Contents Introduction to Filter Concepts All-Pole Approximations

Σχετικά έγγραφα
Τελικό Project Εργαστηρίου Ηλεκτρονικών Φίλτρων Χειµερινό Εξάµηνο

Fundamentals of Signals, Systems and Filtering

Second Order RLC Filters

Ανηικείμενα ποσ καλύπηονηαι

Magnetically Coupled Circuits

ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΤΟ ΜΑΘΗΜΑ "ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ"

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Lecture Stage Frequency Response (1/10/02) Page 210-1

A Hierarchy of Theta Bodies for Polynomial Systems


SMD Power Inductor-VLH

Prepolarized Microphones-Free Field

Ανάλυση ΓΧΑ Συστημάτων

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Monolithic Crystal Filters (M.C.F.)

SMD Power Inductor-VLH

Single Stage Amplifiers

ΣΧΕΔΙΑΣΗ ΑΝΑΛΟΓΙΚΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΦΙΛΤΡΩΝ ΧΑΜΗΛΗΣ ΤΑΣΗΣ ΤΡΟΦΟΔΟΣΙΑΣ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΥΠΕΡΒΟΛΙΚΟΥ ΗΜΙΤΟΝΟΥ

ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.

Nachrichtentechnik I WS 2005/2006

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Graded Refractive-Index

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Handbook of Electrochemical Impedance Spectroscopy

EE512: Error Control Coding

NEC Silicon RFIC Amplifiers Low Power, Wideband & SiGe/SiGeC

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Overview: Relay Modules

SPBW06 & DPBW06 series

YAGEO CORPORATION SMD INDUCTOR / BEADS. CLH Series. Lead-free / For High Frequency Applications. CLH1005-H series CLH1608-H series ~1.4 0.

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Electronic Analysis of CMOS Logic Gates

Fundamentals of Probability: A First Course. Anirban DasGupta

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 1 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Second Order Partial Differential Equations

Congruence Classes of Invertible Matrices of Order 3 over F 2

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homomorphism in Intuitionistic Fuzzy Automata

Technical Specifications

AC Main Power Power supply Universal, Single Phase, Bi-Phase or Three Phase acceptance, switching mode with PFC Operating voltage 85 V V

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

WIRE WOUND CHIP INDUCTORS

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

Chapter 2 Procedure for Designing Fractional-Order Filters

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

Inverse trigonometric functions & General Solution of Trigonometric Equations

Computing the Gradient

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

SOME PROPERTIES OF FUZZY REAL NUMBERS

Design and Simulation of a Wilkinson Power Divider with High Isolation for Tri-Band Operation Using PSO Algorithm

Te chnical Data Catalog

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Lecture 23. Impedance, Resonance in R-C-L Circuits. Preparation for the Final Exam

555 TIMER APPLICATIONS AND VOLTAGE REGULATORS

w o = R 1 p. (1) R = p =. = 1

THICK FILM LEAD FREE CHIP RESISTORS

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Biostatistics for Health Sciences Review Sheet

High Current Chip Ferrite Bead MHC Series

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

PLL Synthesizer. Variable Type. Fixed Type (ROM Included)

RSDW08 & RDDW08 series

Ψηφιακή Επεξεργασία Φωνής

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

An Inventory of Continuous Distributions

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Approximation of distance between locations on earth given by latitude and longitude

Abstract Storage Devices

Thermistor (NTC /PTC)

TeSys contactors a.c. coils for 3-pole contactors LC1-D

Series AM2DZ 2 Watt DC-DC Converter

!, " # 0 1! "#$ %$ &$ "$$'() '*+'$$ !, -''($'.$+/

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

The ε-pseudospectrum of a Matrix

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Ανάδραση μέρος 2 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Data sheet Thin Film Chip Inductor AL Series

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

0 Τα ηλεκτρικά κυκλώματα ως συστήματα Παράδειγμα Ηλεκτρ. Συστήματος πρώτης τάξης: κύκλωμα «RC» με Εξοδο

Content. Introduction... 1

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

2 Composition. Invertible Mappings

! " # $ &,-" " (.* & -" " ( /* 0 (1 1* 0 - (* 0 #! - (#* 2 3( 4* 2 (* 2 5!! 3 ( * (7 4* 2 #8 (# * 9 : (* 9

Contents. Preface. 4 Support Vector Machines Linearclassification SVMs separablecase... 64

15W DIN Rail Type DC-DC Converter. DDR-15 s e r i e s. File Name:DDR-15-SPEC

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

Digital motor protection relays

B37631 K K 0 60

Transcript:

Contents 1 Introduction to Filter Concepts... 1 1.1 Gain and Attenuation Functions..... 1 1.2 Ideal Transmission... 4 1.2.1 Ideal Filters... 5 1.3 Real Electronic Filters... 6 1.3.1 Realizable Lowpass Filters... 7 1.3.2 Realizable Highpass (HP) Filters... 9 1.3.3 Realizable Bandpass (BP) Filters... 9 1.3.4 Realizable Band-Reject (BR) Filters... 10 1.4 Filter Technologies... 10 1.5 Designing a Filter... 14 1.5.1 ScalingandNormalization:SmartSimplification... 14 1.5.2 Approximation: The Heart of Filter Design.... 15 1.6 ScalingandNormalization... 19 1.6.1 Impedance Scaling... 19 1.6.2 Frequency Scaling... 20 1.6.3 FullNormalization... 21 1.6.4 Prototype Filters... 24 1.7 CircuitOrder... 26 1.8 Problems... 28 References...... 29 2 All-Pole Approximations... 31 2.1 Filter Specifications and Approximations... 31 2.1.1 All-Pole Transfer Functions and Approximations... 33 2.2 TheButterworthApproximation... 34 2.2.1 Optimization Using β asadesignparameter... 37 2.2.2 The 3 db Frequency of Butterworth Filters.... 39 2.2.3 TheCut-offRate... 39 2.2.4 The Normalized Butterworth Lowpass Transfer Function...... 41 2.2.5 Table of Prototype Butterworth Filters...... 45 2.3 The Chebyshev Approximation..... 51 2.3.1 Chebyshev Polynomials..... 51 2.3.2 The All-Pole Chebyshev Approximation..... 52 2.3.3 The 3-dB Frequency and The Cut-off Rate.... 59 2.3.4 The Transfer Function...... 60 2.4 ThePascalApproximation... 64 2.4.1 OptimizingthePascalApproximation... 71 2.4.2 OrderCalculation... 73 ix

x Contents 2.4.3 The Transfer Function...... 73 2.4.4 DesignExamples... 75 2.4.5 Comparison to Other Polynomial Approximations... 78 2.5 Chebyshev and Pascal Design Tables... 80 2.5.1 Table: Chebyshev Approximation... 80 2.6 Problems... 85 References...... 87 3 Rational Approximations... 89 3.1 Introduction..... 89 3.2 Rational Approximations... 89 3.3 The Inverse Chebyshev Approximation... 95 3.3.1 GainAnalysis... 98 3.3.2 RippleFactorandOrderCalculation... 100 3.3.3 Optimization... 102 3.4 TheInversePascalApproximation... 112 3.4.1 The Pascal Rational Function F P (Ω)... 116 3.4.2 Definition of the Inverse Pascal Approximation... 119 3.4.3 GainAnalysis... 120 3.4.4 Filter Design Using the Inverse Pascal Approximation... 120 3.4.5 The Order Inequality and the Order Nomograph... 122 3.4.6 The Transfer Function of the Inverse Pascal Filters... 126 3.5 InversePascalTables... 132 3.6 Problems... 132 References...... 142 4 The Elliptic (Cauer) Approximation... 143 4.1 Introduction..... 143 4.2 Calculation of K(x) and sn(u, x)... 147 4.2.1 The AGM and the Complete Elliptic Integral K(x)... 147 4.2.2 The Jacobi Nome q (Modular Constant)..... 147 4.2.3 Theta Functions and the Jacobi Elliptic Sine sn(u, x)... 148 4.3 The Elliptic Approximation and the Elliptic Rational Function... 149 4.4 Properties of the Elliptic Rational Function R N (Ω S,Ω)... 150 4.5 Calculations... 153 4.6 Specifications and the Order of the Elliptic Approximation... 157 4.7 Elliptic Filter Design Optimization... 159 4.7.1 Stopband Optimization Ω S max... 162 4.8 The Transfer Function... 164 4.9 Elliptic Filter Design Aids... 176 4.9.1 TheOrderNomograph... 177 4.9.2 Transfer Function Tables.... 179 4.9.3 Computer Aided Elliptic Filter Design...... 181 4.10Problems... 182 References...... 183 5 Frequency Transformations... 185 5.1 The Lowpass to Highpass (LP-HP) Frequency Transformation... 185 5.1.1 The LP-HP Frequency Transformation at Transfer Function Level... 187 5.1.2 The LP-HP Frequency Transformation at Component Level..... 188

Contents xi 5.2 The Lowpass to Bandpass (LP-BP) Frequency Transformation... 197 5.2.1 The LP-BP Frequency Transformation at Transfer Function Level... 201 5.2.2 The LP-BP Frequency Transformation at Component Level..... 202 5.3 The Lowpass to Band-Reject (LP-BR) Frequency Transformation...... 206 5.3.1 The LP-BR Frequency Transformation at Transfer Function Level... 210 5.3.2 The LP-BR Frequency Transformation at Component Level..... 211 5.4 Problems... 214 References...... 217 6 Passive Filters: Basic Theory and Concepts... 219 6.1 PowerandMaximumPowerTransfer... 219 6.2 Insertion(TransmissionorEffective)Parameters... 226 6.2.1 The Effective Attenuation.... 227 6.2.2 The Reflected Power and the Reflection Coefficient... 229 6.2.3 The Transmission Function T(s)and the Characteristic Function K(s)... 230 6.2.4 Relationship Between ρ(s) and T(s)or H(s)... 231 6.3 The Passive Filters Design Procedure... 233 6.4 Determination of Z 1 (s) of a Lowpass Filter... 234 6.4.1 Determination of Z 1 (s) via ρ(s)... 236 6.4.2 Determination of Z 1 (s) via ABCD Two-PortParameters... 238 6.5 Problems... 244 References...... 248 7 Synthesis and Design of Passive Filters... 249 7.1 Preliminaries... 249 7.2 The Butterworth Approximation in Passive Filter Design... 250 7.2.1 Butterworth Filter Design by Analysis...... 262 7.3 The Chebyshev Approximation in Passive Filter Design... 266 7.3.1 Even Order Passive Chebyshev Filters...... 270 7.3.2 The Modified Chebyshev Approximation..... 274 7.3.3 The Synthesis of Passive Chebyshev Filters.... 276 7.4 The Pascal Approximation in Passive Filter Design.... 286 7.4.1 Even Order Passive Pascal Filters... 292 7.4.2 TheModifiedPascalApproximation... 300 7.5 The Elliptic Approximation in Passive Filter Design... 302 7.5.1 Odd Order Elliptic Passive Filters... 305 7.5.2 Even Order Elliptic Passive Filters... 309 7.6 Problems... 311 References...... 313 8 Active Simulation of Passive Ladder Filters... 315 8.1 Inductance Simulation... 316 8.1.1 Riordan s Simulated Inductor... 316 8.1.2 Antoniou s Simulated Inductor... 318 8.1.3 Floating Simulated Inductors... 319 8.1.4 A General Approach... 321 8.1.5 A Single Op Amp Simulated Inductor... 324 8.2 Frequency Dependent Impedance Scaling... 328 8.3 Linear Transformation Active Filters... 331 8.3.1 Connection of Linearly Transformed Two-Ports... 334 8.3.2 Input Termination... 335

xii Contents 8.3.3 OutputTermination... 336 8.3.4 Wave Active Filters... 340 8.3.5 Leap-Frog Filters... 341 8.4 Problems... 342 References...... 347 9 Operational Amplifiers... 349 9.1 Introduction..... 349 9.2 Operational Amplifier Models...... 350 9.2.1 Voltage-Mode Operational Amplifiers...... 350 9.2.2 Current-Mode Operational Amplifiers...... 355 9.3 Basic Operational Amplifier Circuits... 359 9.3.1 VoltageFollowerorBuffer... 360 9.3.2 InvertingAmplifierCircuits... 361 9.3.3 CircuitswithNon-invertingVoltageAmplifier... 370 9.4 IntegratorsRevisited... 376 9.4.1 InvertingIntegrators... 377 9.4.2 Non-invertingIntegrators... 380 9.5 Operational Amplifier Imperfections... 382 9.5.1 The Frequency Dependent Finite Open-Loop Gain... 383 9.5.2 OtherImperfections... 383 9.5.3 Linear and Non-linear Operation... 384 9.6 Problems... 386 References...... 386 10 Second Order Functions and Circuits... 389 10.1 Introduction..... 389 10.2 Second Order Functions... 391 10.2.1 Second Order Lowpass (LP) Transfer Functions... 391 10.2.2 Second Order Highpass (HP) Transfer Functions... 395 10.2.3 Second Order Bandpass (BP) Transfer Functions... 397 10.2.4 Second Order Band-Reject (BR) Transfer Functions... 399 10.2.5 Second Order Allpass (AP) Transfer Functions... 401 10.3 Second Order Active-RC Circuits... 402 10.3.1 Impedance and Frequency Scaling... 403 10.3.2TheRC-CRorLP-HPTransformation... 404 10.4 Sallen-KeyCircuits... 405 10.4.1 Sallen and Key Second Order Lowpass Filter... 406 10.4.2 Sallen and Key Second Order Highpass Filter... 408 10.4.3 Sallen and Key Second Order Bandpass Filter... 409 10.5 Deliyannis Circuits... 410 10.5.1 The Generalized Deliyannis Circuit... 411 10.5.2 Friend s Biquad... 413 10.6 Multiple Feedback (MF) Circuits... 414 10.6.1 The Lowpass Multiple Feedback Circuit.... 414 10.6.2 The Highpass Multiple Feedback Circuit.... 414 10.6.3 The Bandpass Multiple Feedback Circuit.... 415 10.6.4 The Band-Reject Multiple Feedback Circuit... 416 10.6.5TheBoctorCircuits... 417 10.7 Current Generalized Immittance Converter (CGIC) Circuits... 418 10.7.1 The Basic CGIC Biquad.... 419 10.7.2 The Generalized (or 2-OA) CGIC Biquad... 421

Contents xiii 10.8 Biquads with 3 Operational Amplifiers... 427 10.8.1 The Tow-Thomas Biquad... 427 10.8.2TheStateVariableorKHNCircuit... 430 10.8.3TheUniversalCircuit... 431 10.8.4 The 3-OA CGIC Biquad.... 433 10.8.5TheBainter3-OACircuit... 436 10.9 CreationofZeros... 436 10.10 Problems... 438 References..... 439 11 Some Filter Design Mathematics... 441 11.1 Polynomials.... 441 11.1.1 Even and Odd Part of Polynomials... 444 11.1.2 The Polynomial P( s)... 444 11.2 Hurwitz Polynomials... 445 11.2.1 The Continued-Fraction Property... 445 11.3 Strictly Hurwitz Polynomials Routh s Criterion.... 448 11.4 Rational Functions... 449 11.5 Sturm s Theorem... 450 11.6 Retrieving Polynomial P(s)from P(jω)... 454 11.7 Partial Fractions Expansion Pole Residues...... 457 11.8 Positive Real (PR) Functions..... 458 11.8.1 Positive Real Functions: Definition I...... 458 11.8.2 Positive Real Functions: Definition II...... 459 11.8.3 Positive Real Functions: Definition III..... 460 11.9 Problems... 463 References..... 464 12 Synthesis of RLCM One-Port Circuits... 465 12.1 PoleRemovals... 465 12.1.1 Removal of Pole at s = 0... 465 12.1.2 Removal of Pole at s =... 468 12.1.3 Removal of a Conjugate Pole Pair at s =±jω 1... 469 12.1.4PartialPoleRemoval... 471 12.1.5RemovalofaConstant... 472 12.2 Minimum Positive Real Functions... 473 12.3 Synthesis of Minimum Positive Real Functions..... 476 12.3.1 Brune s Method with X 1 < 0... 477 12.3.2 Brune s Method with X 1 > 0... 481 12.4 Synthesis of LC One-Ports...... 485 12.4.1 Properties of the LC Functions... 485 12.4.2FosterRealizations... 487 12.4.3 Cauer Realizations... 489 12.5 Problems... 493 References..... 494 Index... 495

http://www.springer.com/978-94-007-2189-0