arxiv: v1 [math-ph] 15 Nov 2010

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv: v1 [math-ph] 15 Nov 2010"

Transcript

1 Recuence and diffeential elations fo spheical spinos Rados law Szmytkowski axiv: v1 [math-ph] 15 Nov 010 Atomic Physics Division, Depatment of Atomic Physics and Luminescence, Faculty of Applied Physics and Mathematics, Gdańsk Univesity of Technology, Nautowicza 11/1, PL Gdańsk, Poland Published as: J. Math. Chem doi: /s Abstact We pesent a compehensive table of ecuence and diffeential elations obeyed by spin one-half spheical spinos spino spheical hamonics Ω κµn used in elativistic atomic, molecula, and solid state physics, as well as in elativistic quantum chemisty. Fist, we list finite expansions in the spheical spino basis of the expessions A BΩ κµn and A B CΩ κµn, whee A, B, and C ae eithe of the following vectos o vecto opeatos: n = / the adial unit vecto, e 0, e ±1 the spheical, o cyclic, vesos, σ the Pauli matix vecto, ˆL = i I the dimensionless obital angula momentum opeato; I is the unit matix, Ĵ = ˆL+ 1 σ the dimensionless total angula momentum opeato. Then, we list finite expansions in the spheical spino basis of the expessions A BFΩ κµn and A B CFΩ κµn, whee at least one of the objects A, B, C is the nabla opeato, while the emaining ones ae chosen fom the set n, e 0, e ±1, σ, ˆL, Ĵ. KEY WORDS: spheical spinos, spino spheical hamonics, angula momentum, ecuence elations, diffeential elations AMS subject classification: 33C50, 33C55, 33E30, 81Q99 1 Intoduction The spin one-half spheical spinos spino spheical hamonics emege in elativistic quantum mechanics in the context of the sepaation of spheical vaiables when solving the cental-field Diac poblem, e.g., in the elativistic analysis of one-electon atoms [1 5]. In the elativistic theoy of many-electon systemsincluding atoms, molecules, and the solid state, they ente elementay oneelecton Diac cental-field obitals of which appoximate multi-electon wave functions descibing such systems ae fequently constucted see numeous efeences cited in Refs. [6 9]. Despite the so well documented pactical impotance of the spheical spinos, thus fa elatively little space has been devoted in the liteatue to systematic studies o pesentations of thei popeties. Standad textbooks o efeence woks on the angula momentum theoy, such as Refs. [10 13], discuss the spheical spinos only supeficially. In fact, even in the most compehensive elevant teatise by Vashalovich et al. [14] the spheical spinos have been teated much less exhaustively than scala o vecto spheical hamonics. In consequence, atomic and molecula eseaches usually have to deive paticula popeties of the spheical spinos ad hoc, as exemplified by Refs. [15 19]. As a pat of ou eseach pogam in this connection, see also Ref. [0] aimed at changing this unsatisfactoy situation, in this pape we pesent a compehensive table of ecuence and diffeential elations obeyed by the spheical spinos. 1

2 Peliminaies.1 Definitions Let e x, e y, e z be vesos of some ight-handed Catesian coodinate system. The cyclic vesos e 0, e ±1, ae defined though the elationships e 0 = e z, e ±1 = 1 e x ±ie y..1.1 The dimensionless obital ˆL and total Ĵ angula momentum opeatos both with espect to the cente of the afoementioned Catesian system ae defined as ˆL = i I.1. and Ĵ = ˆL+ 1 σ,.1.3 espectively. In Eqs..1. and.1.3, and heeafte, I is the unit matix, while σ is the Pauli matix vecto σ = σ x e x +σ y e y +σ z e z,.1.4 with σ x = i, σ y = i 0 1 0, σ z = Let n = / be a unit adius vecto with espect to the oigin of the afoementioned Catesian system. The spatial oientation of n is uniquely detemined by specifying two angles, 0 θ π and 0 ϕ < π, such that e x n = sinθcosϕ, e y n = sinθsinϕ, e z n = cosθ..1.6 Evidently, θ and ϕ ae, espectively, the pola and the azimuthal angles in the spheical system of coodinates, with its pola and azimuthal axes diected along the Catesian vesos e z and e x, espectively. We define the spin one-half spheical spinos, heeafte denoted as Ω κµ n, as two-component functions of the unit vecto n o, equivalently, of the afoementioned angles θ and ϕ of the fom Ω κµ n = sgn κ κ+ 1 µ κ+1 Y l,µ 1/n,.1.7 κ+ 1 +µ κ+1 Y l,µ+1/n with κ {±1,±,...}, µ { κ + 1, κ + 3,..., κ 1 }, and l = κ+ 1 1 = { κ fo κ > 0 κ 1 fo κ < In Eq..1.7, Y lm n = l+1l m! 4π l+m! Pm l cosθe imϕ.1.9 is the scala spheical hamonics, with P m l ξ = m l l! 1 ξ m/ dl+m dξ l+mξ 1 l 1 ξ

3 being the associated Legende function of the fist kind. The phases in Eqs..1.9 and.1.10 have been chosen so that the spheical hamonics.1.9 confoms to the Condon Shotley [1] phase convention; in this connection, see also the emak concluding Sec... In this wok, we shall label the spheical spinos with the two indices κ and µ. Howeve, it should be mentioned that in the elevant liteatue one encountes also numeous examples of labeling these functions by thee indices j, l, and µ, with the fist index in this tiple elated to κ though j = κ 1,.1.11 with l defined as in Eq..1.8, and with µ assuming the same value as explained below Eq In view of the elations.1.8 and.1.11, and the convese one, κ = l jj +1,.1.1 both labeling schemes ae completely equivalent.. Remaks Pepaing the collection of fomulas pesented in Sec. 3 we have made an attempt to minimize the numbe of enties with a few exceptions when the opeato Ĵ has been involved. To this end, we have made an extensive use of the popety A B C = A B C,..13 valid alike fo odinay vectos and vecto opeatos. Also, we have extensively exploited the identities like ˆL ˆL = iˆl, σ σ = iσ, Ĵ Ĵ = iĵ,..14 n = n, n ˆL = ˆL n = 0, ˆL = ˆL = 0,..15 etc., to educe opeatos acting on the spheical spinos to the simplest possible foms. If a esult of such a eduction of a paticula opeato has been found to be a scala multiple of the identity, the action of this opeato on the spheical spinos has not been displayed in the table. Fo instance, the equation n ˆL nω κµ n = iω κµ n..16 has not been included in Sec. 3 since it eflects the opeato identity n ˆL n = n ˆL n = ii..17 athe than some paticula popety of the spheical spinos. In Sec. 3.3, F is a once o twice, depending on the needs diffeentiable, and othewise abitay, function of the adial vaiable =. Befoepoceedingtothe table, awodofcautionisstill inode. Itappeasthat, analogouslyto the case of scala spheical hamonics, ecuence and diffeential elations obeyed by the spheical spinos depend on the choices of phases in the defining equations. In othe wods, if the net phase of spheical spinos in use diffes fom that following fom ou Eqs..1.7,.1.9, and.1.10, o if the Pauli matix σ y is defined with the opposite sign, as it occasionally happens in the liteatue, signs in some of the elationships listed in Sec. 3 may need to be changed. 3

4 3 Table of ecuence and diffeential elations fo spheical spinos 3.1 Algebaic ecuence elations e 0 nω κµ n = µ 4κ 1 Ω κ+ 1 κµn+ µ Ω κ+1,µ n κ+1 κ 1 + µ Ω κ 1,µ n κ 1 e ±1 nω κµ n = ± κ µ± 1 4κ Ω κ,µ±1 n 1 κ±µ+ 1 + κ±µ+ 3 Ω κ+1,µ±1 n κ+1 κ µ 1 κ µ 3 Ω κ 1,µ±1 n 3.1. κ 1 n σω κµ n = Ω κµ n e 0 σω κµ n = µ κ+1 Ω κ+ 1 κµn µ Ω κ 1,µ n κ+1 e ±1 σω κµ n = ± κ µ± 1 Ω κ,µ±1 n κ+1 κ±µ+ 1 κ±µ+ 3 Ω κ 1,µ±1 n κ+1 4µκ e 0 n σω κµ n = i 4κ 1 Ω κ+ 1 κµn+i µ Ω κ+1,µ n κ+1 κ 1 i µ Ω κ 1,µ n κ 1 e ±1 n σω κµ n = i κ µ± 1 κ 4κ Ω κ,µ±1 n 1 κ±µ+ 1 +i κ±µ+ 3 Ω κ+1,µ±1 n κ+1 κ µ 1 +i κ µ 3 Ω κ 1,µ±1 n κ 1 4

5 3. Diffeential elations of the fist kind e 0 ˆLΩ κµ n = µκ+1 κ+1 Ω κ+ 1 κµn+ µ Ω κ 1,µ n 3..1 κ+1 e ±1 ˆLΩ κµ n = κ µ± 1 κ+1 Ω κ,µ±1 n κ+1 κ±µ+ 1 + κ±µ+ 3 Ω κ 1,µ±1 n 3.. κ+1 σ ˆLΩ κµ n = κ+1ω κµ n 3..3 n ĴΩ κµn = 1 Ω κµn 3..4 e 0 ĴΩ κµn = µω κµ n 3..5 e ±1 ĴΩ κµn = 1 κ µ± 1 Ω κ,µ±1 n 3..6 σ ĴΩ κµn = κ 1 Ωκµ n 3..7 ˆL Ω κµ n = κκ+1ω κµ n 3..8 Ĵ Ω κµ n = κ 1 4 Ωκµ n 3..9 ˆL ĴΩ κµn = κ 1 κ+1ωκµ n e 0 n ˆLΩ κµ n = i µκ+1 4κ 1 Ω κ+ 1 κµn iκ µ Ω κ+1,µ n κ+1 κ 1 +iκ+1 µ Ω κ 1,µ n κ 1 e ±1 n ˆLΩ κµ n = ±i κ µ± 1 κ+1 4κ Ω κ,µ±1 n 1 κ±µ+ 1 iκ κ±µ+ 3 Ω κ+1,µ±1 n κ+1 κ µ 1 iκ+1 κ µ 3 Ω κ 1,µ±1 n 3..1 κ 1 e 0 ˆL nω κµ n = i µκ 1 4κ 1 Ω κ+ 1 κµn+iκ+ µ Ω κ+1,µ n κ+1 κ 1 iκ 1 µ Ω κ 1,µ n κ 1 5

6 e ±1 ˆL nω κµ n = i κ µ± 1 κ 1 4κ Ω κ,µ±1 n 1 κ±µ+ 1 +iκ+ κ±µ+ 3 Ω κ+1,µ±1 n κ+1 κ µ 1 +iκ 1 κ µ 3 Ω κ 1,µ±1 n κ 1 n σ ˆLΩ κµ n = iκ+1ω κµ n e 0 σ ˆLΩ κµ n = isgnκ κ+ 1 µ Ω κ 1,µ n e ±1 σ ˆLΩ κµ n = i 1 κ±µ+ 1 κ±µ+ 3 Ω κ 1,µ±1n σ ˆL nω κµ n = iκ 1Ω κµ n e 0 n ĴΩ µ κµn = i 4κ 1 Ω κµn i κ+ 1 κ 1 µ Ω κ+1,µ n κ+1 +i κ 1 κ+ 1 µ Ω κ 1,µ n κ 1 e ±1 n ĴΩ κµn = ±i κ µ± 1 4κ Ω κ,µ±1 n 1 i κ 1 i κ+ 1 κ±µ+ 1 κ±µ+ 3 Ω κ+1,µ±1 n κ+1 κ µ 1 κ µ 3 κ 1 Ω κ 1,µ±1 n 3..0 e 0 Ĵ nω µ κµn = i 4κ 1 Ω κµn+i κ+ 1 κ+ 3 µ Ω κ+1,µ n κ+1 i κ 1 κ 3 µ Ω κ 1,µ n 3..1 κ 1 e ±1 Ĵ nω κµn = ±i κ µ± 1 4κ Ω κ,µ±1 n 1 +i κ+ 3 +i κ 3 κ±µ+ 1 κ±µ+ 3 Ω κ+1,µ±1 n κ+1 κ µ 1 κ µ 3 κ 1 Ω κ 1,µ±1 n 3.. n σ ĴΩ κµn = iκω κµ n

7 e 0 σ ĴΩ µ κµn = i κ+1 Ω κ+ 1 κµn+iκ 1 µ Ω κ 1,µ n 3..4 κ+1 e ±1 σ ĴΩ κµn = ±i κ µ± 1 Ω κ,µ±1 n κ+1 κ±µ+ 1 +iκ 1 κ±µ+ 3 Ω κ 1,µ±1 n 3..5 κ+1 σ Ĵ nω κµn = iκ Ω κµ n 3..6 n Ĵ σω κµn = iκ+ω κµ n 3..7 e 0 Ĵ σω µ κµn = i κ+1 Ω κ+ 1 κµn iκ+3 µ Ω κ 1,µ n 3..8 κ+1 e ±1 Ĵ σω κµn = ±i κ µ± 1 Ω κ,µ±1 n κ+1 κ±µ+ 1 iκ+3 κ±µ+ 3 Ω κ 1,µ±1 n 3..9 κ+1 Ĵ σ nω κµn = iκω κµ n n ˆL ĴΩ κµn = i 1 κ+1ω κµn e 0 ˆL ĴΩ κµn = i µκ+1 κ+1 Ω κµn i κ+ 1 κ 1 µ Ω κ 1,µ n 3..3 κ+1 e ±1 ˆL ĴΩ κµn = i κ µ± 1 κ+1 Ω κ,µ±1 n κ+1 i κ±µ+ 1 κ 1 κ±µ+ 3 Ω κ 1,µ±1 n κ+1 ˆL Ĵ nω κµn = i 1 κ 1Ω κµn ˆL Ĵ σω κµn = iκ+1ω κµ n n Ĵ ˆLΩ κµ n = i 1 κ+1ω κµn e 0 Ĵ ˆLΩ κµ n = i µκ+1 κ+1 Ω κµn+i κ+ 1 κ+ 3 µ Ω κ 1,µ n κ+1 7

8 e ±1 Ĵ ˆLΩ κµ n = i κ µ± 1 κ+1 Ω κ,µ±1 n κ+1 +i κ±µ+ 1 κ+ 3 κ±µ+ 3 Ω κ 1,µ±1 n κ+1 σ Ĵ ˆLΩ κµ n = iκ+1ω κµ n Ĵ ˆL nω κµ n = i 1 κ 1Ω κµn ˆL n ĴΩ κµn = i 1 κ 1Ω κµn Ĵ n ˆLΩ κµ n = i 1 κ+1ω κµn 3..4 σ Ĵ σω κµn = iκ+5ω κµ n Ĵ n ĴΩ κµn = i 1 Ω κµn Ĵ σ ĴΩ κµn = i κ 1 Ωκµ n Ĵ ˆL ĴΩ κµn = i κ 1 κ+1ωκµ n ˆL Ĵ ˆLΩ κµ n = i κ+ 1 κ+1ωκµ n Diffeential elations of the second kind n FΩ κµ n = df Ω κµ n d nfω κµ n = + FΩ κµ n 3.3. e 0 FΩ κµ n = µ 4κ e ±1 FΩ κµ n = ± + κ+1 FΩ κµ n κ+ 1 µ κ+1 κ 1 µ + κ 1 κ µ± 1 κ FΩ κ+1,µ n + κ+1 FΩ κ 1,µ n κ+1 FΩ κ,µ±1 n 4κ 1 κ±µ+ 1 κ±µ+ 3 κ+1 κ FΩ κ+1,µ±1 n κ µ 1 κ µ 3 κ 1 + κ+1 FΩ κ 1,µ±1 n

9 σ FΩ κµ n = + κ+1 FΩ κµ n Ĵ FΩ κµ n = 1 ĴFΩ κµn = 1 FΩ κµ n = 1 + κ+1 + κ+1 κκ+1 4µκ e 0 σ FΩ κµ n = i 4κ 1 i +i e ±1 σ FΩ κµ n = ±i κ i i FΩ κµ n FΩ κµ n FΩ κµ n κ+1 FΩ κµ n κ+ 1 µ κ+1 κ 1 µ κ 1 κ µ± 1 κ FΩ κ+1,µ n + κ+1 FΩ κ 1,µ n κ+1 FΩ κ,µ±1 n 4κ 1 κ±µ+ 1 κ±µ+ 3 κ+1 κ FΩ κ+1,µ±1 n κ µ 1 κ µ 3 κ 1 + κ+1 FΩ κ 1,µ±1 n Ĵ σ FΩ κµ n = iκ + κ+1 FΩ κµ n n ˆL FΩ κµ n = i κκ+1 FΩ κµ n e 0 ˆL FΩ κµ n = i µκ 1 4κ 1 +iκ+ iκ 1 + κ+1 κ+ 1 µ κ+1 κ 1 µ κ 1 FΩ κµ n κ FΩ κ+1,µ n + κ+1 FΩ κ 1,µ n

10 e ±1 ˆL FΩ κµ n = i κ 1 +iκ+ +iκ 1 κ µ± 1 + κ+1 FΩ κ,µ±1 n 4κ 1 κ±µ+ 1 κ±µ+ 3 κ+1 κ FΩ κ+1,µ±1 n κ µ 1 κ µ 3 κ 1 + κ+1 FΩ κ 1,µ±1 n σ ˆL FΩ κµ n = iκ 1 + κ+1 FΩ κµ n Ĵ ˆL FΩ κµ n = i 1 κ 1 + κ+1 e 0 ˆLFΩ κµ n = i µκ+1 4κ 1 iκ κ+ 1 µ +iκ+1 e ±1 ˆLFΩ κµ n = ±i κ+1 iκ FΩ κµ n κ+1 FΩ κµ n κ+1 κ 1 µ κ 1 κ µ± 1 κ FΩ κ+1,µ n + κ+1 FΩ κ 1,µ n κ+1 FΩ κ,µ±1 n 4κ 1 κ±µ+ 1 κ±µ+ 3 κ+1 κ FΩ κ+1,µ±1 n iκ+1 κ µ 1 κ µ 3 κ 1 + κ+1 FΩ κ 1,µ±1 n σ ˆLFΩ κµ n = iκ+1 + κ+1 FΩ κµ n Ĵ ˆLFΩ κµ n = i 1 κ+1 + κ+1 FΩ κµ n ˆL nfω κµ n = i + κ +κ+4 FΩ κµ n ˆL ĴFΩ κµn = i 1 κ+1 + κ+1 FΩ κµ n 3.3. n Ĵ FΩ κµn = i κ+1κ 1 FΩ κµ n

11 e 0 Ĵ FΩ µ κµn = i 4κ 1 + κ+1 κ+ 1 µ e ±1 Ĵ FΩ κµn = ±i +i κ+ 3 i κ 3 +i κ+ 3 +i κ 3 κ µ± 1 κ+1 κ 1 µ κ 1 FΩ κµ n κ FΩ κ+1,µ n + κ+1 FΩ κ 1,µ n κ+1 FΩ κ,µ±1 n 4κ 1 κ±µ+ 1 κ±µ+ 3 κ+1 κ FΩ κ+1,µ±1 n κ µ 1 κ µ 3 κ 1 + κ+1 FΩ κ 1,µ±1 n σ Ĵ FΩ κµn = iκ + κ+1 FΩ κµ n ˆL Ĵ FΩ κµn = i 1 κ 1 + κ+1 e 0 ĴFΩ µ κµn = i 4κ 1 + κ+1 κ+ 1 µ e ±1 ĴFΩ κµn = ±i i κ 1 +i κ+ 1 i κ 1 i κ+ 1 κ µ± 1 κ+1 κ 1 µ κ FΩ κµ n FΩ κµ n κ FΩ κ+1,µ n + κ+1 FΩ κ 1,µ n κ+1 FΩ κ,µ±1 n 4κ 1 κ±µ+ 1 κ±µ+ 3 κ+1 κ FΩ κ+1,µ±1 n κ µ 1 κ µ 3 κ 1 + κ+1 FΩ κ 1,µ±1 n σ ĴFΩ κµn = iκ + κ+1 FΩ κµ n ˆL ĴFΩ κµn = i 1 κ 1 + κ FΩ κµ n

12 Ĵ ĴFΩ κµn = i 1 Ĵ nfω κµn = i + κ +κ+7 + κ+1 FΩ κµ n FΩ κµ n Ĵ σfω κµn = iκ+ + κ+1 FΩ κµ n Ĵ ˆLFΩ κµ n = i 1 κ+1 + κ+1 FΩ κµ n ˆL FΩ κµ n = i Ĵ FΩ κµn = i Acknowledgments κκ+1 κκ+1 FΩ κµ n FΩ κµ n The autho acknowledges discussions with Sebastian Bielski, Justyna Kunicka, and Kzysztof Mielewczyk. Refeences [1] A. I. Akhieze, V. B. Beestetskii, Quantum Electodynamics, nd ed., GIFML, Moscow, 1959 in Russian. [] M. E. Rose, Relativistic Electon Theoy, Wiley, New Yok, [3] J. D. Bjoken, S. D. Dell, Relativistic Quantum Mechanics, McGaw-Hill, New Yok, [4] W. Geine, Relativistic Quantum Theoy. Wave Equations, Spinge, Belin, [5] B. Thalle, The Diac Equation, Spinge, Belin, 199. [6] P. Pyykkö, Relativistic Theoy of Atoms and Molecules. A Bibliogaphy , Spinge, Belin, [7] P. Pyykkö, Relativistic Theoy of Atoms and Molecules. II. A Bibliogaphy , Spinge, Belin, [8] P. Pyykkö, Relativistic Theoy of Atoms and Molecules. III. A Bibliogaphy , Spinge, Belin, 000. [9] Database RTAM at [10] M. E. Rose, Elementay Theoy of Angula Momentum, Wiley, New Yok, [11] A. R. Edmonds, Angula Momentum in Quantum Mechanics, nd ed., Pinceton Univesity Pess, Pinceton, NJ, [1] L. C. Biedenhan, J. D. Louck, Angula Momentum in Quantum Physics, Addison-Wesley, Reading, Mass., [13] J. D. Louck, in: Atomic, Molecula, and Optical Physics Handbook, ed. G. W. F. Dake, Ameican Institute of Physics, Woodbuy, NY, 1996, p. 6. 1

13 [14] D. A. Vashalovich, A. N. Moskalev, V. K. Khesonskii, Quantum Theoy of Angula Momentum. Ieducible Tensos, Spheical Hamonics, Vecto Coupling Coefficients, 3nj-symbols, Nauka, Leningad, 1975 in Russian, Wold Scientific, Singapoe, 1988 in English. [15] A. Bechle, J. Phys. A [16] A. Rutkowski, R. Koz lowski, J. Phys. B [17] R. Szmytkowski, J. Phys. B [18] R. Szmytkowski, K. Mielewczyk, J. Phys. B [19] K. Mielewczyk, R. Szmytkowski, Phys. Rev. A , E. [0] R. Szmytkowski, J. Phys. A [1] E. U. Condon, G. H. Shotley, The Theoy of Atomic Specta, Cambidge Univesity Pess, Cambidge,

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

The Laplacian in Spherical Polar Coordinates

The Laplacian in Spherical Polar Coordinates Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu

Διαβάστε περισσότερα

Curvilinear Systems of Coordinates

Curvilinear Systems of Coordinates A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Obital angula momentum and the spheical hamonics Apil 2, 207 Obital angula momentum We compae ou esult on epesentations of otations with ou pevious expeience of angula momentum, defined fo a point paticle

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Strain and stress tensors in spherical coordinates

Strain and stress tensors in spherical coordinates Saeanifolds.0 Stain and stess tensos in spheical coodinates This woksheet demonstates a few capabilities of Saeanifolds (vesion.0, as included in Saeath 7.5) in computations eadin elasticity theoy in Catesian

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2 Theoetical Competition: July Question Page of. Ένα πρόβλημα τριών σωμάτων και το LISA μ M O m EIKONA Ομοεπίπεδες τροχιές των τριών σωμάτων. Δύο μάζες Μ και m κινούνται σε κυκλικές τροχιές με ακτίνες και,

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Problems in curvilinear coordinates

Problems in curvilinear coordinates Poblems in cuvilinea coodinates Lectue Notes by D K M Udayanandan Cylindical coodinates. Show that ˆ φ ˆφ, ˆφ φ ˆ and that all othe fist deivatives of the cicula cylindical unit vectos with espect to the

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Exercise, May 23, 2016: Inflation stabilization with noisy data 1 Monetay Policy Henik Jensen Depatment of Economics Univesity of Copenhagen Execise May 23 2016: Inflation stabilization with noisy data 1 Suggested answes We have the basic model x t E t x t+1 σ 1 ît E

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES

A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE AND SOME NEW P-Q ETA-FUNCTION IDENTITIES S. Bhagava Chasheka Adiga M. S. Mahadeva Naika. Depatent of

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Solutions Ph 236a Week 2

Solutions Ph 236a Week 2 Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

q-analogues of Triple Series Reduction Formulas due to Srivastava and Panda with General Terms

q-analogues of Triple Series Reduction Formulas due to Srivastava and Panda with General Terms Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 7, Numbe 1, pp 41 55 (2012 http://campusmstedu/adsa -analogues of Tiple Seies Reduction Fomulas due to Sivastava and Panda with Geneal

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11 TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

r = x 2 + y 2 and h = z y = r sin sin ϕ

r = x 2 + y 2 and h = z y = r sin sin ϕ Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

1 Full derivation of the Schwarzschild solution

1 Full derivation of the Schwarzschild solution EPGY Summe Institute SRGR Gay Oas 1 Full deivation of the Schwazschild solution The goal of this document is to povide a full, thooughly detailed deivation of the Schwazschild solution. Much of the diffeential

Διαβάστε περισσότερα

Product of two generalized pseudo-differential operators involving fractional Fourier transform

Product of two generalized pseudo-differential operators involving fractional Fourier transform J. Pseudo-Diffe. Ope. Appl. 2011 2:355 365 DOI 10.1007/s11868-011-0034-5 Poduct of two genealized pseudo-diffeential opeatos involving factional Fouie tansfom Akhilesh Pasad Manish Kuma eceived: 21 Febuay

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Galatia SIL Keyboard Information

Galatia SIL Keyboard Information Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα