))+ΩΦtyt))yt)) Ωyt)Φtyt)))[ΩΦtyt))Φtyt))+Ωyt)yt)] ΩΦtyt))yt))+Ωyt)Φtyt))) ΩΦtyt))yt))[ΩΦtyt))Φtyt)))+Ωyt)yt))] ΩΦtyt)) yt))+ωyt)φtyt))) Ωyt)Φtyt)))[ΩΦtyt))Φtyt)) +ΩΦtyt))yt)] Ωyt)yt)+ΩΦtyt)) yt)) )} [using 2.10) and 2.12)] Ω yt) Φt yt))) ) } Ω yt) Φt yt))) Ω yt) Φt yt))) a contradiction since [01). We get yt) = Φt yt)) = βt yt)) for t R 2.13) Using 2.10) and 2.13) we have yt)= Φt yt)) = βt yt))= αt yt)) = γt yt)) t R that is yt) is a common random fixed point of Φ β α and γ.

16 3718 Nisha Sharma et al For uniqueness let zt) X be another common random fixed point of Φ β α and γ using condition E3) Ωyt) zt)) = Ω αt yt)) Φt zt))) Ωβtzt))Φtzt)))[Ωαtyt))γtyt))+Ωβtzt))γtyt))] ΩΦtzt))βtzt)))+ΩΦtzt))αtyt))) Ωαtyt))Φtzt)))[Ωβtzt))Φtzt))+Ωαtyt))γtyt))] ΩΦtzt))αtyt)))+Ωγtyt))βtzt))) Ωβtzt))γtyt)))[ΩΦtzt))βtzt)))+Ωγ tyt))αtyt))] Ωβtzt)) γtyt)))+ωαtyt))φtzt))) Ω γtyt))βtzt)))[ωφtzt))βtzt)) +ΩΦtzt))αtyt))] Ωαtyt))γtyt))+Ωβtzt)) γtyt))) )} Ωzt)zt))[Ωyt)yt)+Ωzt)yt)] Ωzt)zt))+Ωzt)yt)) Ωyt)zt))[Ωzt)zt))+Ωyt)yt)] Ωzt))yt))+Ωyt)zt)) Ωzt)yt))[Ωzt)zt))+Ωyt)yt)] Ωzt) yt))+ωyt)zt)) Ω yt)zt))[ωzt)zt)) +Ωzt)yt)] Ωyt)yt)+Ωzt) yt)) )} Ωyt) zt)) Ω yt) zt)) which is a contradiction since [01). Which gives yt) = zt) for t R. Hence Φ β α and γ have unique common fixed point. Now suppose that α is continuous then we have α t αt θ 2n t))) αt yt))α t γt θ 2n t))) αt yt)) 2.14) Since the pairs α γ is compatible 2.6) implies that γ t αt θ 2n t))) αt yt)) 2.15) Using E3) we have Ω α t αt θ 2n t))) Φt θ 2n+1 t)))

17 Common Random Fixed Point Theorems under Contraction of rational Type 3719 Ω βt θ 2n+1 t)) Φt θ 2n+1 t))). [Ωαtαt θ 2n t)))γtαt θ 2n t)))+ωβt θ 2n+1 t))γtαt θ 2n t)))] ΩΦt θ 2n+1 t))βt θ 2n+1 t)))+ωφt θ 2n+1 t))αtαt θ 2n t)))) Ω α t αt θ 2n t))) Φt θ 2n+1 t))). [Ωβt θ 2n+1 t))φt θ 2n+1 t))+ωαtαt θ 2n t)))γtαt θ 2n t)))] ΩΦt θ 2n+1 t))αtαt θ 2n t))))+ωγtαt θ 2n t)))βt θ 2n+1 t))) Ω βt θ 2n+1 t)) γ t αt θ 2n t)))). [ΩΦt θ 2n+1 t))βt θ 2n+1 t)))+ωγ tαt θ 2n t)))αtαt θ 2n t)))] Ωβt θ 2n+1 t))γtαt θ 2n t))))+ωαtαt θ 2n t)))φt θ 2n+1 t))) Ω γ t αt θ 2n t))) βt θ 2n+1 t))). [ΩΦt θ 2n+1 t))βt θ 2n+1 t)) +ΩΦt θ 2n+1 t))αtαt θ 2n t)))] Ωαtαt θ 2n t)))γtαt θ 2n t)))+ωβt θ 2n+1 t))γtαt θ 2n t)))) )} Letting n approaches to infinity we have Ω αt yt)) yt)) Ωyt)yt))[Ωαtyt))αtyt))+Ωyt)αtyt)))] Ωyt)yt))+Ωyt)αtyt))) Ωαtyt))yt))[Ωyt)yt))+Ωαtyt))αtyt)))] Ωyt)αtyt)))+Ωαtyt))yt)) Ωyt)αtyt)))[Ωyt)yt))+Ωαtyt))αtyt))] Ωyt) αtyt)))+ωαtyt))yt)) Ω αtyt))yt))[ωyt)yt)) +Ωyt)αtyt))] Ωαtyt))αtyt)))+Ωyt)αtyt))) )} [using 2.14) and and 2.15) ] Ω αt yt)) yt)) Ω αt yt)) yt)) which is a contradiction since [01). Which gives αt yt)) = yt) for t R. 2.16) Since yt)= αt yt)) αt X) βt X) there exists ht) X such that yt) = βt ht)) for t R.

18 3720 Nisha Sharma et al Using condition E3) we obtain Ω α t αt θ 2n t))) Φt ht))) Ωβtht))Φtht)))[Ωαtαt θ 2n t)))γtαt θ 2n t)))+ωβtht))γtαt θ 2n t)))] ΩΦtht))βtht)))+ΩΦtht))αtαt θ 2n t)))) Ωαtαt θ 2n t)))φtht)))[ωβtht))φtht))+ωαtαt θ 2n t)))γtαt θ 2n t)))] ΩΦtht))αtαt θ 2n t))))+ωγtαt θ 2n t)))βtht))) Ωβtht))γtαt θ 2n t))))[ωφtht))βtht)))+ωγ tαt θ 2n t)))αtαt θ 2n t)))] Ωβtht)) γtαt θ 2n t))))+ωαtαt θ 2n t)))φtht))) Ω γtαt θ 2n t)))βtht)))[ωφtyt))βtht)) +ΩΦtht))αtαt θ 2n t)))] Ωαtαt θ 2n t)))γtαt θ 2n t)))+ωβtht)) γtαt θ 2n t)))) )} letting n approaches to infinity Ωyt)Φtht)))[Ωyt)yt)+Ωyt)yt))] ΩΦtht))yt))+ΩΦtht))yt))) Ω yt) Φt ht))) Ωyt)Φtht)))[Ωyt)Φtht))+Ωyt)yt))] ΩΦtht))yt))+Ωyt))yt)) Ωyt)yt))[ΩΦtht))yt))+Ωyt)yt))] Ωyt) yt)))+ωyt)φtht))) Ω yt)yt))[ωφtyt))yt)) +ΩΦtht))yt)] Ωyt)yt))+Ωyt) yt)) )} 1 Ω yt) Φt ht))) 1 ΩΦt ht)) ht) ) } [using 2.14) and 2.15)] Ω yt) Φt ht))) Ω yt) Φt ht))) which is a contradiction since [01). Φt ht)) = yt). Hence Φt ht)) = βt ht)) = yt )for t R. Since the pair Φ β) is weakly compatible the we have Φ t βt ht))) = β t Φt ht))) i. e. Φt yt)) = βt yt)) 2.17)

19 Common Random Fixed Point Theorems under Contraction of rational Type 3721 from condition E3) and 2.17) we have Ω αt θ 2n t)) Φt yt))) Ωβtyt))Φtyt)))[Ωαt θ 2n t))γt θ 2n t))+ωβtyt))γt θ 2n t))] ΩΦtyt))βtyt)))+ΩΦtyt))αt θ 2n t))) Ωαt θ 2n t))φtyt)))[ωβtyt))φtyt))+ωαt θ 2n t))γt θ 2n t))] ΩΦtyt))αt θ 2n t)))+ωγt θ 2n t))βtyt))) Ωβtyt))γt θ 2n t)))[ωφtyt))βtyt)))+ωγ t θ 2n t))αt θ 2n t))] Ωβtyt)) γt θ 2n t)))+ωαt θ 2n t))φtyt))) Ω γt θ 2n t))βtyt)))[ωφtyt))βtyt)) +ΩΦtyt))αt θ 2n t))] Ωαt θ 2n t))γt θ 2n t))+ωβtyt)) γt θ 2n t))) )} Taking n approaches to infinity we have ΩΦtyt))Φtyt)))[Ωyt)yt))+ΩΦtyt))yt))] ΩΦtyt))Φtyt)))+ΩΦtyt))yt)) Ωyt)Φtyt)))[ΩΦtyt))Φtyt))+Ωyt)yt))] ΩΦtyt))yt))+Ωyt)Φtyt))) ΩΦtyt))yt))[ΩΦtyt))Φtyt)))+Ωyt)yt))] ΩΦtyt)) yt))+ωyt)φtyt))) Ω yt)φtyt)))[ωφtyt))φtyt)) +ΩΦtyt))yt))] Ωyt)yt))+ΩΦtyt)) yt)) )} [using 2.17] Ω yt) Φt yt))) Ω yt) Φt yt))) which is a contradiction since [01). Hence we have yt) = Φt yt)) for t R. Using 2.17) we have Φt yt)) = βt yt)) = yt). 2.18) Since yt) = Φt yt)) Φt X) γt X) there exists gt) X such that γt gt)) = yt) for t R 2.19) Again using E3) we have Ω αt gt)) yt))= Ω αt gt)) Φt yt))

20 3722 Nisha Sharma et al Ωβtyt))Φtyt)))[Ωαtgt))γtgt))+Ωβtyt))γtgt))] ΩΦtyt))βtyt)))+ΩΦtyt))αtgt))) Ωαtgt))Φtyt)))[Ωβtyt))Φtyt))+Ωαtgt))γtgt))] ΩΦtyt))αtgt)))+Ωγtgt))βtyt))) Ωβtyt))γtgt)))[ΩΦtyt))βtyt)))+Ωγ tgt))αtgt))] Ωβtyt)) γtgt)))+ωαtgt))φtyt))) Ω γtgt))βtyt)))[ωφtyt))βtyt)) +ΩΦtyt))αtgt))] Ωαtgt))γtgt))+Ωβtyt)) γtgt))) )} Ωyt)yt))[Ωαtgt))yt))+Ωyt)yt)] Ωyt)yt))+Ωyt)αtgt))) Ωαtgt))yt))[Ωyt)yt))+Ωαtgt))yt))] Ωyt)αtgt)))+Ωyt)yt)) Ωyt)yt))[Ωyt)yt))+Ωyt)αtgt))] Ωyt) yt))+ωαtgt))yt)) Ω yt)yt))[ωyt)yt))+ωyt)αtgt))] Ωαtgt))yt))+Ωyt) yt)) )} [using 2.18) and 2.19)] Ω αt gt)) yt)) Ω αt gt)) yt)) which is a contradiction since [01). Hence αt Φt)) = yt). Using 2.19) we have αt gt)) = γt gt))=yt) for t R 2.20) Since the pair α γ) is compatible then α t γt gt))) = γ t αt gt))) i.e. t yt)) = γt yt)). Hence using 2.18) and 2.20) we obtain αt yt)) = γt yt)) = Φt yt)) = βt yt)) = yt) for t R that is yt) is the common random fixed point of α γ Φ and β. Uniqueness Let zt) be another fixed point Ωyt) zt)) = Ω αt yt)) Φt zt)))

21 Common Random Fixed Point Theorems under Contraction of rational Type 3723 Ωβtzt))Φtzt)))[Ωαtyt))γtyt))+Ωβtzt))γtyt))] ΩΦtzt))βtzt)))+ΩΦtzt))αtyt))) Ωαtyt))Φtzt)))[Ωβtzt))Φtzt))+Ωαtyt))γtyt))] ΩΦtzt))αtyt)))+Ωγtyt))βtzt))) Ωβtzt))γtyt)))[ΩΦtzt))βtzt)))+Ωγ tyt))αtyt))] Ωβtzt)) γtyt)))+ωαtyt))φtzt))) Ω γtyt))βtzt)))[ωφtzt))βtzt)) +ΩΦtzt))αtyt))] Ωαtyt))γtyt))+Ωβtzt)) γtyt))) )} Ωzt)zt))[Ωyt)yt))+Ωzt)yt)] Ωzt)zt))+Ωzt)yt)) Ωyt)zt))[Ωzt)zt))+Ωyt)yt))] Ωzt)yt))+Ωyt)zt)) Ωzt)yt))[Ωzt)zt))+Ωyt)yt)] Ωzt) yt))+ωyt)zt)) Ω yt)zt))[ωzt)zt)) +Ωzt)yt)] Ωyt)yt))+Ωzt)) yt)) )} Ωyt) zt)) Ω β yt) zt)) which is a contradiction since [01). yt) = zt). This completes the proof. Similarly we can prove the result using condition E5). In theorem if we put β=γ = 1 the identity mapping) we obtain the corollary Corollary 2.3. Let us consider complete multiplicative metric space X Ω) and functions Φ α: R x X X be two functions satisfying the following conditions E6) Ω αt xt)) Φt yt))) Ωyt)Φtyt)))[Ωαtxt))xt))+Ωyt)xt)] ΩΦtyt))yt))+ΩΦtyt))αtxt))) Ωαtxt))Φtyt)))[Ωyt)Φtyt))+Ωαtxt))xt))] ΩΦtyt))αtxt)))+Ωxt)yt)) Ωyt)xt))[ΩΦtyt))yt))+Ωxt)αtxt))] Ωyt) xt))+ωαtxt))φtyt))) Ω xt)yt))[ωφtyt))yt)) +ΩΦtyt))αtxt))] Ωαtxt))xt))+Ωyt) xt)) )}

22 3724 Nisha Sharma et al For all x y X where t R and [01). Then α and Φ have a unique random fixed point The proof of corollary 2.4 is immediate by assuming R to be a singleton set in Theorem 2.2. Corollary 2.4. Let us consider complete multiplicative metric space X Ω) and a function Φ α γ and β: X X be four function satisfying the following conditions E7) αx) β X) ΦX) γx) E8) Ωαx) Φy)) Ωβy)Φy))[Ωαx)γx))+Ωβy)γx))] ΩΦy)βy))+ΩΦy)αx)) Ωαx)Φy))[Ωβy)Φy))+Ωαx)γx))] ΩΦy)αx))+Ωγx)βy)) Ωβy)γx))[ΩΦy)βy))+Ωγx)αx)] Ωβy) γx)+ωαx)φy)) Ω γx)βy))[ωφy)βy)) +ΩΦy)αx)] Ωαx)γx))+Ωβy) γx)) )} For all x y X where and [01). Then Φ α γ and β have a unique random fixed point is and only if one of the following conditions are satisfied: E9) either α or γ is continuous the pair α γ is compatible and the pair βφ) is weakly compatible. E10) either Φ or β is continuous the pair Φ β is compatible and the pair α γ ) is weakly compatible. REFERENCES [1] S.M Kang P. Kumar S. Kumar P. nagpal and S.K. garg Common fixed points for compatible mappings and its variants in multiplicative metric spaces Int. j. Pure apll. Math ) [2] M. Abbas M. De la sen and T. Nazir Common fixed points of generalized rational type cocyclic mappings in multiplicative metric spaces discrete Dyn. Nat. Soc ) 1-10 [3] S. Banach Sur les operations abstraits et leur application aux equations integrals Fund. Maths ) [4] A.E. Bashirov E.M. Kurplanara and A. Ozyapici multiplicative calculus and its applications J. Math. Anal. App ) [5] I. Beg Random fixed points of random operators satisfying semi contractivity conditions Math. Japan )

23 Common Random Fixed Point Theorems under Contraction of rational Type 3725 [6] I. Beg Minimal displacement of Random variables under lipschitz random maps Topol. Methods Nonlinear Anal ) [7] I. Beg approximation of random fixed points in normed spaces Normed Linear Anal: Theory Methods and Analysis ) [8] I. Beg and N. Shahzad random Fixed Point theorems on product spaces J. app. Math. Stoch. Anal ) Nonlinear Analysis: Theory Methods and Applications ) [9] I. Beg and N. Shahzad Random Fixed Point of Random Multivalued operators on polish spaces Nonlinear Analysis: Theory Methods and Applications ) [10] I. Beg and N. Shahzad Random Fixed Point Theorems for non expansive and contractive-type random operators on Banach Space. J. Appl. Math. Stoch. Anal ) [11] I. Beg and N. Shahzad Random approximations and Random fixed point theorems J. Appl. Math. Stoch. Anal ) [12] I. Beg and N. Shahzad common Random Fixed Points of Random multivalued Operators on metric spaces Boll. Un. Mat. Ital. 9-A 1995) [13] I. Beg and N. Shahzad common Random Fixed Points of weakly inward operators in conical shells. J. Anal. Math. Stoch. Anal ) [14] A.T Bharucha-reid Random Integral Equations Academic Press new York [15] S.M Kang P. Kumar S. Kumar Chahn Yong Jung Common fixed points theorems in multiplicative metric space Int. j. Math. Anal ) [16] M. Ozavsar and A.C. Cevikal fixed point of Multiplicative contraction mappings on multiplicative metric space ArXiv: v1 [math.g.m] 2012) 14. [17] M. Sarwar and Badshah-e-Rome Some fixed point Theorems in multiplicative metric spaces ArXiv: v2 [math.gm] 2014) 1-19 [18] H.K. Xu Some Random fixed point Theorems for condensing and nonexpansive operators Proc. Amer. Math. Soc ) [19] Kamal Kumar Nisha Sharma Rajeev Jha Arti Mishra and Manoj Kumar Weak Compatibility and Related Fixed Point Theorem for Six Maps in Multiplicative Metric Space. Turkish Journal of Analysis and Number Theory vol. 4 no ): Doi: /tjant [20] Nisha Sharma Kamal Kumar Sheetal Sharma Rajeev Jha Rational Contractive Condition in Multiplicative Metric Space and Common Fixed

24 3726 Nisha Sharma et al Point Theorem ISSNOnline): ISSN Print): International Journal of Innovative Research in Science Engineering and Technology Vol. 5 Issue 6 June 2016 Copyright to IJIRSET DOI: /IJIRSET

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

A COMMON RANDOM FIXED POINT THEOREM FOR SIX RANDOM MULTIVALUED OPERATORS SATISFYING A RATIONAL INEQUALITY

A COMMON RANDOM FIXED POINT THEOREM FOR SIX RANDOM MULTIVALUED OPERATORS SATISFYING A RATIONAL INEQUALITY International Journal of Advanced Computer and Mathematical Sciences ISSN 2230-9624. Vol4, Issue3, 2013, pp188-198 http://bipublication.com A COMMON RANDOM FIXED POINT THEOREM FOR SIX RANDOM MULTIVALUED

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

ON RANDOM COINCIDENCE POINT AND RANDOM COUPLED FIXED POINT THEOREMS

ON RANDOM COINCIDENCE POINT AND RANDOM COUPLED FIXED POINT THEOREMS Palestine Journal of Mathematics Vol. 4(2) (2015), 348 359 Palestine Polytechnic University-PPU 2015 ON RANDOM COINCIDENCE POINT AND RANDOM COUPLED FIXED POINT THEOREMS Animesh Gupta Erdal Karapınar Communicated

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

A NEW SUZUKI TYPE COMMON COUPLED FIXED POINT RESULT FOR FOUR MAPS IN S b -METRIC SPACES

A NEW SUZUKI TYPE COMMON COUPLED FIXED POINT RESULT FOR FOUR MAPS IN S b -METRIC SPACES JOURNAL OF INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4866 ISSN (o) 2303-4947 wwwimviblorg /JOURNALS / JOURNAL Vol 8(208) 03-9 DOI: 0725/JIMVI8003R Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 28(28), No. 146, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

On a Subclass of k-uniformly Convex Functions with Negative Coefficients

On a Subclass of k-uniformly Convex Functions with Negative Coefficients International Mathematical Forum, 1, 2006, no. 34, 1677-1689 On a Subclass of k-uniformly Convex Functions with Negative Coefficients T. N. SHANMUGAM Department of Mathematics Anna University, Chennai-600

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Intuitionistic Supra Gradation of Openness

Intuitionistic Supra Gradation of Openness Applied Mathematics & Information Sciences 2(3) (2008), 291-307 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. Intuitionistic Supra Gradation of Openness A. M. Zahran 1, S. E.

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Operation Approaches on α-γ-open Sets in Topological Spaces

Operation Approaches on α-γ-open Sets in Topological Spaces Int. Journal of Math. Analysis, Vol. 7, 2013, no. 10, 491-498 Operation Approaches on α-γ-open Sets in Topological Spaces N. Kalaivani Department of Mathematics VelTech HighTec Dr.Rangarajan Dr.Sakunthala

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Fixed point theorems of φ convex ψ concave mixed monotone operators and applications

Fixed point theorems of φ convex ψ concave mixed monotone operators and applications J. Math. Anal. Appl. 339 (2008) 970 98 www.elsevier.com/locate/jmaa Fixed point theorems of φ convex ψ concave mixed monotone operators and applications Zhang Meiyu a,b a School of Mathematical Sciences,

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

GAUGES OF BAIRE CLASS ONE FUNCTIONS

GAUGES OF BAIRE CLASS ONE FUNCTIONS GAUGES OF BAIRE CLASS ONE FUNCTIONS ZULIJANTO ATOK, WEE-KEE TANG, AND DONGSHENG ZHAO Abstract. Let K be a compact metric space and f : K R be a bounded Baire class one function. We proved that for any

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ) IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα