ANTENNAS and WAVE PROPAGATION. Solution Manual

Σχετικά έγγραφα
e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Fundamental Equations of Fluid Mechanics

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

Tutorial Note - Week 09 - Solution

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Laplace s Equation in Spherical Polar Coördinates

4.2 Differential Equations in Polar Coordinates

Curvilinear Systems of Coordinates

General Relativity (225A) Fall 2013 Assignment 5 Solutions

The Laplacian in Spherical Polar Coordinates

Problems in curvilinear coordinates

Analytical Expression for Hessian

Example 1: THE ELECTRIC DIPOLE

r = x 2 + y 2 and h = z y = r sin sin ϕ

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Solutions Ph 236a Week 2

Matrix Hartree-Fock Equations for a Closed Shell System

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 8.3 Trigonometric Equations

Matrices and Determinants

Orbital angular momentum and the spherical harmonics

Note: Please use the actual date you accessed this material in your citation.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!


Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

3.7 Governing Equations and Boundary Conditions for P-Flow

Second Order Partial Differential Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

Chapter 7a. Elements of Elasticity, Thermal Stresses

Finite Field Problems: Solutions

1 String with massive end-points

1- Uzunluğu b olan (b > λ) tek kutuplu bir tel anten xy düzlemindeki iletken plakaya dik olan z ekseninde bulunmakta olup I

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Srednicki Chapter 55

EE512: Error Control Coding

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Areas and Lengths in Polar Coordinates

Course Reader for CHEN 7100/7106. Transport Phenomena I

Areas and Lengths in Polar Coordinates

Partial Differential Equations in Biology The boundary element method. March 26, 2013

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

Example Sheet 3 Solutions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Homework 8 Model Solution Section

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

D Alembert s Solution to the Wave Equation

( y) Partial Differential Equations

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Inverse trigonometric functions & General Solution of Trigonometric Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Solutions to Exercise Sheet 5

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Homework 3 Solutions

Derivation of Optical-Bloch Equations

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Spherical Coordinates

1 3D Helmholtz Equation

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Uniform Convergence of Fourier Series Michael Taylor

Section 7.6 Double and Half Angle Formulas

2 Composition. Invertible Mappings

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Space-Time Symmetries

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Numerical Analysis FMN011

Trigonometry 1.TRIGONOMETRIC RATIOS

Strain and stress tensors in spherical coordinates

Risk! " #$%&'() *!'+,'''## -. / # $

derivation of the Laplacian from rectangular to spherical coordinates

Section 8.2 Graphs of Polar Equations

Answer sheet: Third Midterm for Math 2339

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Second Order RLC Filters

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Orbital angular momentum and the spherical harmonics

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Parametrized Surfaces

Statistical Inference I Locally most powerful tests

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

w o = R 1 p. (1) R = p =. = 1

The Neutrix Product of the Distributions r. x λ

Forced Pendulum Numerical approach

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2,

Finite difference method for 2-D heat equation

Transcript:

ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS

2

Contents Electomagnetic Radiation 5 2 Antenna Chaacteistics 9 3 Wie Antennas 45 4 Apetue Antennas 59 5 Antenna Aas 83 6 Special Antennas 97 7 Antenna Measuements 05 8 Radio Wave Popagation 07 3

4 CONTENTS

Chapte Electomagnetic Radiation Solution. The unit vectos in spheical coodinates, viz., a, a θ, and a φ epessed in tems of a, a, and a z as see Eample.7, can be a = a sin θ cos φ + a sin θ sin φ + a z cos θ a θ = a cos θ cos φ + a cos θ sin φ a z sin θ a φ = a sin φ + a cos φ Taking the dot poduct of each of the unit vectos with itself, a a = sin 2 θ cos 2 φ + sin 2 θ sin 2 φ + cos 2 θ = a θ a θ = cos 2 θ cos 2 φ + cos 2 θ sin 2 φ + sin 2 θ = a φ a φ = sin 2 φ + cos 2 φ = Taking the dot poducts with each othe, a a θ = sin θ cos θ cos 2 φ + sin θ cos θ sin 2 φ sin θ cos θ = 0 a θ a φ = cos θ cos φ sin φ + cos θ sin φ cos φ = 0 a a φ = sin θ cos φ sin φ + sin θ sin φ cos φ = 0 Theefoe, the spheical coodinate sstem is othogonal. Solution.2 In ectangula coodinate sstem, the gadient opeato is given b Taking the cul of φ, Epanding the deteminant, 2 φ φ = a z 2 φ z dφ φ = a d + a dφ d + a dφ z dz a a a z φ = z dφ dφ dφ d d dz 2 φ + a z 2 φ 2 φ + a z z 2 φ = 0 5

6 CHAPTER. ELECTROMAGNETIC RADIATION Solution.3 The cul of a vecto in ectangula coodinates is given b a a a z A = z A A A z Epanding the deteminant, Az A = a A z Taking the divegence, 2 A z A = 2 A + z A + a z A z A + a z A 2 A z 2 A z 2 A + z 2 A = 0 z Solution.4 In ectangula coodinates a a a z A = z A A A z Az A = a A A + a z z A z A + a z A Now we can epand A as A = { A a A A z z A } z { Az +a z A A z A } { A +a z z A z Az A } z { 2 } A = a + 2 A z z 2 A 2 2 A 2 z { 2 } A +a + 2 A z z 2 A 2 2 A 2 z { 2 } A +a z z + 2 A z 2 A z 2 2 A z 2 { 2 A = a + 2 A z z + 2 A 2 2 A 2 2 A 2 2 A 2 z { 2 A +a + 2 A z z + 2 A 2 2 A 2 2 A 2 2 A 2 z } }

7 { 2 } A +a z z + 2 A z + 2 A z 2 z 2 A z 2 2 A z 2 2 A z 2 z A = a + A + A z z A +a + A + A z z A +a z z + A + A z z a 2 A a 2 A a z 2 A z = A 2 A Solution.5 In a souce-fee egion the Mawell s equations educe to Taking the cul of the fist equation, E = jωµh H = jωɛe E = 0 H = 0 E = jωµ H Epanding the L.H.S. using the vecto identit and substituting the epession fo H on the R.H.S fom the second equation, Since E = 0 and ω 2 µɛ = k 2, we get E 2 E = jωµjωɛe 2 E + k 2 E = 0 Similal, taking and cul of the second equation, H = jωɛ E Epanding the L.H.S. using the vecto identit and substituting the epession fo E on the R.H.S fom the fist equation, H 2 H = jωɛ jωµh Since H = 0, we get 2 H + k 2 H = 0 Solution.6 Fom Eqns.3 to.34, we can conclude that V = V 0 e jk / epesents a wave with a velocit v = ω/k. Since both ω and k ae positive numbes, the

8 CHAPTER. ELECTROMAGNETIC RADIATION velocit is positive. Theefoe, V epesents a wave tavelling in the positive diection. Solution.7 a The equiphase suface is a sphee of adius with cente at the oigin. b Equiphase suface is a plane =constant. Solution.8 Fom Eqn.53, we have Substituting into Eqn.57 A z = µ I 0dl e jk A = a φ µ I 0dl e jk sin θ θ µ I 0dl e jk cos θ Pefoming the indicated diffeentiation, µ A = a φ I 0dl jke jk sin θ + e jk Substituting in and eaanging, we get = a φ H = 0 H θ = 0 µ I 0dl e jk sin θjk + H = µ A H φ = jk I 0dl sin θ e jk + jk sin θ Solution.9 Substituting the epession fo H φ fom Eqn.6 into Eqn.63 E = jωɛ 2 sin θ a θ a θ sin θjk I 0dl sin θ sin θjk I 0dl sin θ { e jk Pefoming the indicated diffeentiation, E = a jωɛ 2 2 sin θ cos θjk I 0dl sin θ a θ jk I 0dl sin 2 { θ e jk { + jk e jk { + } jk } + } jk } jke jk jk e jk jk e jk jk 2

9 Substituting ωɛ = k/η and simplifing E = η a cos θjk I 0dl e jk { + } jk 2π jk { +a θ jk I 0dl sin θ jk e jk This can be witten in component fom as E = η I 0dl cos θ 2π E θ = jη ki 0dl sin θ E φ = 0 e jk e jk + jk k 2 + jk + jk k 2 } Solution.0 Fom Eqn.53, the magnetic vecto potential due to a z diected cuent element is, µ A = a z I 0dl e jk whee, = 2 + 2 + z 2 The cul of A in ectangula coodinates is given b Az A = a A A + a z z A z A + a z A Since A and A ae zeo, Diffeentiating A z with espect to, A z A = a a A z A z = µ I 0dl e jk We now compute Similal, e jk = = e jk jk e jk 2 + 2 + z 2 e jk 2 jk e jk = e jk jk 2 + 2 + z 2

0 CHAPTER. ELECTROMAGNETIC RADIATION and hence A z = µ I 0dl e jk jk Theefoe, the magnetic field components ae, H = A z µ = I 0dl H = A z µ = I 0dl H z = 0 e jk e jk jk jk Using the tansfomation fom ectangula to spheical coodinates see Appendi F, H = sin θ cos φh + sin θ sin φh H θ = cos θ cos φh + cos θ sin φh H φ = sin φh + cos φh Substituting the epessions fo H and H and using the elationships = sin θ cos φ and = sin θ sin φ, H = I 0dl e jk = 0 H θ = I 0dl e jk = 0 H φ = I 0dl e jk = jk I 0dl sin θ jk {sin θ cos φ sin θ sin φ sin θ sin φ sin θ cos φ} jk {cos θ cos φ sin θ sin φ cos θ sin φ sin θ cos φ} jk sin φ sin θ sin φ cos φ sin θ cos φ e jk + jk These ae the same as given b Eqns.59 to.6. The electic field is computed using, E = jωɛ H = Hz a jωɛ H H + a z z H z H + a z H Since H z = 0, E = H a jωɛ z + a H z + a H z H We now compute the patial deivates of H and H with espect to,, and z. H = I 0dl e jk + jk e jk jk + e jk jk

Similal, H H = I 0dl + e jk = I 0dl + e jk jk e jk + e jk 3 e jk jk + e jk 3 jk jk 2 3 2 3 jk jk Using 2 + 2 = sin θ cos φ 2 + sin θ sin φ 2 = 2 sin 2 θ, we can wite H H = I 0dl + e jk jk jk + 2 sin 2 θ 2 sin2 θ + sin2 θ 2 Futhe, we can wite the deivatives of H and H with espect to z as H z H z = I 0dl e jk z e jk 3 e jk = I 0dl e jk z 3 jk z jk jk jk + e jk z + e jk jk z 3 jk z 3 which can be witten as, H = I 0dl e jk jk cos θ sin θ sin φ jk z + e jk sin θ sin φ H z e jk = I 0dl e jk jk sin θ sin φ cos θ e jk jk cos θ sin θ cos φ sin θ cos φ cos θ jk The electic field is given b E = H a jωɛ z + a H z + a H z H jk cos θ 2 + e jk cos θ sin θ cos φ 2

2 CHAPTER. ELECTROMAGNETIC RADIATION = I { 0dl e jk a jk cos θ sin θ cos φ jk jωɛ e jk jk sin θ cos φ cos θ + e jk cos θ sin θ cos φ 2 e jk +a jk cos θ sin θ sin φ jk e jk jk sin θ sin φ cos θ + e jk cos θ sin θ sin φ 2 e jk a z jk + 2 sin 2 θ + jk } 2 sin2 θ + sin2 θ 2 The components of the electic field in spheical coodinates can be witten as E = sin θ cos φe + sin θ sin φe + cos θe z E θ = cos θ cos φe + cos θ sin φe sin θe z E φ = sin φe + cos φe Substituting the epessions fo E, E and E z, and simplifing E = I 0dl e jk { sin θ cos φ jk jωɛ sin θ cos φ cos θ jk + sin θ sin φ jk sin θ sin φ cos θ cos θ sin θ cos φ + sin θ cos φ cos θ sin θ sin φ jk cos θ jk jk cos θ + sin θ sin φ 2 cos θ jk + 2 sin 2 θ + jk } 2 sin2 θ + sin2 θ 2 = I 0dl e jk { jk + 2 sin 2 θ cos θ + jωɛ jk + 2 2 sin 2 θ cos θ + jk + } 2 sin2 θ cos θ = I 0dl k e jk + 2π ωɛ jk cos θ = η I 0dl cos θ e jk + 2π jk 2 jk + sin 2 θ cos θ + 2 sin2 θ cos θ cos θ jk + sin 2 θ cos θ

3 E θ = I 0dl e jk { cos θ cos φ jk jωɛ sin θ cos φ cos θ jk + cos θ sin φ jk sin θ sin φ cos θ cos θ sin θ cos φ + sin θ cos φ cos θ sin θ sin φ jk cos θ jk jk cos θ + sin θ sin φ 2 + sin θ jk + 2 sin 2 θ + jk } 2 sin2 θ + sin2 θ 2 = I 0dl e jk { jk + 2 cos 2 θ sin θ + jωɛ + jk + 2 2 sin 3 θ jk + sin θ + + } 2 sin3 θ = I 0dl sin θ e jk jk + 2 + jωɛ = I 0dl sin θ = I 0dl sin θ = jη I 0dl sin θ e jk jωɛ e jk jωɛ e jk jk + 2 + jk 2 + jk + 2 + jk k 2 2 jk + cos 2 θ sin θ + 2 cos2 θ sin θ jk + sin 3 θ jk + 2 jk + + 2 jk + E φ = I 0dl e jk { sin φ jk jωɛ sin θ cos φ cos θ jk + sin θ cos φ + cos φ jk cos θ sin θ sin φ sin θ sin φ cos θ jk + sin θ sin φ = 0 cos θ sin θ cos φ jk cos θ 2 jk } cos θ These ae the epessions fo the components of the electic field in spheical coodinate sstem as given b Eqns.64-.66. 2

4 CHAPTER. ELECTROMAGNETIC RADIATION Solution. Substituting ω = 2πf and f = v/λ, Using k = 2π/λ, and v = / µɛ, we get ωµ = 2π v λ µ ωµ = k µɛ µ = k µ ɛ = kη Solution.2 The electic and magnetic fields in the fa-field egion of a Hetzian dipole can be witten as E θ = E 0 sin θ e jk H φ = E 0 η sin θ e jk whee E 0 is a comple constant. Taking the cul of the electic field, a a θ sin θa φ E = 2 sin θ θ φ 0 E 0 sin θ e jk 0 Since the electic field is independent of φ, diffeentiation with espect to φ ields a zeo. Thus, the deteminant can be epanded to get, { } E = sin θa 2 φ sin θ E 0 sin θe jk Diffeentiating with espect, Similal, H = = 2 sin θ E = a φ je 0 k sin θ e jk ωµ e jk = ja φ E 0 sin θ η E 0 = jωµ a φ η = jωµh a a θ sin θa φ θ φ 0 0 sin θ E 0 η 2 sin θ a E 0 e jk 2 sin θ cos θ η sin θ e jk sin θ e jk E 0 e jk = a 2 cos θ + a η 2 θ j E 0 e jk sin θk η 2 sin θ a E 0 θ η sin2 θ jke jk

At lage distances, we can ignoe the tem containing / 2 and using the elationship k/η = ωɛ, we can wite H = jωɛ { = jωɛe a θ E 0 sin θ e jk } 5 Solution.3 Assuming fa field condition, fom Eqn.69, E θ = jη ki 0dl sin θ E θ = η ki 0dl sin θ e jk In the - plane θ = 90. Substituting dl= m, I 0 = 0 A, f= MHz which coesponds to λ = 300 m, and k = 2π/λ = 2π/300 and η = 376.73Ω we get Theefoe, we get E θ = 376.73 2π 300 0 = 6.279 =6279 m = 0 3 Solution.4 The magnetic vecto potential fo a diected Hetzian dipole is given b Epessing a is spheical coodinates, The magnetic field is given b µ 0 A = a I 0dl e jk A = µ 0 I 0dl e jk a sin θ sin φ + a θ cos θ sin φ + a φ cos φ H = µ A = a a θ sin θa φ µ 2 sin θ θ φ A A θ sin θa φ { I 0 dl = a 2 sin θ cos φ e jk cos θ sin φ e jk sin θ θ φ a θ sin θ cos φ e jk sin θ sin φ e jk φ + sin θa φ cos θ sin φ e jk } sin θ sin φ e jk θ I 0 dl = {a 2 cos θ cos φ e jk cos θ cos φ e jk sin θ

6 CHAPTER. ELECTROMAGNETIC RADIATION a θ jk sin θ cos φ e jk + sin θa φ = I 0dl e jk = a θ jki 0 dl jk cos θ sin φ e jk sin θ cos φ e jk cos θ sin φ e jk } {a θ cos φjk + a φ cos θ sin φjk + } cos φe jk + jki 0 dl a φ cos θ sin φe jk jk + jk The electic field is given b, E = jωɛ H = a a θ sin θa φ jωɛ 2 sin θ θ φ 0 H θ sin θh φ = jki 0dl jωɛ 2 sin θ { a sin θ cos θ sin φ e jk + cos φ e jk + θ jk φ jk a θ sin θ cos θ sin φ e jk + jk + sin θa φ cos φ e jk + } jk = k I 0 dl ωɛ 2 sin θ {a cos 2 θ sin φ e jk + + sin φ e jk + jk jk +a θ sin θ cos θ sin φ + sin θa φ jke jk { jke jk + jk The components of the electic field ae, E = η I 0dl + jk + e jk jk 2 2 sin θ sin φ sin2 θ e jk = η I 0dl sin θ sin φe jk E θ = η I 0dl jk 2 sin θ = η jki 0dl E φ = η jki 0dl + jk sin θ cos θ sin φe jk cos θ sin φe jk cos φe jk } + e jk jk 2 } + jk + jk k 2 + jk k 2 + jk k 2

7 Solution.5 The electic field, E z at 0, 00, 0 is the same as E θ = 00, θ = π, φ = 2, and fom Eqn.65 π 2 E θ = jη ki 0dl e jk + jk k 2 Compaing it = 2 cos6π 0 6 t with it = I 0 cosωt we get, I 0 = 2 A, ω = 6π 0 6 and k = ω = 6π 06 = 0.0628 ad/m. Fom the data given in the poblem, we have v 3 0 8 dl = 0.5 m and = 00 m. Theefoe, Since a z E z θ=90 = a θ E θ, 0.0628 2 0.5 e j0.0628 00 E θ = j376.73 00 + j0.0628 00 0.0628 00 2 = j0.088e j6.28 + j6.28 39.438 = j 0.0880.9746 j0.592 = j0.088 0.9875 9.28 E θ = 0.0856 80.72 V/m E z = +0.0856 80.72 80 = 0.0856 99.3 V/m If the dipole is oiented along diection, the field also gets oiented along the diection. Theefoe, E = 0.0856 99.3 V/m

8 CHAPTER. ELECTROMAGNETIC RADIATION