Various types of likelihood

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Various types of likelihood"

Transcript

1 Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood, Bayesian asymptotics 2. quasi-likelihood, composite likelihood 3. semi-parametric likelihood, partial likelihood 4. empirical likelihood, penalized likelihood 5. bootstrap likelihood, h-likelihood, weighted likelihood, pseudo-likelihood, local likelihood, sieve likelihood, simulated likelihood STA 4508: Topics in Likelihood Inference January 14, /57

2 Nuisance parameters: notation θ = (ψ, λ) = (ψ 1,..., ψ q, λ 1,..., λ d q ) ( ) Uψ (θ) U(θ) =, U U λ (θ) λ (ψ, ˆλ ψ ) = 0 ( ) ( ) iψψ i i(θ) = ψλ jψψ j j(θ) = ψλ i λψ i λλ ( i i 1 (θ) = ψψ i ψλ ) i λψ i λλ j λψ j λλ ( j j 1 (θ) = ψψ j ψλ ). j λψ i ψψ (θ) = {i ψψ (θ) i ψλ (θ)i 1 λλ (θ)i λψ(θ)} 1, l p (ψ) = l(ψ, ˆλ ψ ), j p (ψ) = l p(ψ) j λλ STA 4508: Topics in Likelihood Inference January 14, /57

3 Nuisance parameters: approximate pivots w u (ψ) = U ψ (ψ, ˆλ ψ ) T {i ψψ (ψ, ˆλ ψ )}U ψ (ψ, ˆλ ψ ). χ 2 q w e (ψ) = ( ˆψ ψ) T {i ψψ ( ˆψ, ˆλ)} 1 ( ˆψ ψ). χ 2 q w(ψ) = 2{l( ˆψ, ˆλ) l(ψ, ˆλ ψ )} = 2{l p ( ˆψ) l p (ψ)}. χ 2 q; r u (ψ) = l p(ψ)j 1/2 p ( ˆψ) r e (ψ) = ( ˆψ ψ)j 1/2 p ( ˆψ). N(0, 1),. N(0, 1), r(ψ) = sign( ˆψ ψ)[2{l p ( ˆψ) l p (ψ)}] 1/2. N(0, 1) STA 4508: Topics in Likelihood Inference January 14, /57

4

5 Nuisance parameters: properties of likelihood maximum likelihood estimates are equivariant: ĥ(θ) = h(ˆθ) for one-to-one h( ) question: which of w e, w u, w are invariant under reparametrization of the full parameter: ϕ(θ)? question: which of r e, r u, r are invariant under interest-respecting reparameterizations (ψ, λ) {ψ, η(ψ, λ)}? consistency of maximum likelihood estimate equivalence of maximum likelihood estimate and root of score equation observed vs. expected information STA 4508: Topics in Likelihood Inference January 14, /57

6

7 Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood 2. quasi-likelihood, composite likelihood 3. semi-parametric likelihood, partial likelihood 4. empirical likelihood, penalized likelihood 5. bootstrap likelihood, h-likelihood, weighted likelihood, pseudo-likelihood, local likelihood, sieve likelihood, simulated likelihood STA 4508: Topics in Likelihood Inference January 14, /57

8 Marginal and conditional likelihoods Example: Y N(Xβ, σ 2 ), Y R n Example: Y ij N(µ i, σ 2 ), Example: Y ij N(µ, σ 2 i ), j = 1,..., k; i = 1,..., m j = 1,..., k i ; i = 1,..., m Example: Y i1, Y i2 Bernoulli(p i1, p i2 ), i = 1,..., n Example: Y i1, Y i2 Exponential(λ i ψ, λ i /ψ) or ψλ i, ψ/λ i STA 4508: Topics in Likelihood Inference January 14, /57

9

10 Frequentist inference, nuisance parameters first-order pivotal quantities r u (ψ) = l P (ψ)j P( ˆψ) 1/2. N(0, 1), r e (ψ) = ( ˆψ ψ)j P ( ˆψ) 1/2. N(0, 1), r(ψ) = sign( ˆψ ψ)[2{l P ( ˆψ) l P (ψ)}] 1/2. N(0, 1) all based on treating profile log-likelihood as a one-parameter log-likelihood example y = Xβ + ɛ, ɛ N(0, σ 2 ) ˆσ 2 = (y X ˆβ) T (y X ˆβ)/n STA 4508: Topics in Likelihood Inference January 14, /57

11 log-likelihood ψ 1 2

12 Eliminating nuisance parameters by using marginal density f (y; ψ, λ) f m (t 1 ; ψ)f c (t 2 t 1 ; ψ, λ) Example N(Xβ, σ 2 I) : f (y; β, σ 2 ) f m (RSS; σ 2 )f c ( ˆβ RSS; β, σ 2 ) by using conditional density f (y; ψ, λ) f c (t 1 t 2 ; ψ)f m (t 2 ; ψ, λ) Example N(Xβ, σ 2 I) : f (y; β, σ 2 ) f c (RSS ˆβ; σ 2 )f m ( ˆβ; β, σ 2 ) STA 4508: Topics in Likelihood Inference January 14, /57

13 Linear exponential families conditional density free of nuisance parameter f (y i ; ψ, λ) = exp{ψ T s(y i ) + λ T t(y i ) k(ψ, λ)}h(y i ) f (y; ψ, λ) = s = t = f (s, t; ψ, λ) = f (s t; ψ) = STA 4508: Topics in Likelihood Inference January 14, /57

14 Adjusted profile log-likelihood l A (ψ) = l p (ψ) + A(ψ) = l(ψ, ˆλ ψ ) + A(ψ) A(ψ) assumed to be O p (1) generic form is A FR (ψ) = log j λλ(ψ, ˆλ ψ ) log d(λ) d ˆλ ψ Fraser, 2003 closely related A BN (ψ) = 1 2 log j λλ(ψ, ˆλ ψ ) + log d ˆλ d ˆλ ψ SM , BN 1983 if i ψλ (θ) = 0, then ˆλ ψ = ˆλ + O p (n 1 ), suggesting we ignore last term if ψ is scalar, then in principle we can find a parametrization (ψ, λ) in which i ψλ (θ) = 0 SM STA 4508: Topics in Likelihood Inference January 14, /57

15 Asymptotics for Bayesian inference exp{l(θ; y)}π(θ) π(θ y) = exp{l(θ; y)}π(θ)dθ expand numerator and denominator about ˆθ, assuming l (ˆθ) = 0 π(θ y). = N{ˆθ, j 1 (ˆθ)} expand denominator only about ˆθ result π(θ y). = 1 (2π) d/2 j(ˆθ) +1/2 exp{l(θ; y) l(ˆθ; y)} π(θ) π(ˆθ) STA 4508: Topics in Likelihood Inference January 14, /57

16 Posterior is asymptotically normal π(θ y). N{ˆθ, j 1 (ˆθ)} θ R, y = (y 1,..., y n ) careful statement STA 4508: Topics in Likelihood Inference January 14, /57

17 ... posterior is asymptotically normal π(θ y). N{ˆθ, j 1 (ˆθ)} θ R, y = (y 1,..., y n ) equivalently l π (θ) = STA 4508: Topics in Likelihood Inference January 14, /57

18 ... posterior is asymptotically normal In fact, If π(θ) > 0 and π (θ) is continuous in a neighbourhood of θ 0, there exist constants D and n y s.t. F n (ξ) Φ(ξ) < Dn 1/2, for all n > n y, on an almost-sure set with respect to π(θ 0 )f (y; θ 0 ), where y = (y 1,..., y n ) is a sample from f (y; θ 0 ), and θ 0 is an observation from the prior density π(θ). F n (ξ) = Pr{(θ ˆθ)j 1/2 (ˆθ) ξ y} Johnson (1970); Datta & Mukerjee (2004) STA 4508: Topics in Likelihood Inference January 14, /57

19 Laplace approximation π(θ y). = 1 (2π) 1/2 j(ˆθ) +1/2 exp{l(θ; y) l(ˆθ; y)} π(θ) π(ˆθ) π(θ y) = π(θ y) = 1 (2π) 1/2 j(ˆθ) +1/2 exp{l(θ; y) l(ˆθ; y)} π(θ) π(ˆθ) {1+O p(n 1 )} y = (y 1,..., y n ), θ R 1 1 (2π) 1/2 j π(ˆθ π ) +1/2 exp{l π (θ; y) l π (ˆθ π ; y)}{1+o p (n 1 )} STA 4508: Topics in Likelihood Inference January 14, /57

20 Posterior tail area θ π(ϑ y)dϑ. = θ 1 (2π) 1/2 el(ϑ;y) l( ˆϑ;y) 1/2 π(ϑ) j( ˆϑ) π( ˆϑ) dϑ STA 4508: Topics in Likelihood Inference January 14, /57

21 Posterior cdf θ π(ϑ y)dϑ. = θ 1 (2π) 1/2 el(ϑ;y) l( ˆϑ;y) 1/2 π(ϑ) j( ˆϑ) π( ˆϑ) dϑ SM, 11.3 STA 4508: Topics in Likelihood Inference January 14, /57

22

23 BDR, Ch.3, Cauchy with flat prior

24 Nuisance parameters y = (y 1,..., y n ) f (y; θ), θ = (ψ, λ) π m (ψ y) = π(ψ, λ y)dλ = exp{l(ψ, λ; y)π(ψ, λ)dλ exp{l(ψ, λ; y)π(ψ, λ)dψdλ STA 4508: Topics in Likelihood Inference January 14, /57

25 ... nuisance parameters y = (y 1,..., y n ) f (y; θ), θ = (ψ, λ) π m (ψ y) = π(ψ, λ y)dλ = exp{l(ψ, λ; y)π(ψ, λ)dλ exp{l(ψ, λ; y)π(ψ, λ)dψdλ j(ˆθ) = j ψψ (ˆθ) j λλ (ˆθ) STA 4508: Topics in Likelihood Inference January 14, /57

26 Posterior marginal cdf, d = 1 Π m (ψ y) =. = ψ ψ π m (ξ y)dξ 1 (2π) 1/2 elp(ξ) lp(ˆξ) j 1/2 p (ˆξ) π(ξ, ˆλ ξ ) j λλ (ˆξ, ˆλ) 1/2 π(ˆξ, ˆλ) j λλ (ξ, ˆλ ξ ) 1/2 dξ STA 4508: Topics in Likelihood Inference January 14, /57

27 ... posterior marginal cdf, d = 1 Π m (ψ y) r = r(ψ) =. = Φ(r B ) = Φ{r + 1 r log(q B r )} q B = q B (ψ) = STA 4508: Topics in Likelihood Inference January 14, /57

28 normal circle, k=2 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ

29 normal circle, k=2 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ

30 normal circle, k=2 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ

31 normal circle, k = 2, 5, 10 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ

32 normal circle, k = 2, 5, 10 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ

33 normal circle, k = 2, 5, 10 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ

34 normal circle, k = 2, 5, 10 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ

35 Link to adjusted log-likelihoods π m (ψ y). = 1 (2π) d/2 elp(ψ) lp( ˆψ) j 1/2 p ( ˆψ) π(ψ, ˆλ ψ ) π( ˆψ, ˆλ) j λλ ( ˆψ, ˆλ) 1/2 j λλ (ψ, ˆλ ψ ) 1/2 π m (ψ y) =. c exp{l p (ψ) 1 2 log j λλ(ψ, ˆλ ψ ) + log π(ψ, ˆλ ψ )} l A (ψ) = l p (ψ) 1 2 log j d ˆλ λλ(ψ, ˆλ ψ ) + log d ˆλ ψ if i ψλ (θ) = 0, then ˆλ ψ = ˆλ + O p (n 1 ) STA 4508: Topics in Likelihood Inference January 14, /57

36 Composite likelihood Vector observation: Y f (y; θ), Y Y R m, θ R d Set of events: {A k, k K } Composite Likelihood: (Lindsay, 1988) CL(θ; y) = k K L k (θ; y) w k L k (θ; y) = f ({y A k }; θ) likelihood for an event {w k, k K } a set of weights STA 4508: Topics in Likelihood Inference January 14, /57

37 Examples Composite Conditional Likelihood: (Besag, 1974) L C (θ; y) = s S f s s c(y s y s c) ws, and variants by modifying events Composite Marginal Likelihood: CML(θ; y) = s S f s(y s ; θ) ws, f s (y s ; θ): marginal density of the subvector y s induced by f Independence Likelihood: Pairwise Likelihood: STA 4508: Topics in Likelihood Inference January 14, /57

38 Derived quantities log composite likelihood: cl(θ; y) = log CL(θ; y) score function: U(θ; y) = θ cl(θ; y) = s S w su s (θ; y) U s (θ; y) = θ log f s (y s ; θ) variability matrix: J(θ) = var θ {U(θ; Y )} sensitivity matrix: H(θ) = E θ { θ U(θ; Y )} Godambe information (or sandwich information): G(θ) = H(θ)J(θ) 1 H(θ) STA 4508: Topics in Likelihood Inference January 14, /57

39 Inference Sample: Y 1,..., Y n, i.i.d., CL(θ; y) = n i=1 CL(θ; y i) n(ˆθ CL θ). N{0, G 1 (θ)} G(θ) = H(θ)J(θ) 1 H(θ) STA 4508: Topics in Likelihood Inference January 14, /57

40 ... inference w(θ) = 2{cl(ˆθ CL ) cl(θ)}. d a=1 µ az 2 a Z a N(0, 1) µ 1,..., µ d eigenvalues of J(θ)H(θ) 1 STA 4508: Topics in Likelihood Inference January 14, /57

41 ... inference w(θ) = 2{cl(ˆθ CL ) cl(θ)}. d a=1 µ az 2 a Z a N(0, 1) µ 1,..., µ d eigenvalues of J(θ)H(θ) 1 w(θ). = (ˆθ CL θ){nh(θ)}(ˆθ CL θ) ˆθ CL. N{θ, G 1 (θ)} STA 4508: Topics in Likelihood Inference January 14, /57

42 Nuisance parameters θ = (ψ, λ) constrained estimator: θ ψ = sup θ=θ(ψ) cl(θ; y) n( ˆψ CL ψ). N{0, G ψψ (θ)} G(θ) = H(θ)J(θ) 1 H(θ) w(ψ) = 2{cl(ˆθ CL ) cl( θ ψ )}. d 0 a=1 µ az 2 a µ 1,..., µ d0 eigenvalues of (H ψψ ) 1 G ψψ Kent, 1982 STA 4508: Topics in Likelihood Inference January 14, /57

43 Model selection Akaike s information criterion Varin and Vidoni, 2005 AIC = 2cl(ˆθ CL ; y) 2 dim(θ) Bayesian information criterion Gao and Song, 2009 BIC = 2cl(ˆθ CL ; y) log n dim(θ) effective number of parameters (?) dim(θ) = tr{h(θ)g 1 (θ)} these criteria used for model averaging Hjort and Claeskens, 2008 or for selection of tuning parameters Gao and Song, 2009 STA 4508: Topics in Likelihood Inference January 14, /57

44 Example: symmetric normal Y i N(0, R), var(y ir ) = 1, corr (Y ir, Y is ) = ρ compound bivariate normal densities to form pairwise likelihood nm(m 1) cl(ρ; y 1,..., y n ) = log(1 ρ 2 ) m 1 + ρ 4 2(1 ρ 2 ) SS w (m 1)(1 ρ) SS b 2(1 ρ 2 ) m SS w = n i=1 s=1 m (y is ȳ i. ) 2, SS b = n(m 1) l(ρ; y 1,..., y n ) = log(1 ρ) n log{1 + (m 1)ρ} (1 ρ) SS 1 SS w b 2{1 + (m 1)ρ} m n i=1 y 2 i. STA 4508: Topics in Likelihood Inference January 14, /57

45 ... symmetric normal a. var(ˆρ) = a. var(ˆρ CL ) = 2 {1 + (m 1)ρ} 2 (1 ρ) 2 nm(m 1) 1 + (m 1)ρ 2 2 (1 ρ) 2 c(m, ρ) nm(m 1) (1 + ρ 2 ) 2 c(m, ρ) = (1 ρ) 2 (3ρ 2 + 1) + mρ( 3ρ 3 + 8ρ 2 3ρ + 2) + m 2 ρ 2 (1 ρ) 2 2 (1 ρ) 2 a.var(ˆρ CL ) = nm(m 1) (1 + ρ 2 c(m, ρ) ) 2 O( 1 n ) O(1) n m STA 4508: Topics in Likelihood Inference January 14, /57

46 ... symmetric normal a.var(ˆρ ), m = 3, 5, 8, 10 a.var(ˆρ CL ) (Cox & Reid, 2004) efficiency ρ STA 4508: Topics in Likelihood Inference January 14, /57

47 Likelihood ratio test log likelihoods rho=0.5, n=10, q=5 log likelihoods rho=0.8, n=10, q= rho rho log likelihoods rho=0.2, n=10, q=5 log likelihoods rho=0.2, n=7, q= rho rho STA 4508: Topics in Likelihood Inference January 14, /57

48 ... symmetric normal + Y i N(µ1, σ 2 R) R st = ρ ˆµ = ˆµ CL, ˆσ 2 = ˆσ 2 CL, ˆρ = ˆρ CL G(θ) = H(θ)J(θ) 1 H(θ) = i(θ) expected Fisher information pairwise likelihood is fully efficient also true for Y i N(µ, Σ) (Mardia, Hughes, Taylor 2007; Jin 2009) because U CL (θ) = J(θ)H(θ)U full (θ) Pagui; Pace et al., 2011 STA 4508: Topics in Likelihood Inference January 14, /57

49 Example: dichotomized MV Normal Y ir = 1{Z ir > 0} Z N(0, R) r = 1,..., m; i = 1, l 2 (ρ) = n {y ir y is log P(y r = 1, y s = 1) + y ir (1 y is ) log P 10 i=1 s<r + (1 y ir )y is log P 01 + (1 y ir )(1 y is ) log P 00 } a.var(ˆρ CL ) = 1 n 4π 2 m 2 (1 ρ 2 ) (m 1) 2 var(t ) T = i (2y ir y is y ir y is ) s<r var(t ) = nm 4 (p p p 11 p )+ m 3 ( 6p ) + m 2 (...) + m(...) STA 4508: Topics in Likelihood Inference January 14, /57

50 a. variance pairwise full rho ρ ARE ρ ARE

51 Example: multi-level probit model latent variable: z ir = x ir β + b i + ɛ ir, ɛ ir N(0, 1) binary observations: y ir = 1(z ir > 0); r = 1,... m i ; i = 1,... n probit model: Pr(y ir = 1 b i ) = Φ(x ir β + b i); b i N(0, σ 2 b ) likelihood L(β, σ b ) = n i=1 m i pairwise likelihood CL(β, σ b ) = r=1 i=1 r<s Φ(x ir β+b i) y ir {1 Φ(x ir β+b i)} 1 y ir φ(b i, σ 2 b )db i n P y ir y is 11 P y ir (1 y is ) 10 P (1 y ir )y is 01 P (1 y ir )(1 y is ) 00 each Pr(y ir = j, y is = k) evaluated using Φ 2 (, ; ρ irs ) (Renard et al., 2004) STA 4508: Topics in Likelihood Inference January 14, /57

52 ... multi-level probit (Renard et al. 2004) computational effort doesn t increase with the number of random effects pairwise likelihood numerically stable efficiency losses, relative to maximum likelihood, of about 20% for estimation of β somewhat larger for estimation of σ 2 b STA 4508: Topics in Likelihood Inference January 14, /57

53 ... Example

54 Markov chains Hjort and Varin, 2008 comparison of likelihood L(θ; y) = pr(y r = y r Y r 1 = y r 1 ; θ) adjoining pairs CML CML(θ; y) = pr(y r = y r, Y r 1 = y r 1 ; θ) composite conditional likelihood (= Besag s PL) CCL(θ; y) = pr(y r = y r neighbours ; θ) STA 4508: Topics in Likelihood Inference January 14, /57

55 ... Markov chain example Random walk with p states and two reflecting barriers Transition matrix P = ρ 0 ρ ρ 0 ρ STA 4508: Topics in Likelihood Inference January 14, /57

56 ... Markov chain example Reflecting barrier with five states: efficiency of pairwise likelihood (dashed line) and Besag s pseudolikelihood (solid line) STA 4508: Topics in Likelihood Inference January 14, /57

57 Example: longitudinal count data subjects i = 1,..., n observations counts y ir, r = 1,... m i model y ir Poisson(u ir x T u i1,..., u imi ir β) gamma-distributed random effects but correlated corr(u ir, u is ) = ρ r s joint density has combinatorial number of terms in m i ; impractical weighted pairwise composite likelihood L pair (β) = n i=1 1 m i 1 m i m i r=1 s=r+1 f (y ir, y is ; β) weights chosen so that L pair = full likelihood if ρ = 0 Henderson & Shimura, 2003 STA 4508: Topics in Likelihood Inference January 14, /57

Various types of likelihood

Various types of likelihood Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood, Bayesian asymptotics 2. quasi-likelihood, composite likelihood 3.

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Theorem 8 Let φ be the most powerful size α test of H

Theorem 8 Let φ be the most powerful size α test of H Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Asymptotic distribution of MLE

Asymptotic distribution of MLE Asymptotic distribution of MLE Theorem Let {X t } be a causal and invertible ARMA(p,q) process satisfying Φ(B)X = Θ(B)Z, {Z t } IID(0, σ 2 ). Let ( ˆφ, ˆϑ) the values that minimize LL n (φ, ϑ) among those

Διαβάστε περισσότερα

Introduction to the ML Estimation of ARMA processes

Introduction to the ML Estimation of ARMA processes Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Tutorial on Multinomial Logistic Regression

Tutorial on Multinomial Logistic Regression Tutorial on Multinomial Logistic Regression Javier R Movellan June 19, 2013 1 1 General Model The inputs are n-dimensional vectors the outputs are c-dimensional vectors The training sample consist of m

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Lecture 7: Overdispersion in Poisson regression

Lecture 7: Overdispersion in Poisson regression Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Lecture 12: Pseudo likelihood approach

Lecture 12: Pseudo likelihood approach Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Description of the PX-HC algorithm

Description of the PX-HC algorithm A Description of the PX-HC algorithm Let N = C c= N c and write C Nc K c= i= k= as, the Gibbs sampling algorithm at iteration m for continuous outcomes: Step A: For =,, J, draw θ m in the following steps:

Διαβάστε περισσότερα

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression Lu Tian and Richard Olshen Stanford University 1 One sample problem T 1,, T n 1 S( ), C 1,, C n G( ) and T i C i Observations: (U i,

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

More Notes on Testing. Large Sample Properties of the Likelihood Ratio Statistic. Let X i be iid with density f(x, θ). We are interested in testing

More Notes on Testing. Large Sample Properties of the Likelihood Ratio Statistic. Let X i be iid with density f(x, θ). We are interested in testing Ulrich Müller Economics 2110 Fall 2008 More Notes on Testing Large Sample Properties of the Likelihood Ratio Statistic Let X i be iid with density f(x, θ). We are interested in testing H 0 : θ = θ 0 against

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL

ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL Department of Statistics, University of Poona, Pune-411007, India. Abstract In this paper, we estimate the reliability

Διαβάστε περισσότερα

Supplementary Appendix

Supplementary Appendix Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics Introduction to Bayesian Statistics Lecture 9: Hierarchical Models Rung-Ching Tsai Department of Mathematics National Taiwan Normal University May 6, 2015 Example Data: Weekly weights of 30 young rats

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Generalized additive models in R

Generalized additive models in R www.nr.no Generalized additive models in R Magne Aldrin, Norwegian Computing Center and the University of Oslo Sharp workshop, Copenhagen, October 2012 Generalized Linear Models - GLM y Distributed with

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

The Profile Likelihood

The Profile Likelihood Chapter 6 he Profile Likelihood 6.1 he Profile Likelihood See also Section 4.5., Davison (). 6.1.1 he method of profiling Let us suppose that the unknown parameters can be partitioned as (ψ λ ), where

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Modern Bayesian Statistics Part III: high-dimensional modeling Example 3: Sparse and time-varying covariance modeling

Modern Bayesian Statistics Part III: high-dimensional modeling Example 3: Sparse and time-varying covariance modeling Modern Bayesian Statistics Part III: high-dimensional modeling Example 3: Sparse and time-varying covariance modeling Hedibert Freitas Lopes 1 hedibert.org 13 a amostra de Estatística IME-USP, October

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Additional Results for the Pareto/NBD Model

Additional Results for the Pareto/NBD Model Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

SECTION II: PROBABILITY MODELS

SECTION II: PROBABILITY MODELS SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα