SUPPLEMENTARY INFORMATION

Σχετικά έγγραφα
Electronic Supplementary Information:

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Butadiene as a Ligand in Open Sandwich Compounds

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Electronic Supplementary Information

Supporting Information for: electron ligands: Complex formation, oxidation and

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

January 22, University of Minnesota, Minneapolis, Minnesota , USA

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Supplementary Information

of the methanol-dimethylamine complex

Supplementary Information. Unveiling the complex vibronic structure of canonical adenine cation

Electronic Supplementary Information (ESI)

Supporting Information

Supporting Information

ELECTRONIC SUPPORTING INFORMATION

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Table of Contents 1 Supplementary Data MCD

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supporting Information

Electronic Supplementary Information

Electronic structure and spectroscopy of HBr and HBr +

Supplementary materials. Mode Analysis. Matthias M. N. Wolf, Christian Schumann, Ruth Groß, Tatiana Domratcheva 1 and Rolf. Diller

Supplementary Information for

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information

Supporting Information: Expanding the Armory: Predicting and Tuning Covalent Warhead. Reactivity.

Structural Expression of Exo-Anomeric Effect

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information

Experimental and Theoretical Investigations of Structural Trends for Selenium(IV)

Supporting Information

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge

1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

Supporting Information for:

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Supporting Information: Design principles for α-tocopherol analogues

Supporting Information for Substituent Effects on the Properties of Borafluorenes


Supporting Information

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Solvent effects on structures and vibrations of zwitterionic dipeptides: L-diglycine and L-dialanine

difluoroboranyls derived from amides carrying donor group Supporting Information

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Supplementary Information Chemical Partition of the Radiative Decay Rate of Luminescence of Europium Complexes

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

SUPPORTING INFORMATION TO. On Two Alizarin Polymorphs

ELECTRONIC SUPPLEMENTARY MATERIAL-RSC Adv.

Supporting Information. Evaluation of spin-orbit couplings with. linear-response TDDFT, TDA, and TD-DFTB

Variational Wavefunction for the Helium Atom

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field

Channels and Monomolecular Nanotubes

IV. ANHANG 179. Anhang 178

Fused Bis-Benzothiadiazoles as Electron Acceptors

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Hartree-Fock Theory. Solving electronic structure problem on computers

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Supporting Information

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Oxazines: A New Class Of Second-Order Nonlinear Optical Switches Supporting Information

Electronic supplementary information for

Electronic Supplementary Information

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Electronic Supplementary Information

Reminders: linear functions

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

EE512: Error Control Coding

Molecular structure, spectral analysis and hydrogen bonding analysis of ampicillin trihydrate: A combined DFT and AIM approach

Supporting Information

Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003 Chem. Eur. J Supporting Information. for

Supplementary Information

* To whom correspondence should be addressed.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ψ ( 1,2,...N ) = Aϕ ˆ σ j σ i χ j ψ ( 1,2,!N ) ψ ( 1,2,!N ) = 1 General Equations

SUPPORTING INFORMATION

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Approximation of distance between locations on earth given by latitude and longitude

Transcript:

Capture of Elusive Hydroxymethylene and its Fast Disappearance through Tunnelling Peter R. Schreiner a, Hans Peter Reisenauer a, Frank Pickard b, Andrew C. Simmonett b, Wesley D. Allen b, Edit Mátyus c & Attila G. Császár c a Institut für Organische Chemie der Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D- 35392 Giessen, Germany. b Center for Computational Chemistry, The University of Georgia, Athens, GA 30602, USA. c Laboratory of Molecular Spectroscopy, Institute of Chemistry, Eötvös University, H-1518 Budapest 112, P.O. Box 32, Hungary. H O H O O 3 HVFP 1000 C Ar, 11 K H CO 2 1 OH O H 2 H www.nature.com/nature 1

Supplementary Figures Supplementary Figure 1. Optimized AE-CCSD(T)/cc-pCVQZ geometric structures (Å, deg). www.nature.com/nature 2

Supplementary Figure 2. Comparative optimized geometric structures (Å, deg) of the three lowest-lying electronic states of hydroxymethylene. www.nature.com/nature 3

Supplementary Tables 1. Experimental Supplementary Table 1. Half-life (in h) of matrix isolated 1t in matrices at different temperatures Temperature/matrix Ar Kr Xe N 2 11 K 1.8 2.0 2.3 7.0 15 K 1.9 Not determined Not determined Not determined 20 K 1.7 2.0 Not determined Not determined 2. Computational Supplementary Table 2. Cartesian coordinates (in bohr) of all species optimized at the all-electron(ae) CCSD(T)/cc-pCVQZ level of theory 1c (C s point group) C 0.0080 0.0135 0.0000 O 2.4672 0.0253 0.0000 H 0.6067 2.0119 0.0000 H 3.2264 1.6397 0.0000 1t (C s point group) H 2.1511 1.7241 0.0000 H 1.8797 1.4687 0.0000 C 1.3879 0.2311 0.0000 O 1.0590 0.1574 0.0000 2 (C 2v point group) C 0.0000 0.0000 1.1391 O 0.0000 0.0000 1.1367 H 0.0000 1.7684 2.2346 H 0.0000 1.7684 2.2346 H 2 (D h point group) H 0.0000 0.0000 0.7010 H 0.0000 0.0000 0.7010 www.nature.com/nature 4

TS2 (C s point group) O 0.0000 0.1226 1.1280 C 0.0000 0.1421 1.3228 H 0.0000 1.9090 0.2490 H 0.0000 1.6560 2.3908 TS1 (C 1 point group) H 2.1590 1.8056 0.0594 H 2.0083 0.1764 1.4323 C 1.4434 0.1889 0.0498 O 1.0931 0.0170 0.1238 CO (C v point group) C 0.0000 0.0000 1.2185 O 0.0000 0.0000 0.9148 TS3 (C s point group) O 1.1057 0.0139 0.0000 C 1.2850 0.3208 0.0000 H 2.1212 2.0928 0.0000 H 0.1178 1.9507 0.0000 TS4 (C s point group) C 1.0240 0.3285 0.0000 O 1.1351 0.1082 0.0000 H 2.7339 2.3360 0.0000 H 3.0813 0.1387 0.0000 Triplet 1 (T 1 state) (C 1 point group) H -2.7249-0.8684 1.1137 H 1.8489 1.2914 0.8486 C -1.4170 0.1400-0.1075 O 1.0906-0.1250-0.0064 www.nature.com/nature 5

Supplementary Table 3. Cartesian coordinates (in bohr) of species optimized at the all-electron (AE) Mk-MRCCSD/aug-cc-pCVTZ level of theory 1t (S 0 state) (C s point group) H 2.1569 1.7198 0.0000 H 1.8888 1.4621 0.0000 C 1.3871 0.2310 0.0000 O 1.0576 0.1570 0.0000 1 (S 1 state) (C s point group stationary point) H 2.8484 1.2260 0.0000 H 1.9784 1.4182 0.0000 C 1.3850 0.2061 0.0000 O 1.0939 0.1667 0.0000 1 (S 1 state) (C 1 point group minimum) H 2.8008 0.9514 0.9049 C 1.3802 0.1647 0.0939 O 1.0913 0.1391 0.0429 H 1.9149 1.1971 0.8941 www.nature.com/nature 6

Supplementary Table 4. Single-point energies (in hartree) for focal-point extrapolations, computed at the AE-CCSD(T)/cc-pCVQZ optimized geometries. 1c (C s ) cc-pvdz 113.792101 114.095454 114.118888 114.127978 114.133451 cc-pvtz 113.827523 114.210550 114.228416 114.244166 cc-pvqz 113.836325 114.247830 114.261479 114.278994 cc-pv5z 113.838548 114.261570 114.272062 114.290228 cc-pv6z 113.838847 114.266986 114.275676 114.294065 1t (C s ) cc-pvdz 113.800205 114.103350 114.126340 114.135306 114.140786 cc-pvtz 113.835568 114.218368 114.235925 114.251506 cc-pvqz 113.844472 114.255787 114.269128 114.286463 cc-pv5z 113.846812 114.269678 114.279839 114.297823 cc-pv6z 113.847149 114.275141 114.283491 114.301699 2 (C 2v ) cc-pvdz 113.876330 114.192633 114.208449 114.218305 114.224110 cc-pvtz 113.911856 114.307136 114.317295 114.333816 cc-pvqz 113.920861 114.344683 114.350691 114.368998 cc-pv5z 113.923081 114.358428 114.361334 114.380300 cc-pv6z 113.923353 114.363893 114.365007 114.384203 H 2 (D h ) cc-pvdz 1.128719 1.155108 1.163427 1.163427 1.163427 cc-pvtz 1.132950 1.164633 1.172336 1.172336 cc-pvqz 1.133448 1.166565 1.173796 1.173796 cc-pv5z 1.133597 1.167255 1.174223 1.174223 cc-pv6z 1.133614 1.167518 1.174346 1.174346 TS2 (C s ) cc-pvdz 113.717702 114.053533 114.066498 114.079747 114.085998 cc-pvtz 113.753929 114.169492 114.176096 114.196571 cc-pvqz 113.762855 114.207112 114.209142 114.231519 cc-pv5z 113.765240 114.221141 114.219867 114.242936 cc-pv6z 113.765583 114.226742 114.223571 114.246882 www.nature.com/nature 7

TS1 (C 1 ) cc-pvdz 113.717702 114.053533 114.066498 114.079747 114.090325 cc-pvtz 113.753929 114.169492 114.176096 114.196571 cc-pvqz 113.762855 114.207112 114.209142 114.231519 cc-pv5z 113.765240 114.221141 114.219867 114.242936 cc-pv6z 113.765583 114.226742 114.223571 114.246882 CO (C v ) cc-pvdz 112.749226 113.036086 113.043762 113.054431 113.059676 cc-pvtz 112.780270 113.135456 113.138549 113.155478 cc-pvqz 112.788764 113.169830 113.169363 113.187892 cc-pv5z 112.790528 113.182295 113.179049 113.198181 cc-pv6z 112.790761 113.187371 113.182481 113.201826 TS3 (C s ) cc-pvdz 113.682149 114.016639 114.032129 114.045622 114.051466 cc-pvtz 113.718011 114.130427 114.139799 114.160527 cc-pvqz 113.726757 114.167415 114.172402 114.195034 cc-pv5z 113.728954 114.181097 114.182885 114.206211 cc-pv6z 113.729274 114.186599 114.186538 114.210108 TS4 (C s ) cc-pvdz 113.714272 114.050990 114.067019 114.081663 114.088075 cc-pvtz 113.750234 114.163631 114.173916 114.195590 cc-pvqz 113.759565 114.201199 114.207245 114.230778 cc-pv5z 113.761859 114.214896 114.217807 114.242024 cc-pv6z 113.762225 114.220435 114.221509 114.245969 Triplet 1 (T 1 state) (C 1 point group) ROHF CCSD CCSD(T) CCSDT(Q) cc-pvdz 113.785112 114.087256 114.094003 114.095268 cc-pvtz 113.821194 114.196394 114.209522 cc-pvqz 113.830278 114.229295 114.244166 cc-pv5z 113.832676 114.239877 114.255389 cc-pv6z 113.832992 114.243429 114.259162 www.nature.com/nature 8

Supplementary Table 5. Focal-point extrapolations of relative energies (all entries in kcal mol 1 ) 1c(C s ) 1t(C s ) ΔE e (HF +δ +δ +δ [CCSD(T)] +δ = ΔE e [CCSDT(Q)] ) (MP2) (CCSD) [CCSDT(Q)] cc-pvdz 5.09 0.13 0.28 0.08 +0.00 [+4.60] cc-pvtz 5.05 0.14 0.19 0.11 [+0.00] [+4.61] cc-pvqz 5.11 0.12 0.19 0.11 [+0.00] [+4.69] cc-pv5z 5.19 0.10 0.21 0.11 [+0.00] [+4.77] cc-pv6z 5.21 0.09 0.21 0.11 [+0.00] [+4.79] [+5.22] [ 0.08] [ 0.22] [ 0.11] [+0.00] [+4.80] Function a+be cx a+bx 3 a+bx 3 a+bx 3 add Fit pts., X = (4, 5, 6) (5, 6) (5, 6) (5, 6) ZPVE (harmonic) = 0.414 ZPVE (anharmonic) = 0.430 (core correlation) = 0.045 (relativity) = 0.011 (DBOC) = 0.013 Final E 0 = 4.801 0.414 + 0.045 0.011 + 0.013 = 4.409 (harmonic ZPVE) Final E 0 = 4.801 0.430 + 0.045 0.011 + 0.013 = 4.392 (anharmonic ZPVE) 1t(C s ) 2(C 2v ) ΔE e (HF +δ +δ +δ [CCSD(T)] +δ = ΔE e [CCSDT(Q)] ) (MP2) (CCSD) [CCSDT(Q)] cc-pvdz 47.77 +8.26 4.50 +0.56 +0.20 [+52.29] cc-pvtz 47.87 +7.83 4.64 +0.59 [+0.20] [+51.86] cc-pvqz 47.93 +7.85 4.60 +0.61 [+0.20] [+52.00] cc-pv5z 47.86 +7.83 4.55 +0.62 [+0.20] [+51.96] cc-pv6z 47.82 +7.87 4.54 +0.62 [+0.20] [+51.98] [47.81] [+7.93] [ 4.52] [+0.63] [+0.20] [+52.04] Function a+be cx a+bx 3 a+bx 3 a+bx 3 add Fit pts., X = (4, 5, 6) (5, 6) (5, 6) (5, 6) ZPVE (harmonic) = 0.544 ZPVE (anharmonic) = 0.617 (core correlation) = 0.396 (relativity) = 0.006 (DBOC) = 0.009 Final E 0 = 52.044 0.544 + 0.396 0.006 + 0.009 = 51.899(harmonic ZPVE) Final E 0 = 52.044 0.617 + 0.396 0.006 + 0.009 = 51.826(anharmonic ZPVE) www.nature.com/nature 9

H 2 + CO 2(C 2v ) ΔE e (HF +δ +δ +δ [CCSD(T)] +δ = ΔE e [CCSDT(Q)] ) (MP2) (CCSD) [CCSDT(Q)] cc-pvdz 1.01 +1.92 0.11 0.51 +0.35 [+0.63] cc-pvtz 0.86 +5.28 0.40 0.26 [+0.35] [+4.12] cc-pvqz 0.85 +6.05 0.47 0.14 [+0.35] [+4.94] cc-pv5z 0.66 +6.23 0.51 0.10 [+0.35] [+5.31] cc-pv6z 0.64 +6.29 0.52 0.09 [+0.35] [+5.39] [ 0.64] [+6.38] [ 0.53] [ 0.08] [+0.35] [+5.49] Function a+be cx a+bx 3 a+bx 3 a+bx 3 add Fit pts., X = (4, 5, 6) (5, 6) (5, 6) (5, 6) ZPVE (harmonic) = 8.017 ZPVE (anharmonic) = 7.832 (core correlation) = 0.339 (relativity) = 0.176 (DBOC) = 0.044 Final E 0 = 5.489 8.017 + 0.339 0.176 + 0.044 = 2.321 (harmonic ZPVE) Final E 0 = 5.489 7.832 + 0.339 0.176 + 0.044 = 2.136 (anharmonic ZPVE) TS2(C s ) 2(C 2v ) ΔE e (HF +δ +δ +δ [CCSD(T)] +δ = ΔE e [CCSDT(Q)] ) (MP2) (CCSD) [CCSDT(Q)] cc-pvdz 99.54 12.25 +1.79 2.13 0.28 [+86.67] cc-pvtz 99.10 12.73 +2.23 2.48 [ 0.28] [+85.84] cc-pvqz 99.15 12.82 +2.50 2.55 [ 0.28] [+85.99] cc-pv5z 99.05 12.90 +2.62 2.58 [ 0.28] [+85.92] cc-pv6z 99.00 12.94 +2.69 2.58 [ 0.28] [+85.89] [98.99] [ 13.00] [+2.78] [ 2.59] [ 0.28] [+85.90] Function a+be cx a+bx 3 a+bx 3 a+bx 3 add Fit pts., X = (4, 5, 6) (5, 6) (5, 6) (5, 6) ZPVE (harmonic) = 4.548 (core correlation) = 0.307 (relativity) = 0.054 (DBOC) = 0.024 Final E 0 = 85.902 4.548 + 0.307 0.054 0.024 = 81.582(harmonic ZPVE) TS1(C s ) 1t(C s ) ΔE e (HF +δ +δ +δ [CCSD(T)] +δ = ΔE e [CCSDT(Q)] ) (MP2) (CCSD) [CCSDT(Q)] cc-pvdz 27.95 +5.32 1.90 +0.40 0.10 [+31.66] cc-pvtz 27.08 +4.66 1.90 +0.43 [ 0.10] [+30.16] cc-pvqz 26.91 +4.44 1.91 +0.40 [ 0.10] [+29.74] cc-pv5z 26.82 +4.32 1.89 +0.38 [ 0.10] [+29.52] cc-pv6z 26.81 +4.28 1.89 +0.37 [ 0.10] [+29.47] [+26.80] [+4.22] [ 1.88] [+0.36] [ 0.10] [+29.41] Function a+be cx a+bx 3 a+bx 3 a+bx 3 add www.nature.com/nature 10

Fit pts., X = (4, 5, 6) (5, 6) (5, 6) (5, 6) ZPVE (harmonic) = 2.645 (core correlation) = 0.089 (relativity) = 0.037 (DBOC) = 0.084 Final E 0 = 29.408 2.645 + 0.089 + 0.037 0.084 = 26.806(harmonic ZPVE) TS3(C s ) [H 2 + CO] ΔE e (HF +δ +δ +δ [CCSD(T)] +δ = ΔE e [CCSDT(Q)] ) (MP2) (CCSD) [CCSDT(Q)] cc-pvdz 122.86 13.33 +0.32 1.77 0.38 [+107.70] cc-pvtz 122.5 16.03 +0.89 2.38 [ 0.38] [+104.60] cc-pvqz 122.65 16.61 +1.11 2.57 [ 0.38] [+104.20] cc-pv5z 122.47 16.77 +1.21 2.63 [ 0.38] [+103.91] cc-pv6z 122.43 16.82 +1.25 2.65 [ 0.38] [+103.83] [122.42] [ 16.91] [+1.31] [ 2.68] [ 0.38] [+103.77] Function a+be cx a+bx 3 A+bX 3 a+bx 3 add Fit pts., X = (4, 5, 6) (5, 6) (5, 6) (5, 6) ZPVE (harmonic) = 1.527 (core correlation) = 0.338 (relativity) = 0.065 (DBOC) = 0.121 Final E 0 = 103.769 + 1.527 + 0.338 + 0.065 0.121 = 105.578 (harmonic ZPVE) Triplet 1(T 1 state, C 1 ) 1t(C s ) ΔE e (HF) +δ (CCSD) +δ [CCSD(T)] +δ = ΔE e [CCSDT(Q)] [CCSDT(Q)] cc-pvdz 9.47 +15.06 +1.39 +2.64 [+28.56] cc-pvtz 9.02 +15.79 +1.54 [+2.64] [+28.99] cc-pvqz 8.91 +16.09 +1.55 [+2.64] [+29.19] cc-pv5z 8.87 +16.21 +1.55 [+2.64] [+29.27] cc-pv6z 8.88 +16.26 +1.55 [+2.64] [+29.34] [8.89] [+16.32] [+1.56] [+2.64] [+29.41] Function a+be cx a+bx 3 a+bx 3 Add Fit pts., X = (4, 5, 6) (5, 6) (5, 6) ZPVE (harmonic) = 1.31 ZPVE (anharmonic) = 1.29 (core correlation) = 0.28 (relativity) = 0.09 (DBOC) = 0.06 Final E 0 = 29.41 1.31 0.28 + 0.09 + 0.06 = 27.97 (harmonic ZPVE) Final E 0 = 29.41 1.29 0.28 + 0.09 + 0.06 = 27.98 (anharmonic ZPVE) Notation of focal point tables: The symbol δ denotes the increment in the energy difference (ΔE e ) with respect to the previous level of theory. Bracketed numbers are the result of basis set www.nature.com/nature 11

extrapolations (using the designated extrapolation functions and fit points), while unbracketed numbers were explicitly computed. The focal-point limits approximate ΔE e [CCSDT(Q)] in the complete basis set limit. Supplementary Table 6. Final focal-point relative energies (kcal mol 1 ) a Species Relative energy CO + H 2 0.0 (0.0) H 2 CO (2) 2.3 (2.1) trans-hcoh (1t) 54.2 (54.0) cis-hcoh (1c) 58.6 (58.4) TS1 81.0 TS2 83.9 TS3 105.6 a Values in parentheses include ZPVE anharmonicity. Supplementary Table 7. Total energies (in hartree) computed at the all-electron (AE) Mk-MRCCSD/aug-cc-pCVnZ level. 1 (S 0 state): AE-MkCCSD/aug-cc-pCVnZ//AE-CCSD(T)/cc-pCVQZ (with closed-shell RHF orbitals) Basis set Mk-MRCCSD aug-cc-pcvdz 114.232700 aug-cc-pcvtz 114.351167 aug-cc-pcvqz 114.386478 1 (S 1 state): AE-MkCCSD/aug-cc-pCVnZ//AE-CCSD(T)/cc-pCVQZ (with triplet RHF orbitals) Basis set Mk-MRCCSD aug-cc-pcvdz 114.119361 aug-cc-pcvtz 114.240445 aug-cc-pcvqz 114.276355 1 (S 0 state, C s point group): AE-MkCCSD/aug-cc-pCVTZ optimum geometry Total AE-MkCCSD/aug-cc-pCVTZ energy with closed-shell RHF orbitals = 114.351175 E h AE-MkCCSD/aug-cc-pCVTZ harmonic ZPVE = 5944.03 cm 1 1 (S 1 state, C s point group): AE-MkCCSD/aug-cc-pCVTZ optimum geometry Total AE-MkCCSD/aug-cc-pCVTZ energy with triplet RHF orbitals = 114.260687 E h AE-MkCCSD/aug-cc-pCVTZ harmonic ZPVE = 5457.96 cm 1 www.nature.com/nature 12

Supplementary Table 8. AE-CCSD(T)/ccpCVQZ quadratic force constants F ij for trans-h C OH a,b ij F ij ij F ij 11 5.6148 43 0.1114 21 0.3633 44 1.2580 22 13.2387 51 0.0510 31 0.0532 52 0.6534 32 0.2569 53 0.0676 33 7.3706 54 0.1362 41 0.1605 55 0.8520 42 0.8282 66 0.3260 a F ij units are consistent with energies in aj, distances in Å, and angles in radians. b The force field is represented in the internal coordinates S 1 = ρ CH (r e = 1.110704 Å) S 4 = θ(h C O) S 2 = ρ CO (r e = 1.311083 Å) S 5 = θ(c O H) S 3 = ρ OH (r e = 0.963895 Å) S 6 = τ(h C O H) where the SPF stretching coordinates are ρ = 1 r e /r, r is a bond distance, θ is a valence bond angle, and τ is the backbone dihedral angle. www.nature.com/nature 13

Supplementary Table 9. AE-CCSD(T)/ccpCVQZ cubic force constants F ijk for trans- H C OH a ijk F ijk ijk F ijk 111 4.2855 511 0.0500 211 1.6369 521 0.2716 221 2.6450 522 0.9084 222 32.9309 531 0.0668 311 0.1895 532 0.0457 321 0.0688 533 0.1494 322 2.2266 541 0.0731 331 0.0839 542 0.1564 332 1.9225 543 0.0174 333 6.9243 544 0.1093 411 0.2807 551 0.1031 421 0.9463 552 1.4464 422 0.1583 553 0.0537 431 0.0189 554 0.2114 432 0.4503 555 0.6753 433 0.3503 661 0.0957 441 0.3304 662 0.6306 442 2.0142 663 0.0093 443 0.2073 664 0.1156 444 1.5724 665 0.0482 a See footnotes a and b of Table S8. www.nature.com/nature 14

Supplementary Table 10. AE-CCSD(T)/cc-pCVQZ quartic force constants F ijkl for trans-h C OH a ijkl F ijkl ijkl F ijkl ijkl F ijkl 1111 33.9101 4432 1.3587 5531 0.0736 2111 4.7906 4433 1.1117 5532 0.1065 2211 6.4870 4441 0.8145 5533 0.2731 2221 0.9822 4442 3.6238 5541 0.1336 2222 47.2958 4443 0.3598 5542 0.9312 3111 0.6148 4444 2.3481 5543 0.1850 3211 0.3123 5111 1.2158 5544 0.4794 3221 0.7838 5211 0.0633 5551 0.5138 3222 2.6820 5221 0.6994 5552 0.5735 3311 0.0899 5222 2.7927 5553 1.8273 3321 0.2977 5311 0.2035 5554 0.0450 3322 10.9242 5321 0.6223 5555 2.4951 3331 0.0889 5322 2.4443 6611 0.3340 3332 12.4935 5331 0.1538 6621 0.5043 3333 46.1934 5332 2.3612 6622 0.0922 4111 1.6170 5333 3.1098 6631 0.0141 4211 2.3988 5411 0.0340 6632 0.1942 4221 0.8867 5421 0.9968 6633 0.1930 4222 8.1338 5422 0.4689 6641 0.0015 4311 0.1368 5431 0.4422 6642 0.3875 4321 1.3548 5432 0.2719 6643 0.0410 4322 1.2999 5433 0.1296 6644 0.0883 4331 0.4097 5441 0.3679 6651 0.0445 4332 1.1963 5442 0.5203 6652 0.0372 4333 0.9095 5443 0.3844 6653 0.1999 4411 1.8557 5444 0.0351 6654 0.0231 4421 1.7181 5511 0.4206 6655 0.5416 4422 0.3317 5521 0.8824 6666 0.4610 4431 0.0744 5522 0.8061 a See footnotes a and b of Table S8. www.nature.com/nature 15