LIMITED DEPENDENT VARIABLES - BASIC

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "LIMITED DEPENDENT VARIABLES - BASIC"

Transcript

1 LIMITED DEPENDENT VARIABLES - BASIC [1] Binary choice models Moivaion: Dependen variable (y ) is a yes/no variable (eg, unionism, migraion, labor force paricipaion, or dealh ) (1) Linear Model (Somewha Defecive) Digression o Bernoulli's Disribuion: Y is a random variable wih pdf; p = Pr(Y=1) and (1-p) = Pr(Y=0) f(y) = p y (1-p) 1-y E(y) = Σ y yf(y) = 1p + 0 (1-p) = p; var(y) = Σ y y f(y) - [E(y)] = p - p = p(1-p) End of Digression Linear Model: y = x β + ε, where y = 1 if yes and y = 0 if no i Assume ha E( ε x ) = 0 i E( y x ) = x β p = Pr( y = 1 x ) p x j i i i = β : So, he coefficiens measure effecs of x j on p j Limied_Basic-1

2 Problems in he linear model: 1) The ε are nonnormal and heeroskedasic Noe ha y = 1 or 0 ε 1 = x i β wih prob = p = x β = x i β wih prob = 1 p = 1 x β E( ε x ) = (1 x x β + ( x (1 x = 0 var( ε x ) = E( ε x ) = (1 x x β + ( x (1 x ) β = x β(1 x No consan over OLS is unbiased bu no efficien GLS using ˆ σ ( ˆ = x ( 1 x ˆ i i is more efficien han OLS ) Suppose ha we wish o predic p o = P(y o = 1 x o ) a x o The naural predicor of p o is of he range (0,1) x ˆ β where ˆ β is OLS or GLS Bu o x ˆ β would be ouside o Limied_Basic-

3 () Probi Model Model: y = x i β + ε, = 1,, T, where y is a unobservable laen variable (eg, level of uiliy); y = 1 if y > 0 = 0 if y < 0; E( ε x ) = 0; ε ~ N (0,1) condiional on x ; E( ε x,, x, ε,, ε ) 0 i 1i 1 1 = ; he x are ergodic and saionary Digression o normal pdf and cdf X ~ N(μ,σ ): 1 ( x μ f( x) = exp πσ σ ), - < x < 1 z Z ~ N(0,1): φ( z) = exp π ; ( ) Pr( ) z Φ z = Z < z = φ ( v ) dv In GAUSS, φ(z) = pdfn(z) and Φ(z) = cdfn(z) Some useful facs: dφ(z)/dz = φ(z); dφ/dz = -zφ(z); Φ(-z) = 1 - Φ(z); φ(z) = φ(-z) End of digression Reurn o he Probi model Limied_Basic-3

4 PDF of he y : Condiional on x, Pr(y = 1) = Pr(y > 0) = Pr(x β + ε > 0) = Pr(x β > -ε ) = Pr(-ε < x = Φ(x This gauranees p Pr(y = 1) being in he range (0,1) y f( y x ) = ( Φ( x ) ( 1 Φ( x ) 1 y i Shor Digression i ε, = 1,, T, y = x β + (-ε ) are iid U(0,1) Then, Pr(y = 1 x ) = x β (linear) (Heckman and Snyder, Rand, 1997) End of Digression Log-likelihood Funcion of he Probi model T L T ( = Π 1 f( y x i ) = { } l T ( = Σ ln(f(y x )) = Σ y ln Φ ( x β ) + (1 y )ln ( 1 Φ ( x β ) Some useful facs: E(y x ) = Φ(x Φ( x β ) Φ( x x β = = φ( x x β x β β Φ( x Φ( x = = ( x βφ ) ( x x x β β β β i j k k Limied_Basic-4

5 lt ( β ) β = = ln Φ( x ln(1 Φ( x ) Σ y + (1 y) β β φ( x φ( x Σ y x + (1 y ) Φ( x 1 Φ( x x = Σ ( y Φ( x ) φ( x Φ( x (1 Φ( x ) x Numerical Propery of he MLE of β ( ˆ β ) l ( ˆ T β ) = β Σ ( y ( ˆ)) ( ˆ Φ x β φ x x Φ( x ˆ (1 Φ( x ˆ ) = 0 k 1 H T ( ˆ ˆ lt β ) ( β ) = β β should be negaive definie [See Judge, e al for he exac form of H T ] l T ( is globally concave wih respec o β; ha is, H T ( is negaive definie [Amemiya (1985, Advanced Economerics)] Use [ H ( ˆ β )] T 1 as Cov( ˆ β ) Limied_Basic-5

6 How o find MLE (See Greene Ch 5 or Hamilon, Ch 5) 1 Newon-Raphson s algorihm: STEP 1: Choose an iniial ˆo θ Then compue () ˆ ˆ ˆ 1 ˆ 1 o [ T( o)] T( o θ = θ + H θ s θ ) STEP : Using ˆ θ 1, compue ˆ θ by () STEP 3: Coninue unil ˆ θ ˆ q+ 1 θ q Noe: N-R mehod is he bes if l T (θ) is globally concave (ie, he Hessian marix is always negaive definie for any θ) N-R may no work, if l T (θ) is no globally concave BHHH [Bernd, Hall, Hall, Hausman] l T (θ) = Σ ln[f (θ)] Define: g (θ) = ln[ f ( θ )] θ [p 1] (s T (θ) = Σ g (θ)) BBT(θ) = Σ g (θ)g (θ) [cross produc of firs derivaives] Theorem: Under suiable regulariy condiions, 1 1 BT( ) p lim T E T( o) T θ T H θ Limied_Basic-6

7 Implicaion: B ( θ ) H ( θ ), as T T T Cov( θ ) can be esimaed by 1 [ B ( θ )] or 1 [ H ( θ )] BHHH algorihm uses ( ) 1 θ 1 = θ o + λ B ( θ o) s ( θ o), o T T where λ is called sep lengh When BHHH is used, no need o compue second derivaives Oher available algorihms: BFGS, BFGS-SC, DFP T T BHHH for Probi: Can show g ( = ξ x, where, ( y Φ) φ ξ = ; φ = φ( x ; Φ =Φ( x Φ (1 Φ ) ˆ ˆ BT( =Σ gˆˆ g =Σ ξ x x [B T ( ˆ β )] -1 is Cov( ˆ β ) by BHHH Inerpreaion of β 1) β j shows direcion of influence of x j on Pr( y x ) = Φ ( x β ) β j > 0 means ha Pr( y = 1 ) increases wih x j ) Rae of change: x Pr( y = 1 x ) Φ( x β ) = = φ( x β j x x j j Limied_Basic-7

8 Esimaion of probabiliies and raes of changes Esimaion of p = Pr(y =1 x ) a mean of x Use pˆ =Φ ( x ˆ β ) ˆ ( ˆ ) var( p) = φ( x x Ωx ˆ where Ω= ˆ Cov( ˆ β ) [by dela-mehod] Esimaion of raes of change Use ( ˆ j Φ x β ) pˆ = = φ( x ˆ ˆ β j x j j ˆ j ( ) ( ˆ j p β ) var( ˆ ) ˆ p β p = Ω [by dela-mehod] β β Noe ha: j p ( β ) β = ( x βφ ) ( x ββ ) x + φ( x J, where J j = 1 k vecor of zeros excep ha he j h elemen = 1 j j Noe on normalizaion: Model: y = x β + ε, -ε ~ N(0,σ ) y = 1 iff y > 0 p = Pr( y = 1 x ) = Pr( y > 0 x ) = Pr( x β + ε > 0 x ) = Pr( ε < x β x ) = Pr( ε / σ < x ( β / σ) x ) =Φ[ x ( β / σ)] Can esimae β/σ, bu no β and σ separaely Limied_Basic-8

9 Tesing Hypohesis: 1 Wald es: H o : w( = 0 1 W T = w( ˆ β ) W( ˆ ˆ W( ˆ w( ˆ Ω β ) d χ (df = # of resricions), LR es: where ˆ β = probi MLE and W( = w( β ) β Easy for equaliy or zero resricions (ie, H o : β = β 3, or H o : β = β 3 = 0) EX 1: Suppose you wish o es H o : β 4 = β 5 = 0 STEP 1: Do Probi wihou resricion and ge l T,UR = ln(l T,UR ) STEP : Do Probi wih he resricrions and ge l T,R = ln(l T,R ) Probi wihou x 4 and x 5 STEP 3: LR T = [l T,UR - l T,R )] χ (df = ) EX : Suppose you wish o es H o : β = = β k = 0 (Overall significance es) Le n = Σ y l T = n ln(n/t) + (T-n) ln[(t-n)/t] LR T = [l T,UR l T ] p χ (k-1) Limied_Basic-9

10 Pseudo-R (McFadden, 1974) ρ = 1 l T,UR /l T 0 ρ 1 If Φ x ˆ) β = 1 whenever y = 1, and if Φ x ˆ β ) = 0 whenever y = 0, ρ ( ( = 1 If 0 < ρ < 1, no clear meaning (3) Logi Models Model: y = xi β + ε, ε ~ logisic wih g(ε) = e ε /(1+e ε ) and G(ε) = e ε /(1+e ε ) Use Pr( y = 1 x ) = G( x β ) (insead of Φ ( x β ) Logi MLE ˆ β log max Use i { ( β ) ( β )} ln( L ) =Σ y ln G( x ) + (1 y )ln 1 G( x ) [ ( ˆ )] 1 HT βlog i or T [ B ( ˆ β )] T log i 1 as Cov( βlog i ) ˆ p = gx ( β ) β j x j Limied_Basic-10

11 Facs: The logisic dis is quie similar o sandard normal dis excep ha he logisic dis has hicker ails (similarly o (7)) If daa conain few obs wih y = 1 or y = 0, hen probi and logi may be quie differen Oher han ha, probi and logi yield very similar predicions Especially, marginal effecs are quie similar Roughly, ˆ β = 16 ˆ β log i probi Limied_Basic-11

12 [] Censoring vs Truncaion (Greene, ch 0) (1) Classical disincion Consider shos on arge Truncaion: cases where you have daa on hole only Censoring: cases where you know how many shos missed () Censoring y ~ pdf: f(y ) Observe y = y if A < y < B ; A if y A ; B if y B (For obs wih y = A or y = B, y is unknown) Log-likelihood funcion: OB = { y observed}; NOB = { y unobserved}, ( ) l =Σ ln ( ) Pr( ) ln Pr( ) T OB f y OB OB +Σ NOB NOB Noe: f(y OB)Pr( OB) = f(y A < y < B)Pr(A < y < B) = [f(y )/Pr(A < y < B)]Pr(A < y < B) = f(y ) lt = ln ( f( y )) + ln( Pr( y A) ) + ln ( Pr( y B) ) A< y < B y = A y = B lt = ln ( f( y) ) + ln ( Pr( y A) ) + ln ( Pr( y B) ) A< y < B y = A y = B Limied_Basic-1

13 (3) Truncaion Observe y = y iff A < y < B Log-likelihood funcion: pdf of y : g(y ) = f(y A < y < B) = f y Pr( A < y < B) Pr( A< y < B) ( ) f( y) = lt =Σ{ ln( f( y)) ln[pr( A< y <B) } (4) Tobi (A censored model) 1) Laen model: y = x i β + ε, ε ~ N(0,σ ) condiional on x [y ~ N(x β, σ )] ) 3 possible cases: A Observe y = y if y > 0; = 0, oherwise y = max(0, y ) B Observe y = y if y < 0; = 0 oherwise y = min(0, y ) C Observe y = y if y < L ; = L oherwise Limied_Basic-13

14 3) Log-likelihood for A Pr(y 0 x ) = Pr(x β + ε 0) = Pr(ε -x = Pr(ε /σ -x (β/σ)) f(y ) = Therefore, = Φ[-x (β/σ)] = 1 - Φ[x (β/σ)] 1 ( y exp πσ y > 0 x β ) σ T( βσ, ) = ln f( y) + ln 1 Φ y > 0 y = 0 σ l x β = ln f( y ) + ln 1 Φ y > 0 y = 0 σ { 1 1 } ln( π ) ln( σ) ( y x = σ x β + ln 1 Φ y = 0 σ x β Limied_Basic-14

15 5) Inerpreaion: (i) E(y x ) = E[laen var (eg, desired consumpion) x ] = x β β j = E y x ( j x ) (ii) E(y x ) = E[observed variable (eg, acual expendiure)] = Pr(y 0)E(y y 0) + Pr(y < 0)E(y y < 0) = Pr(y 0)E(y y 0) + Pr(y < 0)E(0 y < 0) = Φ(x β/σ)e(x β + ε ε -x = Φ(x β/σ)[x β + σλ(x β/σ)] [where λ(x β/σ) = φ(x β/σ)/φ(x β/σ) (inverse Mill s raio)] = Φ(x β/σ)x β + σφ(x β/σ) Shor Digression: Suppose ha ε ~ N(0,σ ) Then, φ( h / σ ) E( ε ε > h) = σ Φ( h / σ ) End of Digression Noe: Condiional on x, E( y ) x β β j x x β β β β j = φ ( x +Φ β j + σ x φ x j σ σ σ σ i σ σ x β =Φ β j σ 6) Esimaion of E(y x) and E(y x) Limied_Basic-15

16 Le g 1 ( = x β Esimaed E(y ) a sample mean = g ˆ 1( β ) se= GΩ ˆ G, where ˆ ( ˆ g1( β ) Ω= Cov β ) and G1 = = β 1 1 x Le g (β,σ) = x β x β Φ x β + σφ σ σ Esimaed E(y ) a sample mean = g ˆ ( β, ˆ σ ) g x β x β G (β,σ) = = Φ x, φ ( β, σ) σ σ se = Gˆ ˆ Ω G, where ˆ Cov β Ω= σˆ Limied_Basic-16

17 (5) Truncaion (Maddala, Ch 6) 1) Example 1: Earnings funcion from a sample of poor people (Hausman and Wise, ECON 1979): y = x i β + ε, ε ~ N(0,σ ) condiional on x Observe y = y iff y < L (L = 15 povery line dep on family size) Log-likelihood funcion: pdf of y : g(y x ) = f(y y L, x ) = f y Pr( y L x ) ( x ) Pr(y L ) = ε L x β L x β y L x = x =Φ σ σ σ Pr(, ) Pr L x β ln L = Σ ln( f( y x )) ln Φ σ where f is he normal densiy funcion E y x E y y L ( ) = ( < ) = Ex ( β + ε x β + ε < L) = x β + E( ε ε > ( L x ) = x β E( ε ε > ( L x ) x β L σλ x β σ = Limied_Basic-17

18 ) Example : Observe y = y iff y > L f(y y L, x ) = f(y x )/Pr(y L x ) Pr(y L x β L x ) = 1 - Φ σ L x β lt =Σ ln( f( y x )) ln 1 Φ σ E(y x ) = E(y y L x β L, x ) = x β + σλ σ 3) Link beween Truncaion and Tobi Suppose L = 0 for all in Example, L x β x β x β 1 Φ = 1 Φ =Φ σ σ σ Then, he log-likelihood funcion becomes: 1 1 x β lt =Σ ln( π) ln( σ) ( y ) ln x β Φ σ σ Consider obi Choose observaions wih y > 0 and do runcaion MLE This is he case where we observe y = y iff y > L = 0 The runcaion MLE using he runcaed daa is consisen even if i is inefficien If he esimaion resuls from runcaion and obi MLE are quie differen, i means ha he obi model is no correcly specified Limied_Basic-18

19 (6) Two-par Model Cragg (ECON, 1971), Lin and Schmid (Review of Economics and Saisics (RESTAT), 1984) 1) Model: y = x β + ε i, where g(ε x,z,v ) = h = z γ + v wih v ~ N(0,1); h = 1 iff h > 0; = 0, oherwise 1 1 exp ε πσ σ and ε > - x x β; β Φ σ 3) Example: y : desired spending on clohing; h : iming o buy Limied_Basic-19

20 4) Log-likelihood funcion: Noe: g(y x ) = 1 1 exp ( y ) x β πσ σ x β Φ σ ln[ g( y h > 0) Pr( h > 0)] + ln[pr( h < 0)] h = 1 h = 0 g(y h > 0) = g(y ), because ε and v are so indep l T 1 1 ln( π) ln( σ) ( y ) x iβ σ = + x β + ln Φ( z γ ) ln Φ σ 1 1 ln( π) ln( σ) ( y ) x iβ σ = h = 1 x iβ ln Φ σ h = 1 i h = 0 i ( z γ ) ( z γ ) + ln Φ ( ) + ln 1 Φ( ) i h = 1 h = 0 runc for y > 0 + probi for all obs Esimae (β,σ) by runc and γ by probi l Cragg = l runc + l probi i ; Pr(h > 0) = Φ(z γ) [ Φ z γ ] ln 1 ( ) i Limied_Basic-0

21 Noe: Le z = x If γ = β/σ, Cragg becomes obi!!! 5) LR es for obi specificaion STEP 1: Do obi and ge l obi STEP : Do runc using observaions wih y > 0 and ge l runc STEP 3: Do probi using all observaions, and ge l probi STEP 4: l cragg = l runc + l probi STEP 5: LR = [l cragg - l obi ] d χ (k) Limied_Basic-1

22 [3] Selecion Model Heckman, ECON, 1979 Moivaion: Model of ineres: y 1 = x 1 β 1 + ε 1 Observe y 1 (or/and x 1, ) under a cerain condiion ( selecion rule ) Example: Observe a woman s marke wage if she works Complee Model: y 1 = x 1 β 1 + ε 1, y = x β + ε y = 1 if y > 0; = 0 if y < 0 We observe y 1 iff y = 1 (x mus be observable for any ) Assumpions: Condiional on ( x 1, x ), ε1 0 σ1 σ1 ~ N, ε 0 σ1 σ Limied_Basic-

23 Theorem: Suppose: h1 0 σ1 σ1 ~ N, h 0 σ1 σ φ( a) Then, E(h 1 h > -a) = σ1 Φ ( a) Facs: Condiional on ( x 1, x ) E( ε y > 0) = E( ε ε > x β ) = σ λ( x β ), φ( x where λ( x = Φ( x β ) λ [inverse Mill s raio] E( y y > 0) = x β + E( ε ε > x β ) = x β + σ λ( x β ) y = x + σ λ + v, 1 1β1 1 where Ev ( ε > x = 0; var( > ) ξ ; v ε xβ σ1 ξ = σ [( x β ) λ + λ ] 1 Two-Sep Esimaion: STEP 1: Do probi for all, and ge ˆ ( ˆ ) β, and ˆ φ x β λ = Φ( x ˆ β ) STEP : Do OLS on y ˆ 1 = x 1β1+ σ1λ + η, and ge ˆ β 1 and ˆ σ 1 Limied_Basic-3

24 Facs on he Two-Sep Esimaor: Consisen -es for H o : σ 1 = 0 (no selecion) in STEP is he LM es (Melino, Review of Economic Sudies, 198) Bu all oher -ess are wrong!!! s (XX) -1 is inconsisen So, have o compue correced covariance marix [See, Heckman (1979, Econ), Greene (1981, Econ)] Someimes, correced covariance marix is no compuable (Greene, Econ, 1981) Covariance Marix of he Two-Sep Esimaor: Le Ω= ˆ Cov( ˆ y1 = x1 β1+ σ1λ + v y = x β + σ ˆ λ + [ σ ( ˆ λ λ ) + v ] Shor Digression: By Taylor expansion around he rue value of β, ˆ ˆ λ( x β ) λ = λ( x β ) λ( x β ) + ( ˆ β β ) End of Digression β Limied_Basic-4

25 ( ˆ β1 y1 1 ) ˆ ˆ = x λ + h ( β + v = z γ + [ h ( β + v], σ 1 where h = σ [( x β ) λ + λ ] x 1 In marix noaion, y 1 = Zγ + [H( ˆ β β ) + v] ˆ γ ( ) 1 TS = ZZ Zy1 = ZZ Z Zγ + H ˆ β β + v 1 ( ) ( ( ) ) = γ + ( Z Z) ZH ( ˆ β β ) + ( ZZ ) Z v 1 1 Can show ha (βˆ and v are uncorrelaed Then, inuiively, Cov ˆ γ ) = Cov[(ZZ) -1 ZH( ˆ β β ) + (ZZ) -1 Zv] ( TS = Cov[(ZZ) -1 ZH( ˆ β β )] + Cov[(ZZ) -1 Zv] = (ZZ) -1 ZHCov( ˆ β HZ(ZZ) -1 + (ZZ) -1 ZCov(v)Z(ZZ) -1 = (ZZ) -1 ZHΩHZ(ZZ) -1 + (ZZ) -1 ZΠZ(ZZ) -1, where Π = diag( π1,, π T ) (ZZ) -1 Z HˆΩ ˆ H ˆ Z(ZZ) -1 + (ZZ) -1 Z Π Z(ZZ) -1, where esimaed H 1 Π= diag( vˆ,, vˆ ) and Ĥ is an T Limied_Basic-5

26 MLE (which is more efficien han wo-sep esimaor) Condiional on ( x 1, x ) Pr(y 1 is no observed) = Pr(y < 0) = Pr( y < 0) = 1 Φ ( x β ) Pr(y 1 is observed) = Pr( y > 0) =Φ ( x f(y 1 y 1 is observed) = f(y 1 y 0) = 1 ( y1 x 1β1) exp πσ σ Φ σ1 σ1 σ x β + ( σ / σ )( y x β ) Φ( x β ) l T = y 1 observed ln[ f ( y y is observed) Pr( y is observed) ln Pr( y is no observed ) y 1 is no observed 1 Limied_Basic-6

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9. 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3

Χρονοσειρές Μάθημα 3 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Theorem 8 Let φ be the most powerful size α test of H

Theorem 8 Let φ be the most powerful size α test of H Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Introduction to the ML Estimation of ARMA processes

Introduction to the ML Estimation of ARMA processes Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR

Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR EVA M, SWEEEY R 3,. ;. McDonough ; 3., 3006 ; ; F4.0 A Levin Lin(99) Im, Pesaran Shin(996) Levin Lin(99) Oh(996),Wu(996) Paell(997) Im, Pesaran Shin(996) Canzoner Cumby Diba(999) Levin Lin(99) Coe Helman(995)

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Galatia SIL Keyboard Information

Galatia SIL Keyboard Information Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing

Διαβάστε περισσότερα

The conditional CAPM does not explain assetpricing. Jonathan Lewellen & Stefan Nagel. HEC School of Management, March 17, 2005

The conditional CAPM does not explain assetpricing. Jonathan Lewellen & Stefan Nagel. HEC School of Management, March 17, 2005 The condiional CAPM does no explain assepricing anomalies Jonahan Lewellen & Sefan Nagel HEC School of Managemen, March 17, 005 Background Size, B/M, and momenum porfolios, 1964 001 Monhly reurns (%) Avg.

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Models for Probabilistic Programs with an Adversary

Models for Probabilistic Programs with an Adversary Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive

Διαβάστε περισσότερα

Modbus basic setup notes for IO-Link AL1xxx Master Block

Modbus basic setup notes for IO-Link AL1xxx Master Block n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Lecture 7: Overdispersion in Poisson regression

Lecture 7: Overdispersion in Poisson regression Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for

Διαβάστε περισσότερα

& Risk Management , A.T.E.I.

& Risk Management , A.T.E.I. Μεταβλητότητα & Risk Managemen Οικονοµικό Επιµελητήριο της Ελλάδας Επιµορφωτικά Σεµινάρια Σταύρος. Ντεγιαννάκης, Οικονοµικό Πανεπιστήµιο Αθηνών Χρήστος Φλώρος, A.T.E.I. Κρήτης Volailiy - Μεταβλητότητα

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence

Διαβάστε περισσότερα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer: HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall 64_INS.qxd /6/0 :56 AM Page Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER Class Widh = round up o nex convenien number Maximum daa enry - Minimum

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα