Various types of likelihood
|
|
- Φιλομήλα Δασκαλοπούλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood, Bayesian asymptotics 2. quasi-likelihood, composite likelihood 3. semi-parametric likelihood, partial likelihood 4. empirical likelihood, penalized likelihood 5. bootstrap likelihood, h-likelihood, weighted likelihood, pseudo-likelihood, local likelihood, sieve likelihood, simulated likelihood STA 4508: Topics in Likelihood Inference January 14, /57
2 Nuisance parameters: notation θ = (ψ, λ) = (ψ 1,..., ψ q, λ 1,..., λ d q ) ( ) Uψ (θ) U(θ) =, U U λ (θ) λ (ψ, ˆλ ψ ) = 0 ( ) ( ) iψψ i i(θ) = ψλ jψψ j j(θ) = ψλ i λψ i λλ ( i i 1 (θ) = ψψ i ψλ ) i λψ i λλ j λψ j λλ ( j j 1 (θ) = ψψ j ψλ ). j λψ i ψψ (θ) = {i ψψ (θ) i ψλ (θ)i 1 λλ (θ)i λψ(θ)} 1, l p (ψ) = l(ψ, ˆλ ψ ), j p (ψ) = l p(ψ) j λλ STA 4508: Topics in Likelihood Inference January 14, /57
3 Nuisance parameters: approximate pivots w u (ψ) = U ψ (ψ, ˆλ ψ ) T {i ψψ (ψ, ˆλ ψ )}U ψ (ψ, ˆλ ψ ). χ 2 q w e (ψ) = ( ˆψ ψ) T {i ψψ ( ˆψ, ˆλ)} 1 ( ˆψ ψ). χ 2 q w(ψ) = 2{l( ˆψ, ˆλ) l(ψ, ˆλ ψ )} = 2{l p ( ˆψ) l p (ψ)}. χ 2 q; r u (ψ) = l p(ψ)j 1/2 p ( ˆψ) r e (ψ) = ( ˆψ ψ)j 1/2 p ( ˆψ). N(0, 1),. N(0, 1), r(ψ) = sign( ˆψ ψ)[2{l p ( ˆψ) l p (ψ)}] 1/2. N(0, 1) STA 4508: Topics in Likelihood Inference January 14, /57
4
5 Nuisance parameters: properties of likelihood maximum likelihood estimates are equivariant: ĥ(θ) = h(ˆθ) for one-to-one h( ) question: which of w e, w u, w are invariant under reparametrization of the full parameter: ϕ(θ)? question: which of r e, r u, r are invariant under interest-respecting reparameterizations (ψ, λ) {ψ, η(ψ, λ)}? consistency of maximum likelihood estimate equivalence of maximum likelihood estimate and root of score equation observed vs. expected information STA 4508: Topics in Likelihood Inference January 14, /57
6
7 Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood 2. quasi-likelihood, composite likelihood 3. semi-parametric likelihood, partial likelihood 4. empirical likelihood, penalized likelihood 5. bootstrap likelihood, h-likelihood, weighted likelihood, pseudo-likelihood, local likelihood, sieve likelihood, simulated likelihood STA 4508: Topics in Likelihood Inference January 14, /57
8 Marginal and conditional likelihoods Example: Y N(Xβ, σ 2 ), Y R n Example: Y ij N(µ i, σ 2 ), Example: Y ij N(µ, σ 2 i ), j = 1,..., k; i = 1,..., m j = 1,..., k i ; i = 1,..., m Example: Y i1, Y i2 Bernoulli(p i1, p i2 ), i = 1,..., n Example: Y i1, Y i2 Exponential(λ i ψ, λ i /ψ) or ψλ i, ψ/λ i STA 4508: Topics in Likelihood Inference January 14, /57
9
10 Frequentist inference, nuisance parameters first-order pivotal quantities r u (ψ) = l P (ψ)j P( ˆψ) 1/2. N(0, 1), r e (ψ) = ( ˆψ ψ)j P ( ˆψ) 1/2. N(0, 1), r(ψ) = sign( ˆψ ψ)[2{l P ( ˆψ) l P (ψ)}] 1/2. N(0, 1) all based on treating profile log-likelihood as a one-parameter log-likelihood example y = Xβ + ɛ, ɛ N(0, σ 2 ) ˆσ 2 = (y X ˆβ) T (y X ˆβ)/n STA 4508: Topics in Likelihood Inference January 14, /57
11 log-likelihood ψ 1 2
12 Eliminating nuisance parameters by using marginal density f (y; ψ, λ) f m (t 1 ; ψ)f c (t 2 t 1 ; ψ, λ) Example N(Xβ, σ 2 I) : f (y; β, σ 2 ) f m (RSS; σ 2 )f c ( ˆβ RSS; β, σ 2 ) by using conditional density f (y; ψ, λ) f c (t 1 t 2 ; ψ)f m (t 2 ; ψ, λ) Example N(Xβ, σ 2 I) : f (y; β, σ 2 ) f c (RSS ˆβ; σ 2 )f m ( ˆβ; β, σ 2 ) STA 4508: Topics in Likelihood Inference January 14, /57
13 Linear exponential families conditional density free of nuisance parameter f (y i ; ψ, λ) = exp{ψ T s(y i ) + λ T t(y i ) k(ψ, λ)}h(y i ) f (y; ψ, λ) = s = t = f (s, t; ψ, λ) = f (s t; ψ) = STA 4508: Topics in Likelihood Inference January 14, /57
14 Adjusted profile log-likelihood l A (ψ) = l p (ψ) + A(ψ) = l(ψ, ˆλ ψ ) + A(ψ) A(ψ) assumed to be O p (1) generic form is A FR (ψ) = log j λλ(ψ, ˆλ ψ ) log d(λ) d ˆλ ψ Fraser, 2003 closely related A BN (ψ) = 1 2 log j λλ(ψ, ˆλ ψ ) + log d ˆλ d ˆλ ψ SM , BN 1983 if i ψλ (θ) = 0, then ˆλ ψ = ˆλ + O p (n 1 ), suggesting we ignore last term if ψ is scalar, then in principle we can find a parametrization (ψ, λ) in which i ψλ (θ) = 0 SM STA 4508: Topics in Likelihood Inference January 14, /57
15 Asymptotics for Bayesian inference exp{l(θ; y)}π(θ) π(θ y) = exp{l(θ; y)}π(θ)dθ expand numerator and denominator about ˆθ, assuming l (ˆθ) = 0 π(θ y). = N{ˆθ, j 1 (ˆθ)} expand denominator only about ˆθ result π(θ y). = 1 (2π) d/2 j(ˆθ) +1/2 exp{l(θ; y) l(ˆθ; y)} π(θ) π(ˆθ) STA 4508: Topics in Likelihood Inference January 14, /57
16 Posterior is asymptotically normal π(θ y). N{ˆθ, j 1 (ˆθ)} θ R, y = (y 1,..., y n ) careful statement STA 4508: Topics in Likelihood Inference January 14, /57
17 ... posterior is asymptotically normal π(θ y). N{ˆθ, j 1 (ˆθ)} θ R, y = (y 1,..., y n ) equivalently l π (θ) = STA 4508: Topics in Likelihood Inference January 14, /57
18 ... posterior is asymptotically normal In fact, If π(θ) > 0 and π (θ) is continuous in a neighbourhood of θ 0, there exist constants D and n y s.t. F n (ξ) Φ(ξ) < Dn 1/2, for all n > n y, on an almost-sure set with respect to π(θ 0 )f (y; θ 0 ), where y = (y 1,..., y n ) is a sample from f (y; θ 0 ), and θ 0 is an observation from the prior density π(θ). F n (ξ) = Pr{(θ ˆθ)j 1/2 (ˆθ) ξ y} Johnson (1970); Datta & Mukerjee (2004) STA 4508: Topics in Likelihood Inference January 14, /57
19 Laplace approximation π(θ y). = 1 (2π) 1/2 j(ˆθ) +1/2 exp{l(θ; y) l(ˆθ; y)} π(θ) π(ˆθ) π(θ y) = π(θ y) = 1 (2π) 1/2 j(ˆθ) +1/2 exp{l(θ; y) l(ˆθ; y)} π(θ) π(ˆθ) {1+O p(n 1 )} y = (y 1,..., y n ), θ R 1 1 (2π) 1/2 j π(ˆθ π ) +1/2 exp{l π (θ; y) l π (ˆθ π ; y)}{1+o p (n 1 )} STA 4508: Topics in Likelihood Inference January 14, /57
20 Posterior tail area θ π(ϑ y)dϑ. = θ 1 (2π) 1/2 el(ϑ;y) l( ˆϑ;y) 1/2 π(ϑ) j( ˆϑ) π( ˆϑ) dϑ STA 4508: Topics in Likelihood Inference January 14, /57
21 Posterior cdf θ π(ϑ y)dϑ. = θ 1 (2π) 1/2 el(ϑ;y) l( ˆϑ;y) 1/2 π(ϑ) j( ˆϑ) π( ˆϑ) dϑ SM, 11.3 STA 4508: Topics in Likelihood Inference January 14, /57
22
23 BDR, Ch.3, Cauchy with flat prior
24 Nuisance parameters y = (y 1,..., y n ) f (y; θ), θ = (ψ, λ) π m (ψ y) = π(ψ, λ y)dλ = exp{l(ψ, λ; y)π(ψ, λ)dλ exp{l(ψ, λ; y)π(ψ, λ)dψdλ STA 4508: Topics in Likelihood Inference January 14, /57
25 ... nuisance parameters y = (y 1,..., y n ) f (y; θ), θ = (ψ, λ) π m (ψ y) = π(ψ, λ y)dλ = exp{l(ψ, λ; y)π(ψ, λ)dλ exp{l(ψ, λ; y)π(ψ, λ)dψdλ j(ˆθ) = j ψψ (ˆθ) j λλ (ˆθ) STA 4508: Topics in Likelihood Inference January 14, /57
26 Posterior marginal cdf, d = 1 Π m (ψ y) =. = ψ ψ π m (ξ y)dξ 1 (2π) 1/2 elp(ξ) lp(ˆξ) j 1/2 p (ˆξ) π(ξ, ˆλ ξ ) j λλ (ˆξ, ˆλ) 1/2 π(ˆξ, ˆλ) j λλ (ξ, ˆλ ξ ) 1/2 dξ STA 4508: Topics in Likelihood Inference January 14, /57
27 ... posterior marginal cdf, d = 1 Π m (ψ y) r = r(ψ) =. = Φ(r B ) = Φ{r + 1 r log(q B r )} q B = q B (ψ) = STA 4508: Topics in Likelihood Inference January 14, /57
28 normal circle, k=2 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ
29 normal circle, k=2 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ
30 normal circle, k=2 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ
31 normal circle, k = 2, 5, 10 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ
32 normal circle, k = 2, 5, 10 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ
33 normal circle, k = 2, 5, 10 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ
34 normal circle, k = 2, 5, 10 p value STA 4508: Topics in Likelihood Inference January 14, /57 ψ
35 Link to adjusted log-likelihoods π m (ψ y). = 1 (2π) d/2 elp(ψ) lp( ˆψ) j 1/2 p ( ˆψ) π(ψ, ˆλ ψ ) π( ˆψ, ˆλ) j λλ ( ˆψ, ˆλ) 1/2 j λλ (ψ, ˆλ ψ ) 1/2 π m (ψ y) =. c exp{l p (ψ) 1 2 log j λλ(ψ, ˆλ ψ ) + log π(ψ, ˆλ ψ )} l A (ψ) = l p (ψ) 1 2 log j d ˆλ λλ(ψ, ˆλ ψ ) + log d ˆλ ψ if i ψλ (θ) = 0, then ˆλ ψ = ˆλ + O p (n 1 ) STA 4508: Topics in Likelihood Inference January 14, /57
Various types of likelihood
Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood, Bayesian asymptotics 2. quasi-likelihood, composite likelihood 3.
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Theorem 8 Let φ be the most powerful size α test of H
Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Tutorial on Multinomial Logistic Regression
Tutorial on Multinomial Logistic Regression Javier R Movellan June 19, 2013 1 1 General Model The inputs are n-dimensional vectors the outputs are c-dimensional vectors The training sample consist of m
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Lecture 12: Pseudo likelihood approach
Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Lecture 7: Overdispersion in Poisson regression
Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
The Profile Likelihood
Chapter 6 he Profile Likelihood 6.1 he Profile Likelihood See also Section 4.5., Davison (). 6.1.1 he method of profiling Let us suppose that the unknown parameters can be partitioned as (ψ λ ), where
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
More Notes on Testing. Large Sample Properties of the Likelihood Ratio Statistic. Let X i be iid with density f(x, θ). We are interested in testing
Ulrich Müller Economics 2110 Fall 2008 More Notes on Testing Large Sample Properties of the Likelihood Ratio Statistic Let X i be iid with density f(x, θ). We are interested in testing H 0 : θ = θ 0 against
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Asymptotic distribution of MLE
Asymptotic distribution of MLE Theorem Let {X t } be a causal and invertible ARMA(p,q) process satisfying Φ(B)X = Θ(B)Z, {Z t } IID(0, σ 2 ). Let ( ˆφ, ˆϑ) the values that minimize LL n (φ, ϑ) among those
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Empirical best prediction under area-level Poisson mixed models
Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions
An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University
Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression Lu Tian and Richard Olshen Stanford University 1 One sample problem T 1,, T n 1 S( ), C 1,, C n G( ) and T i C i Observations: (U i,
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Probabilistic and Bayesian Machine Learning
Probabilistic and Bayesian Machine Learning Day 3: The EM Algorithm Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/ ywteh/teaching/probmodels
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016
ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Risk! " #$%&'() *!'+,'''## -. / # $
Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13
ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
Introduction to Bayesian Statistics
Introduction to Bayesian Statistics Lecture 9: Hierarchical Models Rung-Ching Tsai Department of Mathematics National Taiwan Normal University May 6, 2015 Example Data: Weekly weights of 30 young rats
Additional Results for the Pareto/NBD Model
Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Tests and model choice : asymptotics
1/ 50 Tests and model choice : asymptotics J. Rousseau CEREMADE, Université Paris-Dauphine & Oxford University (soon) Greek Stochastics, Milos Outline 2/ 50 1 Bayesian testing : the Bayes factor Bayes