LIMITED DEPENDENT VARIABLES - BASIC
|
|
- Πρίσκα Ασπάσιος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 LIMITED DEPENDENT VARIABLES - BASIC [1] Binary choice models Moivaion: Dependen variable (y ) is a yes/no variable (eg, unionism, migraion, labor force paricipaion, or dealh ) (1) Linear Model (Somewha Defecive) Digression o Bernoulli's Disribuion: Y is a random variable wih pdf; p = Pr(Y=1) and (1-p) = Pr(Y=0) f(y) = p y (1-p) 1-y E(y) = Σ y yf(y) = 1p + 0 (1-p) = p; var(y) = Σ y y f(y) - [E(y)] = p - p = p(1-p) End of Digression Linear Model: y = x β + ε, where y = 1 if yes and y = 0 if no i Assume ha E( ε x ) = 0 i E( y x ) = x β p = Pr( y = 1 x ) p x j i i i = β : So, he coefficiens measure effecs of x j on p j Limied_Basic-1
2 Problems in he linear model: 1) The ε are nonnormal and heeroskedasic Noe ha y = 1 or 0 ε 1 = x i β wih prob = p = x β = x i β wih prob = 1 p = 1 x β E( ε x ) = (1 x x β + ( x (1 x = 0 var( ε x ) = E( ε x ) = (1 x x β + ( x (1 x ) β = x β(1 x No consan over OLS is unbiased bu no efficien GLS using ˆ σ ( ˆ = x ( 1 x ˆ i i is more efficien han OLS ) Suppose ha we wish o predic p o = P(y o = 1 x o ) a x o The naural predicor of p o is of he range (0,1) x ˆ β where ˆ β is OLS or GLS Bu o x ˆ β would be ouside o Limied_Basic-
3 () Probi Model Model: y = x i β + ε, = 1,, T, where y is a unobservable laen variable (eg, level of uiliy); y = 1 if y > 0 = 0 if y < 0; E( ε x ) = 0; ε ~ N (0,1) condiional on x ; E( ε x,, x, ε,, ε ) 0 i 1i 1 1 = ; he x are ergodic and saionary Digression o normal pdf and cdf X ~ N(μ,σ ): 1 ( x μ f( x) = exp πσ σ ), - < x < 1 z Z ~ N(0,1): φ( z) = exp π ; ( ) Pr( ) z Φ z = Z < z = φ ( v ) dv In GAUSS, φ(z) = pdfn(z) and Φ(z) = cdfn(z) Some useful facs: dφ(z)/dz = φ(z); dφ/dz = -zφ(z); Φ(-z) = 1 - Φ(z); φ(z) = φ(-z) End of digression Reurn o he Probi model Limied_Basic-3
4 PDF of he y : Condiional on x, Pr(y = 1) = Pr(y > 0) = Pr(x β + ε > 0) = Pr(x β > -ε ) = Pr(-ε < x = Φ(x This gauranees p Pr(y = 1) being in he range (0,1) y f( y x ) = ( Φ( x ) ( 1 Φ( x ) 1 y i Shor Digression i ε, = 1,, T, y = x β + (-ε ) are iid U(0,1) Then, Pr(y = 1 x ) = x β (linear) (Heckman and Snyder, Rand, 1997) End of Digression Log-likelihood Funcion of he Probi model T L T ( = Π 1 f( y x i ) = { } l T ( = Σ ln(f(y x )) = Σ y ln Φ ( x β ) + (1 y )ln ( 1 Φ ( x β ) Some useful facs: E(y x ) = Φ(x Φ( x β ) Φ( x x β = = φ( x x β x β β Φ( x Φ( x = = ( x βφ ) ( x x x β β β β i j k k Limied_Basic-4
5 lt ( β ) β = = ln Φ( x ln(1 Φ( x ) Σ y + (1 y) β β φ( x φ( x Σ y x + (1 y ) Φ( x 1 Φ( x x = Σ ( y Φ( x ) φ( x Φ( x (1 Φ( x ) x Numerical Propery of he MLE of β ( ˆ β ) l ( ˆ T β ) = β Σ ( y ( ˆ)) ( ˆ Φ x β φ x x Φ( x ˆ (1 Φ( x ˆ ) = 0 k 1 H T ( ˆ ˆ lt β ) ( β ) = β β should be negaive definie [See Judge, e al for he exac form of H T ] l T ( is globally concave wih respec o β; ha is, H T ( is negaive definie [Amemiya (1985, Advanced Economerics)] Use [ H ( ˆ β )] T 1 as Cov( ˆ β ) Limied_Basic-5
6 How o find MLE (See Greene Ch 5 or Hamilon, Ch 5) 1 Newon-Raphson s algorihm: STEP 1: Choose an iniial ˆo θ Then compue () ˆ ˆ ˆ 1 ˆ 1 o [ T( o)] T( o θ = θ + H θ s θ ) STEP : Using ˆ θ 1, compue ˆ θ by () STEP 3: Coninue unil ˆ θ ˆ q+ 1 θ q Noe: N-R mehod is he bes if l T (θ) is globally concave (ie, he Hessian marix is always negaive definie for any θ) N-R may no work, if l T (θ) is no globally concave BHHH [Bernd, Hall, Hall, Hausman] l T (θ) = Σ ln[f (θ)] Define: g (θ) = ln[ f ( θ )] θ [p 1] (s T (θ) = Σ g (θ)) BBT(θ) = Σ g (θ)g (θ) [cross produc of firs derivaives] Theorem: Under suiable regulariy condiions, 1 1 BT( ) p lim T E T( o) T θ T H θ Limied_Basic-6
7 Implicaion: B ( θ ) H ( θ ), as T T T Cov( θ ) can be esimaed by 1 [ B ( θ )] or 1 [ H ( θ )] BHHH algorihm uses ( ) 1 θ 1 = θ o + λ B ( θ o) s ( θ o), o T T where λ is called sep lengh When BHHH is used, no need o compue second derivaives Oher available algorihms: BFGS, BFGS-SC, DFP T T BHHH for Probi: Can show g ( = ξ x, where, ( y Φ) φ ξ = ; φ = φ( x ; Φ =Φ( x Φ (1 Φ ) ˆ ˆ BT( =Σ gˆˆ g =Σ ξ x x [B T ( ˆ β )] -1 is Cov( ˆ β ) by BHHH Inerpreaion of β 1) β j shows direcion of influence of x j on Pr( y x ) = Φ ( x β ) β j > 0 means ha Pr( y = 1 ) increases wih x j ) Rae of change: x Pr( y = 1 x ) Φ( x β ) = = φ( x β j x x j j Limied_Basic-7
8 Esimaion of probabiliies and raes of changes Esimaion of p = Pr(y =1 x ) a mean of x Use pˆ =Φ ( x ˆ β ) ˆ ( ˆ ) var( p) = φ( x x Ωx ˆ where Ω= ˆ Cov( ˆ β ) [by dela-mehod] Esimaion of raes of change Use ( ˆ j Φ x β ) pˆ = = φ( x ˆ ˆ β j x j j ˆ j ( ) ( ˆ j p β ) var( ˆ ) ˆ p β p = Ω [by dela-mehod] β β Noe ha: j p ( β ) β = ( x βφ ) ( x ββ ) x + φ( x J, where J j = 1 k vecor of zeros excep ha he j h elemen = 1 j j Noe on normalizaion: Model: y = x β + ε, -ε ~ N(0,σ ) y = 1 iff y > 0 p = Pr( y = 1 x ) = Pr( y > 0 x ) = Pr( x β + ε > 0 x ) = Pr( ε < x β x ) = Pr( ε / σ < x ( β / σ) x ) =Φ[ x ( β / σ)] Can esimae β/σ, bu no β and σ separaely Limied_Basic-8
9 Tesing Hypohesis: 1 Wald es: H o : w( = 0 1 W T = w( ˆ β ) W( ˆ ˆ W( ˆ w( ˆ Ω β ) d χ (df = # of resricions), LR es: where ˆ β = probi MLE and W( = w( β ) β Easy for equaliy or zero resricions (ie, H o : β = β 3, or H o : β = β 3 = 0) EX 1: Suppose you wish o es H o : β 4 = β 5 = 0 STEP 1: Do Probi wihou resricion and ge l T,UR = ln(l T,UR ) STEP : Do Probi wih he resricrions and ge l T,R = ln(l T,R ) Probi wihou x 4 and x 5 STEP 3: LR T = [l T,UR - l T,R )] χ (df = ) EX : Suppose you wish o es H o : β = = β k = 0 (Overall significance es) Le n = Σ y l T = n ln(n/t) + (T-n) ln[(t-n)/t] LR T = [l T,UR l T ] p χ (k-1) Limied_Basic-9
10 Pseudo-R (McFadden, 1974) ρ = 1 l T,UR /l T 0 ρ 1 If Φ x ˆ) β = 1 whenever y = 1, and if Φ x ˆ β ) = 0 whenever y = 0, ρ ( ( = 1 If 0 < ρ < 1, no clear meaning (3) Logi Models Model: y = xi β + ε, ε ~ logisic wih g(ε) = e ε /(1+e ε ) and G(ε) = e ε /(1+e ε ) Use Pr( y = 1 x ) = G( x β ) (insead of Φ ( x β ) Logi MLE ˆ β log max Use i { ( β ) ( β )} ln( L ) =Σ y ln G( x ) + (1 y )ln 1 G( x ) [ ( ˆ )] 1 HT βlog i or T [ B ( ˆ β )] T log i 1 as Cov( βlog i ) ˆ p = gx ( β ) β j x j Limied_Basic-10
11 Facs: The logisic dis is quie similar o sandard normal dis excep ha he logisic dis has hicker ails (similarly o (7)) If daa conain few obs wih y = 1 or y = 0, hen probi and logi may be quie differen Oher han ha, probi and logi yield very similar predicions Especially, marginal effecs are quie similar Roughly, ˆ β = 16 ˆ β log i probi Limied_Basic-11
12 [] Censoring vs Truncaion (Greene, ch 0) (1) Classical disincion Consider shos on arge Truncaion: cases where you have daa on hole only Censoring: cases where you know how many shos missed () Censoring y ~ pdf: f(y ) Observe y = y if A < y < B ; A if y A ; B if y B (For obs wih y = A or y = B, y is unknown) Log-likelihood funcion: OB = { y observed}; NOB = { y unobserved}, ( ) l =Σ ln ( ) Pr( ) ln Pr( ) T OB f y OB OB +Σ NOB NOB Noe: f(y OB)Pr( OB) = f(y A < y < B)Pr(A < y < B) = [f(y )/Pr(A < y < B)]Pr(A < y < B) = f(y ) lt = ln ( f( y )) + ln( Pr( y A) ) + ln ( Pr( y B) ) A< y < B y = A y = B lt = ln ( f( y) ) + ln ( Pr( y A) ) + ln ( Pr( y B) ) A< y < B y = A y = B Limied_Basic-1
13 (3) Truncaion Observe y = y iff A < y < B Log-likelihood funcion: pdf of y : g(y ) = f(y A < y < B) = f y Pr( A < y < B) Pr( A< y < B) ( ) f( y) = lt =Σ{ ln( f( y)) ln[pr( A< y <B) } (4) Tobi (A censored model) 1) Laen model: y = x i β + ε, ε ~ N(0,σ ) condiional on x [y ~ N(x β, σ )] ) 3 possible cases: A Observe y = y if y > 0; = 0, oherwise y = max(0, y ) B Observe y = y if y < 0; = 0 oherwise y = min(0, y ) C Observe y = y if y < L ; = L oherwise Limied_Basic-13
14 3) Log-likelihood for A Pr(y 0 x ) = Pr(x β + ε 0) = Pr(ε -x = Pr(ε /σ -x (β/σ)) f(y ) = Therefore, = Φ[-x (β/σ)] = 1 - Φ[x (β/σ)] 1 ( y exp πσ y > 0 x β ) σ T( βσ, ) = ln f( y) + ln 1 Φ y > 0 y = 0 σ l x β = ln f( y ) + ln 1 Φ y > 0 y = 0 σ { 1 1 } ln( π ) ln( σ) ( y x = σ x β + ln 1 Φ y = 0 σ x β Limied_Basic-14
15 5) Inerpreaion: (i) E(y x ) = E[laen var (eg, desired consumpion) x ] = x β β j = E y x ( j x ) (ii) E(y x ) = E[observed variable (eg, acual expendiure)] = Pr(y 0)E(y y 0) + Pr(y < 0)E(y y < 0) = Pr(y 0)E(y y 0) + Pr(y < 0)E(0 y < 0) = Φ(x β/σ)e(x β + ε ε -x = Φ(x β/σ)[x β + σλ(x β/σ)] [where λ(x β/σ) = φ(x β/σ)/φ(x β/σ) (inverse Mill s raio)] = Φ(x β/σ)x β + σφ(x β/σ) Shor Digression: Suppose ha ε ~ N(0,σ ) Then, φ( h / σ ) E( ε ε > h) = σ Φ( h / σ ) End of Digression Noe: Condiional on x, E( y ) x β β j x x β β β β j = φ ( x +Φ β j + σ x φ x j σ σ σ σ i σ σ x β =Φ β j σ 6) Esimaion of E(y x) and E(y x) Limied_Basic-15
16 Le g 1 ( = x β Esimaed E(y ) a sample mean = g ˆ 1( β ) se= GΩ ˆ G, where ˆ ( ˆ g1( β ) Ω= Cov β ) and G1 = = β 1 1 x Le g (β,σ) = x β x β Φ x β + σφ σ σ Esimaed E(y ) a sample mean = g ˆ ( β, ˆ σ ) g x β x β G (β,σ) = = Φ x, φ ( β, σ) σ σ se = Gˆ ˆ Ω G, where ˆ Cov β Ω= σˆ Limied_Basic-16
17 (5) Truncaion (Maddala, Ch 6) 1) Example 1: Earnings funcion from a sample of poor people (Hausman and Wise, ECON 1979): y = x i β + ε, ε ~ N(0,σ ) condiional on x Observe y = y iff y < L (L = 15 povery line dep on family size) Log-likelihood funcion: pdf of y : g(y x ) = f(y y L, x ) = f y Pr( y L x ) ( x ) Pr(y L ) = ε L x β L x β y L x = x =Φ σ σ σ Pr(, ) Pr L x β ln L = Σ ln( f( y x )) ln Φ σ where f is he normal densiy funcion E y x E y y L ( ) = ( < ) = Ex ( β + ε x β + ε < L) = x β + E( ε ε > ( L x ) = x β E( ε ε > ( L x ) x β L σλ x β σ = Limied_Basic-17
18 ) Example : Observe y = y iff y > L f(y y L, x ) = f(y x )/Pr(y L x ) Pr(y L x β L x ) = 1 - Φ σ L x β lt =Σ ln( f( y x )) ln 1 Φ σ E(y x ) = E(y y L x β L, x ) = x β + σλ σ 3) Link beween Truncaion and Tobi Suppose L = 0 for all in Example, L x β x β x β 1 Φ = 1 Φ =Φ σ σ σ Then, he log-likelihood funcion becomes: 1 1 x β lt =Σ ln( π) ln( σ) ( y ) ln x β Φ σ σ Consider obi Choose observaions wih y > 0 and do runcaion MLE This is he case where we observe y = y iff y > L = 0 The runcaion MLE using he runcaed daa is consisen even if i is inefficien If he esimaion resuls from runcaion and obi MLE are quie differen, i means ha he obi model is no correcly specified Limied_Basic-18
19 (6) Two-par Model Cragg (ECON, 1971), Lin and Schmid (Review of Economics and Saisics (RESTAT), 1984) 1) Model: y = x β + ε i, where g(ε x,z,v ) = h = z γ + v wih v ~ N(0,1); h = 1 iff h > 0; = 0, oherwise 1 1 exp ε πσ σ and ε > - x x β; β Φ σ 3) Example: y : desired spending on clohing; h : iming o buy Limied_Basic-19
20 4) Log-likelihood funcion: Noe: g(y x ) = 1 1 exp ( y ) x β πσ σ x β Φ σ ln[ g( y h > 0) Pr( h > 0)] + ln[pr( h < 0)] h = 1 h = 0 g(y h > 0) = g(y ), because ε and v are so indep l T 1 1 ln( π) ln( σ) ( y ) x iβ σ = + x β + ln Φ( z γ ) ln Φ σ 1 1 ln( π) ln( σ) ( y ) x iβ σ = h = 1 x iβ ln Φ σ h = 1 i h = 0 i ( z γ ) ( z γ ) + ln Φ ( ) + ln 1 Φ( ) i h = 1 h = 0 runc for y > 0 + probi for all obs Esimae (β,σ) by runc and γ by probi l Cragg = l runc + l probi i ; Pr(h > 0) = Φ(z γ) [ Φ z γ ] ln 1 ( ) i Limied_Basic-0
21 Noe: Le z = x If γ = β/σ, Cragg becomes obi!!! 5) LR es for obi specificaion STEP 1: Do obi and ge l obi STEP : Do runc using observaions wih y > 0 and ge l runc STEP 3: Do probi using all observaions, and ge l probi STEP 4: l cragg = l runc + l probi STEP 5: LR = [l cragg - l obi ] d χ (k) Limied_Basic-1
22 [3] Selecion Model Heckman, ECON, 1979 Moivaion: Model of ineres: y 1 = x 1 β 1 + ε 1 Observe y 1 (or/and x 1, ) under a cerain condiion ( selecion rule ) Example: Observe a woman s marke wage if she works Complee Model: y 1 = x 1 β 1 + ε 1, y = x β + ε y = 1 if y > 0; = 0 if y < 0 We observe y 1 iff y = 1 (x mus be observable for any ) Assumpions: Condiional on ( x 1, x ), ε1 0 σ1 σ1 ~ N, ε 0 σ1 σ Limied_Basic-
23 Theorem: Suppose: h1 0 σ1 σ1 ~ N, h 0 σ1 σ φ( a) Then, E(h 1 h > -a) = σ1 Φ ( a) Facs: Condiional on ( x 1, x ) E( ε y > 0) = E( ε ε > x β ) = σ λ( x β ), φ( x where λ( x = Φ( x β ) λ [inverse Mill s raio] E( y y > 0) = x β + E( ε ε > x β ) = x β + σ λ( x β ) y = x + σ λ + v, 1 1β1 1 where Ev ( ε > x = 0; var( > ) ξ ; v ε xβ σ1 ξ = σ [( x β ) λ + λ ] 1 Two-Sep Esimaion: STEP 1: Do probi for all, and ge ˆ ( ˆ ) β, and ˆ φ x β λ = Φ( x ˆ β ) STEP : Do OLS on y ˆ 1 = x 1β1+ σ1λ + η, and ge ˆ β 1 and ˆ σ 1 Limied_Basic-3
24 Facs on he Two-Sep Esimaor: Consisen -es for H o : σ 1 = 0 (no selecion) in STEP is he LM es (Melino, Review of Economic Sudies, 198) Bu all oher -ess are wrong!!! s (XX) -1 is inconsisen So, have o compue correced covariance marix [See, Heckman (1979, Econ), Greene (1981, Econ)] Someimes, correced covariance marix is no compuable (Greene, Econ, 1981) Covariance Marix of he Two-Sep Esimaor: Le Ω= ˆ Cov( ˆ y1 = x1 β1+ σ1λ + v y = x β + σ ˆ λ + [ σ ( ˆ λ λ ) + v ] Shor Digression: By Taylor expansion around he rue value of β, ˆ ˆ λ( x β ) λ = λ( x β ) λ( x β ) + ( ˆ β β ) End of Digression β Limied_Basic-4
25 ( ˆ β1 y1 1 ) ˆ ˆ = x λ + h ( β + v = z γ + [ h ( β + v], σ 1 where h = σ [( x β ) λ + λ ] x 1 In marix noaion, y 1 = Zγ + [H( ˆ β β ) + v] ˆ γ ( ) 1 TS = ZZ Zy1 = ZZ Z Zγ + H ˆ β β + v 1 ( ) ( ( ) ) = γ + ( Z Z) ZH ( ˆ β β ) + ( ZZ ) Z v 1 1 Can show ha (βˆ and v are uncorrelaed Then, inuiively, Cov ˆ γ ) = Cov[(ZZ) -1 ZH( ˆ β β ) + (ZZ) -1 Zv] ( TS = Cov[(ZZ) -1 ZH( ˆ β β )] + Cov[(ZZ) -1 Zv] = (ZZ) -1 ZHCov( ˆ β HZ(ZZ) -1 + (ZZ) -1 ZCov(v)Z(ZZ) -1 = (ZZ) -1 ZHΩHZ(ZZ) -1 + (ZZ) -1 ZΠZ(ZZ) -1, where Π = diag( π1,, π T ) (ZZ) -1 Z HˆΩ ˆ H ˆ Z(ZZ) -1 + (ZZ) -1 Z Π Z(ZZ) -1, where esimaed H 1 Π= diag( vˆ,, vˆ ) and Ĥ is an T Limied_Basic-5
26 MLE (which is more efficien han wo-sep esimaor) Condiional on ( x 1, x ) Pr(y 1 is no observed) = Pr(y < 0) = Pr( y < 0) = 1 Φ ( x β ) Pr(y 1 is observed) = Pr( y > 0) =Φ ( x f(y 1 y 1 is observed) = f(y 1 y 0) = 1 ( y1 x 1β1) exp πσ σ Φ σ1 σ1 σ x β + ( σ / σ )( y x β ) Φ( x β ) l T = y 1 observed ln[ f ( y y is observed) Pr( y is observed) ln Pr( y is no observed ) y 1 is no observed 1 Limied_Basic-6
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Χρονοσειρές Μάθημα 3
Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Theorem 8 Let φ be the most powerful size α test of H
Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)
Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y
Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Mean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR
EVA M, SWEEEY R 3,. ;. McDonough ; 3., 3006 ; ; F4.0 A Levin Lin(99) Im, Pesaran Shin(996) Levin Lin(99) Oh(996),Wu(996) Paell(997) Im, Pesaran Shin(996) Canzoner Cumby Diba(999) Levin Lin(99) Coe Helman(995)
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Chapter 3: Ordinal Numbers
Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Galatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
The conditional CAPM does not explain assetpricing. Jonathan Lewellen & Stefan Nagel. HEC School of Management, March 17, 2005
The condiional CAPM does no explain assepricing anomalies Jonahan Lewellen & Sefan Nagel HEC School of Managemen, March 17, 005 Background Size, B/M, and momenum porfolios, 1964 001 Monhly reurns (%) Avg.
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality
The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,
Models for Probabilistic Programs with an Adversary
Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive
Modbus basic setup notes for IO-Link AL1xxx Master Block
n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
ω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Lecture 7: Overdispersion in Poisson regression
Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for
& Risk Management , A.T.E.I.
Μεταβλητότητα & Risk Managemen Οικονοµικό Επιµελητήριο της Ελλάδας Επιµορφωτικά Σεµινάρια Σταύρος. Ντεγιαννάκης, Οικονοµικό Πανεπιστήµιο Αθηνών Χρήστος Φλώρος, A.T.E.I. Κρήτης Volailiy - Μεταβλητότητα
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016
ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES
APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall
64_INS.qxd /6/0 :56 AM Page Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER Class Widh = round up o nex convenien number Maximum daa enry - Minimum
An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions
An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =