: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Σχετικά έγγραφα
Vulnerable European option pricing with the time-dependent for double jump-diffusion process

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

DOI /J. 1SSN

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 4: Υποδείγματα πιστωτικού κινδύνου. The Merton's Structural Model

Financial Risk Management

Financial Risk Management

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM


Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD

, ; 3.,,,. ; : A

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

m i N 1 F i = j i F ij + F x

Συστήματα χρηματοοικονομικής μηχανικής & σύγχρονα μοντέλα επενδύσεων

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Probability and Random Processes (Part II)

552 Lee (2006),,, BIC,. : ; ; ;. 2., Poisson (Zero-Inflated Poisson Distribution), ZIP. Y ZIP(φ, λ), φ + (1 φ) exp( λ), y = 0; P {Y = y} = (1 φ) exp(

Premia 14 Closed Formula Methods

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Arbitrage Analysis of Futures Market with Frictions

A.M. Kimiagari & E. Afarideh Sani

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Slides 4. Matthieu Gomez Fall 2017

Homework 8 Model Solution Section

Congruence Classes of Invertible Matrices of Order 3 over F 2


172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Part III - Pricing A Down-And-Out Call Option

Homomorphism in Intuitionistic Fuzzy Automata

Prey-Taxis Holling-Tanner

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 2: Pricing Defaultable Assets. Μιχάλης Ανθρωπέλος


DISTRIBUTIONS OF OCCUPATION TIMES OF BROWNIAN MOTION WITH DRIFT

Mean-Variance Analysis

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 5 : Financial Ratios

OPTIMAL STRATEGIES FOR A LONG-TERM STATIC INVESTOR

An Asymptotic Expansion Approach to Computing Greeks

Study of limit cycles for some non-smooth Liénard systems

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

ΠΜΣ «ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΤΡΑΠΕΖΙΚΗ» ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΗ «ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΤΡΑΠΕΖΙΚΗ ΔΙΟΙΚΗΤΙΚΗ» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ:

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

The k-α-exponential Function

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

- 1+x 2 - x 3 + 7x x x x x x 2 - x 3 - -

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

MOTORCAR INSURANCE I

Pricing Asian option under mixed jump-fraction process

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

High order interpolation function for surface contact problem

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Exercises to Statistics of Material Fatigue No. 5

A 1 A 2 A 3 B 1 B 2 B 3

SPECIAL FUNCTIONS and POLYNOMIALS

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

Bank A ssetgl iab ility Sheet w ith Em bedded Op tion s

d 1 d 1

Ulf Schepsmeier and. Jakob Stöber

Vol. 41 No Journal of Jiangxi Normal University Natural Science May A DOI /j. cnki. issn

H ΕΠΙ ΡΑΣΗ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΤΗΝ ΑΝΑΛΥΤΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ TΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΩΝ ΒΙΟΕΠΙΣΤΗΜΩΝ

Ηλεκτρονικοί Υπολογιστές IV

5.4 The Poisson Distribution.

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

ΥΠΟΛΟΓΙΣΜΟΣ ΔΕΙΚΤΗ ΚΕΦΑΛΑΙΑΚΗΣ ΕΠΑΡΚΕΙΑΣ ΜΕ ΗΜΕΡΟΜΗΝΙΑ ΑΝΑΦΟΡΑΣ 30/09/2015 ΠΙΝΑΚΑΣ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΤΟΙΧΕΙΩΝ ΔΕΙΚΤΗ ΚΕΦΑΛΑΙΑΚΗΣ ΕΠΑΡΚΕΙΑΣ

ΠΑΝ ΠΙΣ ΜΙΟΝΠ ΙΡΑΙΩ ΧΟΛ ΝΧΡ ΜΑΣΟΟΙΚΟΝΟΜΙΚ Ν & ΣΑΣΙΣΙΚ ΣΜΗΜΑΝΣΑΣΙΣΙΚΗ & ΑΦΑΛΙΣΙΚΗΝ ΠΙΣΗΜΗ ΠΡΟΓΡΑΜΜΑΝΜ ΣΑΠΣΤΧΙΑΚΩΝΝΠΟΤ ΩΝΝ ΣΗΝΝΑΝΑΛΟΓΙΣΙΚΗΝ ΠΙΣΗΜΗ ΚΑΙ

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Mean-Variance Hedging on uncertain time horizon in a market with a jump

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Ι

:JEL. F 15, F 13, C 51, C 33, C 13

The ε-pseudospectrum of a Matrix

Bayesian modeling of inseparable space-time variation in disease risk

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

4.6 Autoregressive Moving Average Model ARMA(1,1)

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

[1] F(g(x)) = F(z) = f(z) dz Εξάλλου, γνωρίζουμε από τον κανόνα της αλυσίδας ότι df(g(x)) dx

ΠΡΑΞΗ ΔΙΟΙΚΗΤΗ ΑΡΙΘΜ. 2590/ ΘΕΜΑ: Ελάχιστες Κεφαλαιακές Απαιτήσεις των Πιστωτικών Ιδρυμάτων για το Λειτουργικό Κίνδυνο

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

IR Futures Effective Asset Class ก Efficient Frontier

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

ΚΑΙΝΟΤΟΜΑ ΕΠΕΝΔΥΤΙΚΑ ΕΡΓΑΛΕΙΑ ΠΙΣΤΩΤΙΚΟΥ ΚΙΝΔΥΝΟΥ

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ITU-R SA (2010/01)! " # $% & '( ) * +,

Transcript:

2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein 1996. Klein 1996 2008. 2011 4 26 2011 6 17.

: 173 2. Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A A δt δt = V T /T. Q t < T X d T = B t E Q [B 1 T XT I {V τ T } δt XT I {V τ<t } F t ] B t. t r Q St V t t dst St = rdt k Sd npn S t σ S dw S t J S dnt S 2.1 dv t V t = rdt k V d npn V t σ V dw V t J V dnt V 2.2 r ; σ 2 S σ2 V ; W S t W V t Q Brown ρ; Nt S Nt V λ S λ V Possion ; W S t W V t Nt S Nt V ; k S d npn S t k V d npn V t Possion. K S = EJ S K V = EJ V J S J V Possion J S > 1 J V > 1 J S 0 = 0 J V 0 = 0. oleans-ade [6] 2.1 2.2 N t S St = S0 1 Ji S exp r 1 2 σ2 S t k S npn S t σ S W S t

174 Nt V V t = V 0 1 Ji V exp r 1 2 σ2 V t k V npn V t σ V W V t. Q t < T B-S XT = ST K Xt = StNd KNd σ exp r X t = B t E Q [B 1 T ST K I {V τ T } δt XT I {V τ<t } F t ] Y T = K ST Y t = B t E Q [B 1 T K ST I {V τ T } δt XT I {V τ<t } F t ]. r B t = exprt. 3.1 3. t = : 3.1 XT = ST K δt XT X t X t = P mn tε mn {StN 2 a 1 a 2 ρ m 1Ji S exp k S ipi S StV t KN 2 b 1 b 2 ρ exp rt t N 2c 1 c 2 ρ m 1J S i n 1Ji V exp r ρσ S σ V k S ipi S k V ipi V KV t N 2d 1 d 2 ρ n } 1 Ji V exp k V ipi V ε mn m 1 Ji S n 1 Ji V P mn t = expλ S λ V λm S λn V mn m!n! a 1 = e S1 e S3 a 2 = e V1 e V2 e V3 b 1 = e S1 e S3 b 2 = e V1 e V2 e V3 σ S c 1 = e S1 e S2 e S3 c 2 = e V1 e V2 e V3 d 1 = e S1 e S2 e S3 d 2 = e V1 e V3

: 175 e S1 = e V1 = ln St K ln V t m ln1 Ji S r k S ipi S σ S m ln1 Ji V r k V ipi V σ V e S2 = ρσ V ev2 = ρσ S es3 = 1 2 σ S ev3 = 1 2 σ V d SV N 2 S V N 2 x 1 x 2 = d SV z 1 z 2 ρ = : x1 x2 d SV z 1 z 2 ρdz 1 dz 2 1 2πσ S σ exp 1 [ z 2 1 V 1 ρ 2 21 ρ 2 σs 2 z2 2 σ 2 V 2ρz 1z 2 σ S σ V ]. X T = B t E Q [B 1 T ST K I {V T T } δt XT I {V T <T } F t ]. CST V T T = ST K I {V T } δt XT I {V T <} = fst V T CST V T t = exp re Q [fst V T ] = exp r P mn t N 2 ρdf = exp r P mn t N 2 ρdf F. Xi T = E 1 E 2 E 3 E 4 E 1 = B t E Q [B 1 T ST I {ST >K}I {V T } F t ] E 2 = B t E Q [B 1 T KI {ST >K}I {V T } F t ] E 3 = B t E Q [B 1 T ST δt I {ST >K}I {V T <} F t ] E 4 = B t E Q [B 1 T E 1 : KδT I {ST >K}I {V T <} F t ] B t E Q [B 1 T F t] = exp r E 1 = exp re Q [ST I {ST >K} I {V T } F t ] = { P mn tε mn St m 1 Ji S I {ST >K} I {V T } exp k S = ip S i { P mn tε mn exp k S ip S i fz 1 z 2 ρdz 1 dz 2 } St m 1 Ji V I {ST >K} I {V T } } fv 1 v 2 ρdv 1 dv 2

176 v 1 = z 1 σ S v2 = z 2 ρσ S N 2 σ S ρσs ρ. L 1 = I {ST >K} I {V T >} fv 1 v 2 ρdv 1 dv 2 d Q dq = exp γ W T 1 2 σ2 T γ W R 2 λ S = σ S λ V = σ V. Girsanov W t = W t γt Q R 2. z = W T W t = W T W t γ = z γ E 1 Z 1 Z 2 Q. E 1 E 1 = StN 2 a 1 a 2 ρ N 2 a 1 a 2. E Q [I {ST >K} ] = QST > K = Qln ST > ln K = Q { σ S W T W t > ln St N S K T = Q r 1 2 σ2 S k S ipi S { z 1 < ln St N S K T i=n S t 1 ln1 J S i = Q{ z 1 < e S1 e S3 } = Q{ z 1 < a 1 }; ln1 Ji S i=nt S } 1 r 1 2 σ2 S k S σ S E Q [I {V T >} ] = QV T > = Qln V T > ln = Q { σ V W T W t > ln V t N V K T ln1 Ji V i=nt V 1 r 1 2 σ2 V ρσ S σ V k V ip V i } ip S i } { ln V t N V = Q K T ln1 Ji V r 1 i=nt z 1 < V 1 2 σ2 V k V ipi V } σ V = Q{ z 2 < e V1 e V2 e V3 } = Q{ z 2 < a 2 }.

: 177 [2] = = a 1 a1 a2 E 1 = E 2 E 3 E 4. I {ST >a1 }I {V T >a2 }fv 1 v 2 ρdv 1 dv 2 a 2 fz 1 z 2 ρdz 1 dz 2 = fz 1 z 2 ρdz 1 dz 2. [ P mn tε mn St m a2 a 1 1 Ji S exp k S fz 1 z 2 ρdz 1 dz 2 ] ipi S Na 1 a 2 ρ. 3.2 Y T = K ST δt Y T Y t Y t = P mn tε mn { St m 1 Ji S N 2 a 1 a 2 ρ exp k S KN 2 b 1 b 2 ρ exp r KV t N 2 c 1 c 2 ρ m 1 J S i n 1 Ji V exp r ρσ S σ V k S ipi S k V KV t 3.1. N 2 d 1 d 2 ρ n 1 Ji V exp k V : 3.1. 3.2 ipi S ip V i ipi V } Q dt t = rdt σ dw t W T Q Brown. t = t exp r 1 2 σ2 σ W T W t.

178 S V A σs 2 ρ SV σ S σ V ρ S σ S σ A = ρ SV σ S σ V σv 2 ρ V σ V σ ρ S σ S σ ρ V σ V σ σ 2 ρ SV S V. δt = V t/t dδ δ = dv V dv /V dv /V d d 2 dv V d dδ δ = σ V dw V t σ dw t ρ V σ V σ dt k V d ip V i t J V dn V t. σ δ W δ t = σ V W V t σ W t σ 2 δ = σ2 V σ2 2ρ V σ V σ. ean-lease δ T = δ t N V T 1 J V i=nt v1 i exp σ ρ 2 V σ V σ 1 2 σ2 δ T t k V d = δ t N V T : 1 J V i=nt v1 i exp 1 2 σ2 1 2 σ2 δ k V d ipi V tσ δ W δ T W δ t ipi V t σ δ W δ T W δ t 3.3 Y T = K ST δt XT X T X t = P mn tε mn {StN 2 a 1 a 2 ρ m 1Ji S exp k S ipi S T t KN 2 b 1 b StV t 2 ρ exp rt t N 2c 1 c 2 ρ m 1J S i n 1Ji V exp ψs V k S ipi S k V ipi V KV t N 2d 1 d 2 ρ n } 1 Ji V exp ϕv k V ipi V ψs V = ρ SV σ S σ V ρ S σ S σ ρ V σ V σ σ 2 ϕv = r σ2 ρ V σ V σ a 1 = e S1 2r σ2 S a 2 = e δ1 2σ σ2 V σ2 2θ S σ δ

: 179 b 1 = e S1 2r σ2 S b 2 = e δ1 2σ σ2 V σ2 S 2σ δ c 1 = e S1 2r σ2 S 2θ c 2 = e δ1 2σ σ2 V 3σ2 2θ 4ρ V σ V σ S 2σ δ d 1 = e S1 2r σ2 S 2θ d 2 = e δ1 2σ σ2 V 3σ2 4ρ V σ V σ S 2σ δ ln St e K m ln1 Ji S k S ipi S S1 = σ S V t ln e δ1 = m ln1 Ji V k V ipi V σ δ ρ = ρ SV σ V ρ S σ σ δ σ 2 δ = σ2 V σ 2 2ρ V C σ V σ θ = ρ SV σ S σ V ρ S σ S σ. : 3.1. 3.4 Y T = K ST δt Y T Y t Y t = P mn tε mn { K m 1 Ji S N 2 a 1 a 2 ρ exp k S KN 2 b 1 b 2 ρ exp r KV t N 2 c 1 c 2 ρ m 1 J S i n 1 Ji V exp ψs V k S ipi S k V KV t 3.3. ipi S N 2 d 1 d 2 ρ n 1 Ji V exp ϕv k V : 3.1. 4. ipi V } ipi V. : 1

180 J V = 0 2008 ; 2 J S = 0 J = 0 Klein 1996 ; 3 J S = 0 J S = 0 σ 0 Merton 1974 ; 4 V t E 3 E 4 N 2 x 1 ρ = 0 N 2 x 1 ρ = Nx 1 a 2 b 2 c 2 d 2 B-S. [1] Merton R. On the pricing of corporate debt: The risk structure of interest rates Journal of Finance 291974 449 470. [2] Abramowitz M. and Stegun. I.A. Handbook of Mathematical Functions over Publications 1965. [3] Johnson H. and Stulz R. The pricing of options under default risk Journal of Finance 4221987 267 280. [4] Hull J.M. and White A. The impact of default risk on default risk on the prices of options and other derivative securities Journal of Banking and Finance 1921995 299 323. [5] Klein P. Pricing Black-Scholes options with correlated credit risk Journal of Banking and Finance 2081996 1121 1129. [6] 1981. [7] 1262008 1129 1132. Vulnerable European Option Pricing for Two Jump -iffusion Processes Yan ingqi Yan Bo School of Mathematics and Statistics Lanzhou University Lanzhou 730000 The pricing of the derivatives associated with counterparty default risk is considered. Based on Merton s structured credit risk model an explicit pricing formula of vulnerable options was derived when the underlying asset price and corporate value is assumed to follow a jump-diffusion process. A model of vulnerable option pricing is developed when the underlying asset price and corporate value is assumed to follow a jump-diffusion process then the pricing of vulnerable option is discussed when the corporate liabilities are fixed and random were derived respectively. Keywords: Credit risks vulnerable European option pricing corporate value jump-diffusion process. AMS Subject Classification: 60K99.