ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

Σχετικά έγγραφα
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2


1. For each of the following power series, find the interval of convergence and the radius of convergence:

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

IIT JEE (2013) (Trigonomtery 1) Solutions

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Areas and Lengths in Polar Coordinates

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Solve the difference equation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Srednicki Chapter 55

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Example Sheet 3 Solutions

Areas and Lengths in Polar Coordinates

Ψηφιακή Επεξεργασία Εικόνας

Trigonometric Formula Sheet

CRASH COURSE IN PRECALCULUS

Bessel function for complex variable

Finite Field Problems: Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Matrices and Determinants

Homework for 1/27 Due 2/5

PARTIAL NOTES for 6.1 Trigonometric Identities

Presentation of complex number in Cartesian and polar coordinate system

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Section 8.3 Trigonometric Equations

Note: Please use the actual date you accessed this material in your citation.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

α β

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

2 Composition. Invertible Mappings

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Spherical shell model

Fourier Series. Fourier Series

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Second Order RLC Filters

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Example 1: THE ELECTRIC DIPOLE

[1] P Q. Fig. 3.1

Section 9.2 Polar Equations and Graphs


Section 7.6 Double and Half Angle Formulas

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

derivation of the Laplacian from rectangular to spherical coordinates

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Other Test Constructions: Likelihood Ratio & Bayes Tests

The Heisenberg Uncertainty Principle

On Generating Relations of Some Triple. Hypergeometric Functions

Homework 3 Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 8.2 Graphs of Polar Equations

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Statistical Inference I Locally most powerful tests

C.S. 430 Assignment 6, Sample Solutions

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Degenerate Perturbation Theory

ECE 222b Applied Electromagnetics Notes Set 4c

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Math221: HW# 1 solutions

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

MathCity.org Merging man and maths

Higher Derivative Gravity Theories

( ) 2 and compare to M.

Homework 4.1 Solutions Math 5110/6830

Spherical Coordinates

Derivation of Optical-Bloch Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Variational Wavefunction for the Helium Atom

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Answer sheet: Third Midterm for Math 2339

Capacitors - Capacitance, Charge and Potential Difference

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Uniform Convergence of Fourier Series Michael Taylor

Tridiagonal matrices. Gérard MEURANT. October, 2008

The Neutrix Product of the Distributions r. x λ

Approximation of distance between locations on earth given by latitude and longitude

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Lecture 26: Circular domains

Concrete Mathematics Exercises from 30 September 2016

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

F19MC2 Solutions 9 Complex Analysis

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

A study on generalized absolute summability factors for a triangular matrix

6.003: Signals and Systems. Modulation

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

the total number of electrons passing through the lamp.

DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

B.A. (PROGRAMME) 1 YEAR

Differential equations

Transcript:

ECE 6382 Fall 2017 David R. Jackso Notes 21 Bessel Fuctio Examples Notes are from D. R. Wilto, Dept. of ECE Note: j is used i this set of otes istead of i. 1

Impedace of Wire A roud wire made of coductig material is examied. ε 0, µ 0 ε 1, µ 1, σ a k1 = ω µε c ε = ε c1 1 j σ ω The wire has a coductivity of σ. We eglect the variatio of the fields iside the wire ( k << k 1 ). 2

Impedace of Wire (cot.) Iside the wire: ( ) E = AJ k e k = ω µε 1 1 0 1 = ω µε 1 1 1 2 1 c σ ω µε 1 1 j ωε1 = jωµ σ = = ωµ σ 1 jπ /4 ( e ) ωµ 1σ 2 σ j ωε1 jπ /4 ( e ) jk (The field must be fiite o the axis, o φ variatio.) k = k k k 2 2 1 1 1 ε 0, µ 0 a ε 1, µ 1, σ Note: This assumes that the wire is fed (excited) from the outside. 3

Impedace of Wire (cot.) Hece, we have E AJ e π δ /4 = 0 2 j ε 0, µ 0 a ε 1, µ 1, σ where δ = 2 ωµ σ 1 (ski depth) We ca also write the field as 3 /4 3 /4 0 2 j π j π E = AJ e = AJ0 2e δ δ Note : We ca also write E = AJ0 1 j δ ( ) 1 k = β jα = 1 j δ β = α = 1/ δ ( ) 4

Impedace of Wire (cot.) Ber Bei υ υ E AJ e π δ j3 /4 = 0 2 Recall: ( ) ( ) ( j3 π /4 x Re J xe ) υ ( ) ( ) ( j3 π /4 x Im J xe ) υ ε 0, µ 0 a ε 1, µ 1, σ Therefore, we ca write E = A Ber0 2 + jbei0 2 δ δ 5

Impedace of Wire (cot.) The curret flowig i the wire is I = S J ds ε 0, µ 0 = = = 2π a 0 0 2π a 0 J 2πσ a 0 J ddφ E d d a ε 1, µ 1, σ Hece a j3 π /4 I = 2πσ A J0 2e d δ 0 6

Impedace of Wire (cot.) The impedace per uit legth defied as: Hece, Z l = Z a J0 δ 2e a 2πσ δ 2 0 l E ( a) I j3 π /4 j3 π /4 J0 e d ε 0, µ 0 a ε 1, µ 1, σ Note: This assumes that the wire is fed (excited) from the outside. 7

Impedace of Wire (cot.) We have the followig helpful itegratio idetity: ( ) = ( ) J x xdx xj x 0 1 ε 0, µ 0 a ε 1, µ 1, σ Hece a 2 L 2 L j3 π/4 1 j3 π/4 a 0 2 = δ 0 0 δ = 0 2 L 0 0 2 ( x) 1 0 ( L) L ( ) ( ) J e d e J x xdx J x xdx where a = xj L 2 a = J1 L L a δ 2 j3 /4 e π Use : j3 π /4 x= 2e δ 1 dx = d 2e δ j3 π /4 8

Impedace of Wire (cot.) Hece, we have Z l = a j3 π /4 J0 2e δ 1 j3 π/4 a j3 π/4 2πσ aδ e J1 2e 2 δ ε 0, µ 0 where ε 1, µ 1, σ a j3 π /4 a a J0 2e = Ber0 2 + jbei0 2 δ δ δ a j3 π /4 a a J1 2e = Ber1 2 + jbei1 2 δ δ δ a 9

Impedace of Wire (cot.) At low frequecy (a << δ): Z l 1 ( 2 ) σ πa ε 0, µ 0 ε 1, µ 1, σ At high frequecy (a >> δ): a Z l Zs 2π a where s s s 1 σδ ( 1 ) Z = R + j R ωµ 2σ 1 = = surface resistace of metal ( ) 10

Circular Waveguide The waveguide is homogeeously filled, so we have idepedet TE ad TM modes. a ε r E TM mode: =ψ φ,, ( ) Jυ( k) si( υφ) ψ = e Yυ( k) cos( υφ) jk 2 2 2 k k k = 11

Circular Waveguide (cot.) (1) φ variatio φ [0, 2 π] ψ( φ, + 2 π, ) = ψ( φ,, ) υ = (uiqueess of solutio) Choose cos( φ ) J ( k ) ψ = Y ( k ) cos( φ) e jk 12

Circular Waveguide (cot.) 0, φ, (2) The field should be fiite o the axis ( ) ψ Y ( ) k is ot allowed ψ = cos( φ) J ( k ) e jk k k k 2 = 2 2 13

Circular Waveguide (cot.) (3) B.C. s: E a, φ, = 0 ( ) Hece J ( ) 0 ka = 14

Circular Waveguide (cot.) J ( ) 0 ka = J (x) Plot show for 0 x 1 x 2 x 3 x ka = x p k = x p a Note: x 0 is ot icluded sice J = a x0 0 (trivial solutio). 15

Circular Waveguide (cot.) TM p mode: E cos( ) jk = φ J xp e = 0,1, 2 a 1/2 2 x = = 1, 2,3, a 2 p k k p 16

Cutoff Frequecy: TM k = k k 2 2 2 k = 0 k = k = x p a 2π f µε = c x p a f TM c c = 2πa ε r x p 17

Cutoff Frequecy: TM (cot.) x p values p \ 0 1 2 3 4 5 1 2.405 3.832 5.136 6.380 7.588 8.771 2 5.520 7.016 8.417 9.761 11.065 12.339 3 8.654 10.173 11.620 13.015 14.372 4 11.792 13.324 14.796 TM 01, TM 11, TM 21, TM 02, 18

TE Modes H =ψ φ,, ( ) ψ = cos( φ) J ( k ) e jk I this case we have ψ a, φ, 0 ( ) 19

TE Modes (cot.) Set E a,, 0 ( ) φ φ = H = jωε E H Eφ = jωε H 1 At he boudary, the first term o the RHS is ero: H a,, 0 ( ) φ = Hece J ( ) 0 ka = 20

TE Modes (cot.) J ( ) 0 ka = J ' (x) Plot show for 1 Recall: 1 J( x) ~ x, 0,1, 2,... = 2! x' 1 x' 2 x' 3 x ka k = x p x p = p = 1,2,3,... a Note: p = 0 is ot icluded (see ext slide). 21

TE Modes (cot.) ψ = cos( φ) J jk x p e p= 1, 2, a If p = 0, x = 0 p p = 0 0 J x p = J ( 0) = 0 a = 0 J0 x p = J0( 0) = 1 a ψ jk = e = k = 0 e jk (trivial sol.) This geerates other field compoets that are ero; the resultig field that oly has H violates the magetic Gauss law. 22

Cutoff Frequecy: TE k = k k 2 2 2 k = 0 k = k = x p a 2π f µε = c x p a f TE c c = x 2πa ε r p 23

Cutoff Frequecy:TE x p values p \ 0 1 2 3 4 5 1 3.832 1.841 3.054 4.201 5.317 5.416 2 7.016 5.331 6.706 8.015 9.282 10.520 3 10.173 8.536 9.969 11.346 12.682 13.987 4 13.324 11.706 13.170 TE 11, TE 21, TE 01, TE 31,.. 24

TE 11 Mode The domiat mode of circular waveguide is the TE 11 mode. Electric field Magetic field (from Wikipedia) TE 10 mode of rectagular waveguide TE 11 mode of circular waveguide The TE 11 mode ca be thought of as a evolutio of the TE 10 mode of rectagular waveguide as the boudary chages shape. 25

Scatterig by Cylider A TM plae wave is icidet o a PEC cylider. y ( φ, ) TM k a x H i θ i x Top view i E i ˆ x H = yh e + y0 jkx ( k) k k x = = k k cosθ siθ i i 26

Scatterig by Cylider (cot.) From the plae-wave properties, we have i cos x E = η0h 0 θ e + y i jkx ( k) The total field is writte as the sum of icidet ad scattered parts: For a: E = E + E i s Note: For ay wave of the form exp(-jk ), all field compoets ca be put i terms of E ad H. This is why it is coveiet to work with E. Please see the Appedix. 27

Scatterig by Cylider (cot.) We first put i E ito cylidrical form usig the Jacobi-Ager idetity*: 1 E η H cos θe J ( k ) e + i jk = 0 y0 i = j jφ Recall: where 2 2 k cos = kx = k0 k = k0 θi jkx = ( ) ( ) e = j J k e Let k k k x jφ Assume the followig form for the scattered field: 1 ( 2) 0 0cos jk + s E = η Hy θie a H ( k ) e = j jφ *This was derived previously usig the geeratig fuctio. 28

Scatterig by Cylider (cot.) At = a E ( a, φ, ) = 0 Hece i (, φ, ) = (, φ, ) s E a E a This yields ( ) ( 2 ) ( ) = J ka ah ka or a = H J (2) ( k ) a ( k a) 29

Scatterig by Cylider (cot.) We the have ( ka) + 1 J s jk ( 2) E = η0h 0cos ( ) y θie H ( 2) k e = j H ( ka ) jφ ad s H = 0 (TM ) The other compoets of the scattered field ca be foud from the formulas i the Appedix. 30

Curret Lie Source TM : E ( φ),, = ψ( ) I () = I 0 y Coditios: x 1) 2) 3) 4) Allowed agles: Symmetry: = 0 Radiatio coditio: [ ] φ 0, 2π υ = H (2) ( k ) Symmetry: k = 0 ( k = k) E ( ) = AH ( k) Hece (2) 0 31

Curret Lie Source (cot.) Our goal is to solve for the costat A: E ( ) = AH ( k) (2) 0 Choose a small circular path: I 0 0 C 32

Curret Lie Source (cot.) From Ampere s law ad Stokes theorem: H = J + jωε E i i H d r = J ˆdS + jωε E ˆdS C S S H (2 π ) = I + jωε E ds φ 0 S I 0 0 C Examie the last term (displacemet curret): (2) 0 ( ) E = AH k where (2) 2 j x H0 ( x) ~ γ + l π 2 33

Curret Lie Source (cot.) E ( l ) Hece ( ) = O Now use so S E ds C l( ) d dφ 0 Therefore 2π 0 0 Hφ (2 π ) = I 0 H φ = = 1 E jωµ 1 Ak H jωµ ( 2) 0 ( k) (2) E = AH0 ( k) 1 2j 2 1 Ak jωµ π k 2 H H H φ ( 2) 0 ( 2) 0 jωε E jk 1 H = 2 2 2 2 k k k k φ 1 E = jωµ 2 j x ( x) ~ γ l π + 2 2j 2 1 ( x)~ π x 2 34

Curret Lie Source (cot.) Hece 1 2j 2 1 Ak (2 π) jωµ π k 2 = I 0 or ( ωµ ) ( 4/ ) I0 A = Thus so ωµ I A = 4 ωµ I = 4 0 (2) E H0 ( k ) 0 35

Scatterig From a Lie Curret ωµ I = 4 i 0 (2) E H0 ( kr ) a R = 0 I 0 We use the additio theorem to traslate the Hakel fuctio to the axis. y x (, φ ) 0 0 0 36

Scatterig From a Lie Curret (cot.) The additio theorem tells us: H + (2) H ( ) ( ) k J k e < = ( k ) = + ( ) (2) J ( ) k H k e > = (2) 0 0 j( φ φ0 ) 0 0 j( φ φ0 ) 0 0 We use the first form, sice the cylider at = a is iside the circle o which the lie source resides (radius 0 ). 37

Scatterig From a Lie Curret (cot.) Icidet field: + i ωµ I0 (2) ( ) ( ) j 0 E H k0 J k e φ = φ 4 = ( valid for < ) 0 ( ) Assume a form for the scattered field: s ψ ωµ I (2) ( ) j( 0 ) ah k e φ φ ( valid for > a) 38 + 0 = 4 =

Scatterig From a Lie Curret (cot.) Boudary Coditios ( = a): Hece s i E ( a, φ, ) = E ( a, φ, ) a H ( ka) = H ( k ) J ( ka) (2) (2) 0 or H ( 2) 0 a = J ka H ( 2) ( k ) ( ka) ( ) 39

Scatterig From a Lie Curret (cot.) Fial result: ( 2) ωµ I H ( k ) E J ka H k e + s 0 0 ( 2 ) j( φ φ0 ) = ( ) (2) ( ) 4 = H ( ka) a I 0 Scattered field y x ( 0, φ0) 40

Dielectric Rod 0 = ε 1 r a 1 ε, µ r r Ukow waveumber: k < k < k 0 1 Modes are hybrid* uless: = 0 ( = 0) φ Note: We ca have TE 0p, TM 0p modes *This meas that we eed both E ad H. 41

Dielectric Rod (cot.) < a Represetatio of potetials iside the rod: 1 1 1 1 ( ) si ( φ) E = AJ k e ( ) cos( φ) H = BJ k e jk jk where k = k k (k is ukow) 2 2 2 1 1 42

Dielectric Rod (cot.) To see choice of si/cos, examie the field compoets (for example E ): From the Appedix: E jωµ 1 H jk E = 2 2 2 2 k k φ k k 43

Dielectric Rod (cot.) > a Represetatio of potetials outside the rod: Use ( 2) ( 2) H ( k ) = H ( jα ) 0 0 where ( 2 2) 1/2 k = k k = jα 0 0 0 α = k k 2 2 0 0 Note: α 0 is iterpreted as a positive real umber i order to have decay radially i the air regio. 44

Dielectric Rod (cot.) Useful idetity: ( ) ( ) 2 ( ) + 1 1 H ( jx) = 1 H ( + jx) Aother useful idetity: ( 1 ) 2 ( + 1) H ( jx) = j K( x) π K (x) = modified Bessel fuctio of the secod kid. 45

Dielectric Rod (cot.) The modified Bessel fuctios decay expoetially. 1 1 K0( x) K1( x) 0.8 0.6 K1 ( x) 0.4 0.2 K0 ( x) 3.691 10 3 0 0 1 2 3 4 5 5 10 3 x x 5 46

Dielectric Rod (cot.) Hece, we choose the followig forms i the air regio ( > a): E = CK ( α )si( φ) e 0 0 H = DK ( α )cos( φ) e 0 0 jk jk α = k k 2 2 0 0 47

Dielectric Rod (cot.) Match E, H, E φ, H φ at = a: Example: 1 0 M11 M12 M13 M14 A 0 M21 M22 M23 M 24 B 0 = M31 M32 M33 M34 C 0 M41 M42 M43 M44 D 0 E = E AJ ( k1a) = CK( α0a) or ( 1 ) ( ) ( α0 ) ( ) ( ) AJ k a + B 0 + C K a + D 0 = 0 so ( ) ( α ) M = J k a, M = K a, M = M = 0 11 1 13 0 12 14 48

Dielectric Rod (cot.) M11 M12 M13 M14 A 0 M21 M22 M23 M 24 B 0 = M31 M32 M33 M 34 C 0 M41 M42 M43 M44 D 0 To have a o-trivial solutio, we require that Mk ω ( det, ) = 0 k = ukow (for a give frequecy ω) 49

Dielectric Rod (cot.) Domiat mode (lowest cutoff frequecy): HE 11 (f c = 0) E This is the mode that is used i fiber-optic guides (sigle-mode fiber). 50

Dielectric Rod (cot.) Sketch of ormalied waveumber k / k 0 ε r 1.0 f α = k k 2 2 0 0 At higher frequecies, the fields are more tightly boud to the rod. 51

Appedix For ay wave of the form exp(-jk ), all field compoets ca be put i terms of E ad H. E E x y jωµ H jk E = k k y k k x 2 2 2 2 jωµ H jk E = k k x k k y 2 2 2 2 H H x y jωε E jk H = k k y k k x c 2 2 2 2 jωε E jk H = k k x k k y c 2 2 2 2 52

Appedix (cot.) These may be writte more compactly as E = jωµ H jk E ( ˆ ) ( ) t 2 2 t 2 2 t k k k k H = jωε E jk H ( ˆ ) ( ) t 2 2 t 2 2 t k k k k where Φ Φ ˆ ˆ t x + y x Φ y 53

Appedix (cot.) I cylidrical coordiates we have Φ ˆ 1 Φ Φ= ˆ t + φ φ This allows us to calculate the field compoets i terms of E ad H i cylidrical coordiates. 54

Appedix (cot.) I cylidrical coordiates we have E E φ jωµ 1 H jk E = 2 2 2 2 k k φ k k jωµ H jk 1 E = 2 2 2 2 k k k k φ H H φ jωε 1 E jk H = 2 2 2 2 k k φ k k jωε E jk 1 H = 2 2 2 2 k k k k φ 55