Four-Wave Mixing in Optical Fibers and Development of Its Applications

Σχετικά έγγραφα
Research on mode-locked optical fiber laser

PMD Compensator and PMD Emulator * * * Yu Mimura Kazuhiro Ikeda Tatsuya Hatano * * * Takesi Takagi Sugio Wako Hiroshi Matsuura

Contents 1. Introduction Theoretical Background Theoretical Analysis of Nonlinear Interactions... 35

Πανεπιστήμιο Πατρών Πολυτεχνική Σχολή Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

(Design and simulation of an optical full-adder using Semiconductor optical amplifier technology)

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

Graded Refractive-Index

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

ίκτυα Οπτικών Επικοινωνιών

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Photonic Crystal Fibers(1) Optical Properties

Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes

ΜΑΘΗΜΑ: ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ - ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΟΠΤΙΚΩΝ ΖΕΥΞΕΩΝ

Properties of Nikon i-line Glass Series

Οπτικά Δίκτυα Επικοινωνιών

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

X g 1990 g PSRB

PLATEAU METEOROLOGY. X 6 min. 6 min Vol. 34 No. 4 August doi /j. issn X X / cosθcosφ P412.

Τοπολογίες ευρυζωνικών οπτικών δικτύων και αλληλεπίδραση µεταξύ πολυάριθµων καναλιών ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.

14PROC

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Measurement of nitrogen atom flux and growth of β-si 3 N 4 on Si(111) by RF-discharge

Fiber Optics & Τ.Π.B.E./Τ..ΚΟΖ-ΚΑΣΤ-ΦΛΩΡ&ΓΡΕΒ

Analysis of the Low-Frequency Ferrite Antenna. Kazuaki Abe (CASIO COMPUTER CO., LTD.), Jun-ichi Takada (Tokyo Institute of Technology)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Συστήματα Μετάδοσης & ίκτυα Οπτικών Ινών

Derivation of Optical-Bloch Equations

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Data Sheet FOL15DDBA-A31-*****-* / 10mW 1550nm 2.5Gbit/s Directly Modulated DFB Laser Module Date February 16, ODC-2S001E

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Second Order RLC Filters

ΠΕΡΙΓΡΑΦΗ ΚΥΜΑΤΙΚΟΥ ΚΛΙΜΑΤΟΣ ΣΤΟ ΘΡΑΚΙΚΟ ΠΕΛΑΓΟΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΟΜΟΙΩΜΑΤΟΣ SWAN

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

6.003: Signals and Systems. Modulation

Echo path identification for stereophonic acoustic echo cancellation without pre-processing

STANDARD LED LAMPS (ROUND TYPES)

of the methanol-dimethylamine complex

; +302 ; +313; +320,.

Effects of chalcogenide glass microstructure defects on its second order nonlinearity

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

Refractive index and extinction coefficient of materials

Περιεχόμενα διάλεξης

1(a) moat. moat. moat. 1(b) moving magnetic feature

Soil Temperature Change and Heat of Wetting during Infiltration into Dry soils

Monolithic Crystal Filters (M.C.F.)

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

Πτυχιακή Εργασία Πολυπλεξία με Διαίρεση Μήκους Κύματος Εφαρμογές σε Μητροπολιτικά Δίκτυα

NON-LINEAR OPTICS AND QUANTUM OPTICS

VLSI ISSCC. Nature, Science. Fig. 1. (entrainment) , (PD) 1996

Research in parametric optical amplification and injection locking focused on high bit rate optical communication systems applications

Sampling Basics (1B) Young Won Lim 9/21/13

Οπτικά Δίκτυα Επικοινωνιών

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

,,, (, ) , ;,,, ; -

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΣΤΟΥΣ ΟΠΤΙΚΟΥΣ ΕΝΙΣΧΥΤΕΣ ΚΑΙ ΣΤΑ ΟΠΤΙΚΑ ΦΙΛΤΡΑ


Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

G.691 ITU-T STM-64 (SDH) ITU-T G.691 (2006/03)

Μελέτη φυσικού στρώµατος και στρατηγικές µετάβασης προς δυναµικά επαναδιαρθρώσιµα µητροπολιτικά δίκτυα υπερ-υψηλής χωρητικότητας

Development of Simulation Method for Multiphase Flows : Application to Gas-Liquid and Gas-Solid Two Phase Flows

2.1

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet

Handbook of Electrochemical Impedance Spectroscopy

Motion analysis and simulation of a stratospheric airship

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

High order interpolation function for surface contact problem

Δημοτικότητα του Διαδικτύου. Αριθμός συνδεδεμένων Η/Υ κατά έτος

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Οπτικά δίκτυα. Κωνσταντίνος Σ. Χειλάς Φυσικός - Ραδιοηλεκτρολόγος

:,,, Raman PACS: Jp, Jd, j

(Light Emitting Diodes)

First Sensor Quad APD Data Sheet Part Description QA TO Order #

Constitutive Relations in Chiral Media

[1] P Q. Fig. 3.1

レーザ結晶. Altechna 社. Laser Crystals. Ti:Sapphire crystals. High damage threshold Strong Kerr effect

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

[11].,, , 316 6, ,., 15.5%, 9.8%, 2006., IDF,, ,500, 2,830.,, ,200.,,, β, [12]. 90% 2,,,,, [13-15].,, [13,

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Comparison of characteristic by Transformer Winding Method of Contactless Power Transfer Systems for Electric Vehicle

Photonics for Optical. Communication Networks. 2. Technology Basics

6.4 Superposition of Linear Plane Progressive Waves

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

RSA3408A 23 W-CDMA

ΤΗΛΕΜΑΤΙΚΗ. Συστήματα Οπτικών Τηλεπικοινωνιών. Ιωάννης Δ. Τσαλαμάνης (MEng, PhD) Τμήμα Βιομηχανικής Πληροφορικής Σχολή Τεχνολογικών Εφαρμογών

Development of a basic motion analysis system using a sensor KINECT

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

A summation formula ramified with hypergeometric function and involving recurrence relation

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Σχέση µεταξύ της Μεθόδου των ερµατοπτυχών και της Βιοηλεκτρικής Αντίστασης στον Υπολογισµό του Ποσοστού Σωµατικού Λίπους

Συστήματα Μετάδοσης & ίκτυα Οπτικών Ινών

Transcript:

Four-Wave Mixing in Optical Fibers and Development of Its Applications * * * Osamu Aso Masateru Tadakuma Shu Namiki FWMDWDM FWM FWM 23.3 nm FWM 1. 1),2) FWM, Four-Wave Mixing FWM idlerfwm DWDM, Dense Wavelength Division Multiplexing FWM 2 DWDM FWM FWMFWM FWM 2 FWM 3 FWM FWM HNL-DSF, High NonLinearity Dispersion Shifted Fiber, HNL-DSF 4 HNL-DSF 5 DMDispersion Managed 6 RDFReverse Dispersion Fiber 7 2. FWM 1 1 f probe f p1 f p2 1 1),2) DFWM, Degenerated Four-Wave Mixing DFWM1 2 * WP 46

WDM XPM, Cross Phase Modulation DFWM α=0jacobi 45 3 DFWM 67 1 (a)2 (b)1 A schematic of four-wave mixing in the frequency domain. (a) case of 2 channel pump waves (b) case of the 1 channel pump wave (degenerated four wave mixing) f p cw continuous wavedfwm 1 3. FWM 3.1 8)~13 FWM 10 3.2 α γ γ β α γ γ β 3 α γ γ β z α E p, E probe, E idler γ 1 π γ 4 n 2 A eff c 3 β π β = β β β 5 D β 0 FWM FWM 3 3 SPM, Self Phase Modulation a b 11 c 6),7) DFWM 6),7) f DFWM L π 6 β π L coh 6 f 47

12 1 105 b cpmf, Polarization Maintaining Fiber n 7 f n 12 PMF DFWM n 0 36.0 nm L n (%) 1 π φ 3.00 2.00 1.00 0 SiO2-1.00-15.0-1 -5.0 5.0 1 15.0 (µm) HNL-DSF Refractive index profile of the HNL-DSF + = 2.75% - = -0.55% HNL-DSF Transmission characteristics of the HNL-DSF HNL-DSF 4. HNL-DSF 2 HNL-DSF 1 VAD Vapor phase Axial Deposition = 13.8 W -1 km -1 5 3 cw EDFAErbium Doped Fiber Amplifier10 db HNL-DSF OSAOptical Spectrum Analyzer G c 8 4 24.5 km1.2 km0.2 km 100 mw20 dbm 1 mw0 dbm 4 HNL-DSF 0.2 km 23.3 nm 13 (db) -1-2 -3-4 -5 L = 24.5km L = 1.2km L = 200m 3 Setup for the wavelength conversion experiment -6 1 2 3 4 λ idler - λ p (nm) 4 24.5 km, 1.2 km, 200 m Measured conversion efficiency. Each fiber length is, 24.5 km, 1.2 km, 200 m respectively. 48

WDM 5. 5.1 DWDMEDFA 14 EDFA FWMDM 15 RDFReverse Dispersion Fiber SMFSingle-Mode Fiber 16 RDF1550 nm SMF SMF+RDFDM WDM 17),18) γspm 19 XPM 20 FWM 21),22) 23),24) DMRDF 5.2 StolenBjorkholm 1),7) pump undepleted DFWM γ γ γ β γ γ β 9 3α 0 DFWM DFWM G c 1 EDFA PC 3dB (RDF) γ g β β γ 10 11 1011P p L γ β P p G c γ β P p G c Levenberg- Marquardt 25 γ β 6. RDF 6.1 5 3 EDFA ASEAmplified Spontaneous Emission 15 db PC, Polarization ControllerEDFA attenuator 3 1 nmosa D (ps/nm/km) -5.0-1 -15.0 2.0 1.5 1.0 0.5-2 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 λ(nm) n 2 /A elf (10-9 ) (W -1 ) 5 Setup for the simultaneous measurement of the nonlinear coefficient and chromatic dispersion 6 10 km, 1553.0 nm Result of the measurements. Fiber length is 10 km and pump wavelength is 1553 nm. represents the chromatic dispersion and is nonlinear coefficient, n 2. 49

12 1 105 (dbm) Relation of the idler power with probe wavelength. Measurement was made with the same condition as shown in Fig.6. 6.2 1011γ β SBS 25 db 9DFWM 10 kmrdf 1553 nm4γn 2 5 β D 6 λ 6 n 2 D λ λ=0.22 nm D (ps/nm/km) 8-3 -35.0-4 -45.0-5 -55.0 5 0.10 0.15 0.20 0.25 0.30 0.35 λ p - λ probe (nm) -14.5-15.0-15.5-16.0-16.5 1540 1545 1550 1555 1560 WAVELENGTH (nm) RDF 830 m n 2 Result of the chromatic dispersion and n 2. RDF length is 830 m. 2.0 1.5 1.0 0.5 n 2 /A elf (10-9 ) (W -1 ) 1553 nm-15.45 ps/nm/km λ>0.22 nm 10 7 λ λ=0.22 nm 6 7 1 λ 0.22 nm 6 λ 0.21 nm λ 7 λ λ RDF 6.3 RDF 4 RDF 0.83 km5 km10 km20 km 3 nm 8 4 RDFn 2 XPM 2 n 2 α 9 2 RDFn 2 n 2 XPMn 2 Result of the simultaneous measurement of the n 2 and chromatic dispersion of some RDFs. Comparison of the results from the measured n 2 from the XPM method. Chromatic dispersion characteristics is compared with the results obtained by phase shift method. 50

WDM 6.4 DFWM 26 1011 γ α β β γ α 12 13 n 2 XPM 23 7. FWM HNL-DSF 23.3 nm DFWM XPM HNL-DSF RFD 1) G.P.Agrawal, "Nonlinear Fiber Optics-Second Edition", Academic Press, San Diego, CA, USA, (1995) Chap. 10. 1997 10 2) 1995 11 3) C. Lin, W. A. Reed, A. D. Pearson and H. -T. Shang, Opt. Lett., 6, 10, (1981) 493. 4) 19773 5) G. Cappelini and S. Trillo, J. Opt. Soc. Am. B, 8, 4, (1991) 824. 6) K. O. Hill, D. C. Johnson, B. S. Kawasaki and R. I. MacDonald, J. Appl.Phys., 49, 10, (1978) 5098. 7) R. H. Stolen and J. E. Bjorkholm, J. Quantum Electron., QE-18, 7,(1982) 1062. 8) S. J. B. Yoo, J. Lightwave Technol., 14, 6, (1996) 955. 9) K. E. Stubjaer, A. Kloch, P. B. Hansen, H. N. Poulsen, D. Wolfson, K. S. Jepsen, A.T. Clausen, E. Limal and A. Buxens, IEICE Trans. Electron., E82-C, 2, (1999) 338. 10) N. Antoniades, S. J. B. Yoo, K. Bala, G. Ellinas and T. E. Stern, J. Lightwave Technol., 17, 7, (1999) 1113. 11) S. Watanabe, S. Takeda, G. Ishikawa, H. Ooi, J. G. Nielsen and C. Sonne, European Conference on Optical Communication(ECOC) 97, post-deadline paper TH3A, (1997) 1. 12) S. Watanabe, S. Takeda and T. Chikama, ECOC' 98, post-deadline paper (1998) 85. 13) O. Aso, M. Tadakuma and S. Namiki, Proc. ECOC'99, vol. II, (1999), 226. 14) 82,7(1999)718 15) A. R. Chraplyvy and R. W. Tkach, J. Quantum Electron., 34, 11, (1998) 2103. 16) K. Mukasa, Y. Akasaka, Y. Suzuki and T. Kamiya, ECOC'97, (1997) 127 17) Y. Miyamoto, K. Yonenaga, A. Hirano, N. Shimizu, M. Yoneyama, H. Tanaka, K. Noguchi and K. Tsuzuki, ECOC' 98, post-deadline, (1998) 55 18) M. Murakami, T. Matsuda and T. Imai, ibid., (1998) 79. 19) R. H. Stolen and C. Lin, Phys. Rev. A, 17, 4, (1992) 1448. 20) A. Wada, T. O. Tsun, and R. Yamauchi, ECOC' 92, (1992) 71 21) S. V. Chernikov and J. R. Taylor, Opt. Lett., 21, 24, (1996) 1966. 22) S. Bigo and M. W. Chbat, Symposium on Optical Fiber Measurement, (1998), p.77 23) M. Tadakuma, O. Aso and S. Namiki, Proc. ECOC'99, vol. II, (1999), 228. 24) ibid, Optical Fiber Measurement Conference Program, (1999), 71. 25) W. H. Press, S. A. Teukolsky, W. T. Vertterling and B. P. Flannery, " Numerical Receipes in C, Second Edition", Cambridge University Press, N.Y., USA (1992) Chap.15. 26) L. F. Mollenauer, P. V. Mamyshev and M. J. Neubelt, Opt. Lett., 21, 21, (1996) 172 51