Four-Wave Mixing in Optical Fibers and Development of Its Applications * * * Osamu Aso Masateru Tadakuma Shu Namiki FWMDWDM FWM FWM 23.3 nm FWM 1. 1),2) FWM, Four-Wave Mixing FWM idlerfwm DWDM, Dense Wavelength Division Multiplexing FWM 2 DWDM FWM FWMFWM FWM 2 FWM 3 FWM FWM HNL-DSF, High NonLinearity Dispersion Shifted Fiber, HNL-DSF 4 HNL-DSF 5 DMDispersion Managed 6 RDFReverse Dispersion Fiber 7 2. FWM 1 1 f probe f p1 f p2 1 1),2) DFWM, Degenerated Four-Wave Mixing DFWM1 2 * WP 46
WDM XPM, Cross Phase Modulation DFWM α=0jacobi 45 3 DFWM 67 1 (a)2 (b)1 A schematic of four-wave mixing in the frequency domain. (a) case of 2 channel pump waves (b) case of the 1 channel pump wave (degenerated four wave mixing) f p cw continuous wavedfwm 1 3. FWM 3.1 8)~13 FWM 10 3.2 α γ γ β α γ γ β 3 α γ γ β z α E p, E probe, E idler γ 1 π γ 4 n 2 A eff c 3 β π β = β β β 5 D β 0 FWM FWM 3 3 SPM, Self Phase Modulation a b 11 c 6),7) DFWM 6),7) f DFWM L π 6 β π L coh 6 f 47
12 1 105 b cpmf, Polarization Maintaining Fiber n 7 f n 12 PMF DFWM n 0 36.0 nm L n (%) 1 π φ 3.00 2.00 1.00 0 SiO2-1.00-15.0-1 -5.0 5.0 1 15.0 (µm) HNL-DSF Refractive index profile of the HNL-DSF + = 2.75% - = -0.55% HNL-DSF Transmission characteristics of the HNL-DSF HNL-DSF 4. HNL-DSF 2 HNL-DSF 1 VAD Vapor phase Axial Deposition = 13.8 W -1 km -1 5 3 cw EDFAErbium Doped Fiber Amplifier10 db HNL-DSF OSAOptical Spectrum Analyzer G c 8 4 24.5 km1.2 km0.2 km 100 mw20 dbm 1 mw0 dbm 4 HNL-DSF 0.2 km 23.3 nm 13 (db) -1-2 -3-4 -5 L = 24.5km L = 1.2km L = 200m 3 Setup for the wavelength conversion experiment -6 1 2 3 4 λ idler - λ p (nm) 4 24.5 km, 1.2 km, 200 m Measured conversion efficiency. Each fiber length is, 24.5 km, 1.2 km, 200 m respectively. 48
WDM 5. 5.1 DWDMEDFA 14 EDFA FWMDM 15 RDFReverse Dispersion Fiber SMFSingle-Mode Fiber 16 RDF1550 nm SMF SMF+RDFDM WDM 17),18) γspm 19 XPM 20 FWM 21),22) 23),24) DMRDF 5.2 StolenBjorkholm 1),7) pump undepleted DFWM γ γ γ β γ γ β 9 3α 0 DFWM DFWM G c 1 EDFA PC 3dB (RDF) γ g β β γ 10 11 1011P p L γ β P p G c γ β P p G c Levenberg- Marquardt 25 γ β 6. RDF 6.1 5 3 EDFA ASEAmplified Spontaneous Emission 15 db PC, Polarization ControllerEDFA attenuator 3 1 nmosa D (ps/nm/km) -5.0-1 -15.0 2.0 1.5 1.0 0.5-2 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 λ(nm) n 2 /A elf (10-9 ) (W -1 ) 5 Setup for the simultaneous measurement of the nonlinear coefficient and chromatic dispersion 6 10 km, 1553.0 nm Result of the measurements. Fiber length is 10 km and pump wavelength is 1553 nm. represents the chromatic dispersion and is nonlinear coefficient, n 2. 49
12 1 105 (dbm) Relation of the idler power with probe wavelength. Measurement was made with the same condition as shown in Fig.6. 6.2 1011γ β SBS 25 db 9DFWM 10 kmrdf 1553 nm4γn 2 5 β D 6 λ 6 n 2 D λ λ=0.22 nm D (ps/nm/km) 8-3 -35.0-4 -45.0-5 -55.0 5 0.10 0.15 0.20 0.25 0.30 0.35 λ p - λ probe (nm) -14.5-15.0-15.5-16.0-16.5 1540 1545 1550 1555 1560 WAVELENGTH (nm) RDF 830 m n 2 Result of the chromatic dispersion and n 2. RDF length is 830 m. 2.0 1.5 1.0 0.5 n 2 /A elf (10-9 ) (W -1 ) 1553 nm-15.45 ps/nm/km λ>0.22 nm 10 7 λ λ=0.22 nm 6 7 1 λ 0.22 nm 6 λ 0.21 nm λ 7 λ λ RDF 6.3 RDF 4 RDF 0.83 km5 km10 km20 km 3 nm 8 4 RDFn 2 XPM 2 n 2 α 9 2 RDFn 2 n 2 XPMn 2 Result of the simultaneous measurement of the n 2 and chromatic dispersion of some RDFs. Comparison of the results from the measured n 2 from the XPM method. Chromatic dispersion characteristics is compared with the results obtained by phase shift method. 50
WDM 6.4 DFWM 26 1011 γ α β β γ α 12 13 n 2 XPM 23 7. FWM HNL-DSF 23.3 nm DFWM XPM HNL-DSF RFD 1) G.P.Agrawal, "Nonlinear Fiber Optics-Second Edition", Academic Press, San Diego, CA, USA, (1995) Chap. 10. 1997 10 2) 1995 11 3) C. Lin, W. A. Reed, A. D. Pearson and H. -T. Shang, Opt. Lett., 6, 10, (1981) 493. 4) 19773 5) G. Cappelini and S. Trillo, J. Opt. Soc. Am. B, 8, 4, (1991) 824. 6) K. O. Hill, D. C. Johnson, B. S. Kawasaki and R. I. MacDonald, J. Appl.Phys., 49, 10, (1978) 5098. 7) R. H. Stolen and J. E. Bjorkholm, J. Quantum Electron., QE-18, 7,(1982) 1062. 8) S. J. B. Yoo, J. Lightwave Technol., 14, 6, (1996) 955. 9) K. E. Stubjaer, A. Kloch, P. B. Hansen, H. N. Poulsen, D. Wolfson, K. S. Jepsen, A.T. Clausen, E. Limal and A. Buxens, IEICE Trans. Electron., E82-C, 2, (1999) 338. 10) N. Antoniades, S. J. B. Yoo, K. Bala, G. Ellinas and T. E. Stern, J. Lightwave Technol., 17, 7, (1999) 1113. 11) S. Watanabe, S. Takeda, G. Ishikawa, H. Ooi, J. G. Nielsen and C. Sonne, European Conference on Optical Communication(ECOC) 97, post-deadline paper TH3A, (1997) 1. 12) S. Watanabe, S. Takeda and T. Chikama, ECOC' 98, post-deadline paper (1998) 85. 13) O. Aso, M. Tadakuma and S. Namiki, Proc. ECOC'99, vol. II, (1999), 226. 14) 82,7(1999)718 15) A. R. Chraplyvy and R. W. Tkach, J. Quantum Electron., 34, 11, (1998) 2103. 16) K. Mukasa, Y. Akasaka, Y. Suzuki and T. Kamiya, ECOC'97, (1997) 127 17) Y. Miyamoto, K. Yonenaga, A. Hirano, N. Shimizu, M. Yoneyama, H. Tanaka, K. Noguchi and K. Tsuzuki, ECOC' 98, post-deadline, (1998) 55 18) M. Murakami, T. Matsuda and T. Imai, ibid., (1998) 79. 19) R. H. Stolen and C. Lin, Phys. Rev. A, 17, 4, (1992) 1448. 20) A. Wada, T. O. Tsun, and R. Yamauchi, ECOC' 92, (1992) 71 21) S. V. Chernikov and J. R. Taylor, Opt. Lett., 21, 24, (1996) 1966. 22) S. Bigo and M. W. Chbat, Symposium on Optical Fiber Measurement, (1998), p.77 23) M. Tadakuma, O. Aso and S. Namiki, Proc. ECOC'99, vol. II, (1999), 228. 24) ibid, Optical Fiber Measurement Conference Program, (1999), 71. 25) W. H. Press, S. A. Teukolsky, W. T. Vertterling and B. P. Flannery, " Numerical Receipes in C, Second Edition", Cambridge University Press, N.Y., USA (1992) Chap.15. 26) L. F. Mollenauer, P. V. Mamyshev and M. J. Neubelt, Opt. Lett., 21, 21, (1996) 172 51